101
|
Hogrebe NJ, Gooch KJ. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self‐assembling peptide hydrogel. J Biomed Mater Res A 2016; 104:2356-68. [DOI: 10.1002/jbm.a.35755] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/12/2022]
Affiliation(s)
| | - Keith J. Gooch
- Department of Biomedical EngineeringThe Ohio State UniversityColumbus Ohio
- The Ohio State University, Davis Heart Lung Research InstituteColumbus Ohio
| |
Collapse
|
102
|
Abstract
The tumor microenvironment plays an essential role in various stages of cancer development. This environment, composed of the extracellular matrix, fibroblasts, endothelial cells, and cells of the immune system regulates the behavior of and co-evolve with tumor cells. Many of the components, including the innate and adaptive immune cells, play multifaceted roles during cancer progression and can promote or inhibit tumor development, depending on local and systemic conditions. Interestingly, a strategy by which tumor cells gain drug resistance is by modifying the tumor microenvironment. Together, understanding the mechanisms by which the tumor microenvironment functions should greatly facilitate the development of new therapeutic interventions by targeting the tumor niche.
Collapse
|
103
|
Høye AM, Erler JT. Structural ECM components in the premetastatic and metastatic niche. Am J Physiol Cell Physiol 2016; 310:C955-67. [PMID: 27053524 DOI: 10.1152/ajpcell.00326.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites depends on the new microenvironment they encounter. The primary tumor itself releases factors into the circulation that travel to distant organs and then initiate structural changes, both non-enzymatic and enzymatic, to create a favorable niche for the disseminating tumor cells. Therapeutic strategies aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care.
Collapse
Affiliation(s)
- Anette M Høye
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
104
|
Kasashima H, Yashiro M, Kinoshita H, Fukuoka T, Morisaki T, Masuda G, Sakurai K, Kubo N, Ohira M, Hirakawa K. Lysyl oxidase is associated with the epithelial-mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer 2016; 19:431-442. [PMID: 26100130 DOI: 10.1007/s10120-015-0510-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/06/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE It has been reported that lysyl oxidase (LOX) is a hypoxia-responsive factor and is associated with the malignant progression of carcinoma. The aim of this study was to clarify the relationship between the epithelial-mesenchymal transition (EMT) and LOX in gastric cancer cells under hypoxia. METHODS Two gastric cancer cell lines, OCUM-2MD3 and OCUM-12, were used in an in vitro study. The effect of LOX small interfering RNA (siRNA) on the EMT and motility of gastric cancer cells under hypoxic condition was analyzed by reverse transcription PCR, Western blot, a wound-healing assay, and an invasion assay. Correlations between LOX expression and the clinicopathological features of 544 patients with gastric carcinoma were examined immunohistochemically. RESULTS Hypoxic conditions increased the number of polygonal or spindle-shaped cells resulting from EMT in gastric cancer cells. The EMT of cancer cells induced by hypoxia was inhibited by treatment with LOX siRNA. The number of migrating and invading gastric cancer cells in hypoxia was significantly decreased by LOX knockdown. LOX siRNA significantly increased the E-cadherin level and decreased the vimentin level of gastric cancer cells. LOX expression was significantly associated with invasion depth, tumor differentiation, lymph node metastasis, lymphatic invasion, venous invasion, and peritoneal metastasis. Multivariable analysis revealed that LOX was an independent parameter for overall survival. CONCLUSION LOX affects the EMT of gastric cancer cells in hypoxic conditions. LOX expression is a useful prognostic factor for patients with gastric cancer.
Collapse
Affiliation(s)
- Hiroaki Kasashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. .,Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Haruhito Kinoshita
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tatsunari Fukuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tamami Morisaki
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Go Masuda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Katsunobu Sakurai
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Naoshi Kubo
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
105
|
Influence of Immune Myeloid Cells on the Extracellular Matrix During Cancer Metastasis. CANCER MICROENVIRONMENT 2016; 9:45-61. [PMID: 26956475 PMCID: PMC4842183 DOI: 10.1007/s12307-016-0181-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/12/2016] [Indexed: 01/04/2023]
Abstract
The extracellular matrix (ECM) is one of the most important components within the tumor microenvironment that supports cancer development and metastasis. Under normal physiological conditions, the ECM is a tightly regulated network providing structural and biochemical support. However, the ECM becomes highly disorganized during neoplastic progression and consequently, stimulates cancer cell transformation, growth and spread. Cancer development and progression is also known to greatly benefit from the support of immune myeloid cells, which have multiple pro-tumorigenic functions including promoting tumor growth, migration and invasion, stimulating angiogenesis and suppressing anti-tumor responses. An increasing number of studies have shown that myeloid cells alter the ECM to support metastatic cancer progression and in turn, the ECM can influence the function of infiltrating myeloid cells. However, the exact nature of this relationship, such as the mechanisms employed and their molecular targets remains unclear. This review discusses evidence for the reciprocal dependence of myeloid cells and the tumor ECM for efficient tumor development and explores potential mechanisms involved in these interactions. A better understanding of this relationship has exciting implications for the development of new therapeutic treatments for metastatic cancer.
Collapse
|
106
|
Heinzelmann K, Noskovičová N, Merl-Pham J, Preissler G, Winter H, Lindner M, Hatz R, Hauck SM, Behr J, Eickelberg O. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion. Int J Biochem Cell Biol 2016; 74:44-59. [PMID: 26905437 DOI: 10.1016/j.biocel.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022]
Abstract
Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.
Collapse
Affiliation(s)
- Katharina Heinzelmann
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nina Noskovičová
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science/Helmholtz Zentrum München, Neuherberg, Germany
| | - Gerhard Preissler
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hauke Winter
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany; Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science/Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Behr
- Asklepios Fachkliniken München-Gauting, Munich, Germany; Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
107
|
Handorf AM, Zhou Y, Halanski MA, Li WJ. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 2016; 11:1-15. [PMID: 25915734 DOI: 10.1080/15476278.2015.1019687] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tissue development is orchestrated by the coordinated activities of both chemical and physical regulators. While much attention has been given to the role that chemical regulators play in driving development, researchers have recently begun to elucidate the important role that the mechanical properties of the extracellular environment play. For instance, the stiffness of the extracellular environment has a role in orienting cell division, maintaining tissue boundaries, directing cell migration, and driving differentiation. In addition, extracellular matrix stiffness is important for maintaining normal tissue homeostasis, and when matrix mechanics become imbalanced, disease progression may ensue. In this article, we will review the important role that matrix stiffness plays in dictating cell behavior during development, tissue homeostasis, and disease progression.
Collapse
Key Words
- ECM, Extracellular matrix
- EPC, Endothelial progenitor cell
- FA, Focal adhesion
- FAK, Focal adhesion kinase
- LOX, Lysyl oxidase
- MKL1, Megakaryoblastic leukemia factor-1
- MMP, Matrix metalloproteinase
- MSC, Mesenchymal stem cell
- ROCK, Rho-associated protein kinase
- VSMC, Vascular smooth muscle cell.
- cancer
- extracellular matrix
- fibrosis
- stiffness
- tissue development
- tissue homeostasis
Collapse
Affiliation(s)
- Andrew M Handorf
- a Department of Orthopedics and Rehabilitation; University of Wisconsin-Madison ; Madison , WI , USA
| | | | | | | |
Collapse
|
108
|
Roudsari LC, West JL. Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev 2016; 97:250-9. [PMID: 26571106 DOI: 10.1016/j.addr.2015.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022]
Abstract
Tumor angiogenesis is a hallmark of cancer that has been identified as a critical component of cancer progression, facilitating rapid tumor growth and metastasis. Anti-angiogenic therapies have exhibited only modest clinical success, highlighting a need for better models that can be used to gain a more thorough understanding of tumor angiogenesis and screen potential therapeutics more accurately. This review explores how recent progress in in vitro cancer and vascular models individually can be applied to the development of in vitro tumor angiogenesis models. Current in vitro tumor angiogenesis models are also discussed, with a focus on aspects of the process that have been successfully recapitulated and opportunities for applying new technologies to expand model complexity to better represent the tumor microenvironment. Continued advances in vascularized tumor models will provide tools to identify novel therapeutic targets and validate their therapeutic benefit.
Collapse
Affiliation(s)
- Laila C Roudsari
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
109
|
Ziaee S, Chu GCY, Huang JM, Sieh S, Chung LWK. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol 2016; 4:438-54. [PMID: 26816842 PMCID: PMC4708593 DOI: 10.3978/j.issn.2223-4683.2015.04.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) metastasizes to bone and soft tissues, greatly decreasing quality of life, causing bone pain, skeletal complications, and mortality in PCa patients. While new treatment strategies are being developed, the molecular and cellular basis of PCa metastasis and the “cross-talk” between cancer cells and their microenvironment and crucial cell signaling pathways need to be successfully dissected for intervention. In this review, we introduce a new concept of the mechanism of PCa metastasis, the recruitment and reprogramming of bystander and dormant cells (DCs) by a population of metastasis-initiating cells (MICs). We provide evidence that recruited and reprogrammed DCs gain MICs phenotypes and can subsequently metastasize to bone and soft tissues. We show that MICs can also recruit and reprogram circulating tumor cells (CTCs) and this could contribute to cancer cell evolution and the acquisition of therapeutic resistance. We summarize relevant molecular signaling pathways, including androgen receptors (ARs) and their variants and growth factors (GFs) and cytokines that could contribute to the predilection of PCa for homing to bone and soft tissues. To understand the etiology and the biology of PCa and the effectiveness of therapeutic targeting, we briefly summarize the animal and cell models that have been employed. We also report our experience in the use of three-dimensional (3-D) culture and co-culture models to understand cell signaling networks and the use of these attractive tools to conduct drug screening exercises against already-identified molecular targets. Further research into PCa growth and metastasis will improve our ability to target cancer metastasis more effectively and provide better rationales for personalized oncology.
Collapse
Affiliation(s)
- Shabnam Ziaee
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gina Chia-Yi Chu
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jen-Ming Huang
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shirly Sieh
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
110
|
Santo VE, Estrada MF, Rebelo SP, Abreu S, Silva I, Pinto C, Veloso SC, Serra AT, Boghaert E, Alves PM, Brito C. Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol 2016; 221:118-29. [PMID: 26815388 DOI: 10.1016/j.jbiotec.2016.01.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/29/2022]
Abstract
Currently there is an effort toward the development of in vitro cancer models more predictive of clinical efficacy. The onset of advanced analytical tools and imaging technologies has increased the utilization of spheroids in the implementation of high throughput approaches in drug discovery. Agitation-based culture systems are commonly proposed as an alternative method for the production of tumor spheroids, despite the scarce experimental evidence found in the literature. In this study, we demonstrate the robustness and reliability of stirred-tank cultures for the scalable generation of 3D cancer models. We developed standardized protocols to a panel of tumor cell lines from different pathologies and attained efficient tumor cell aggregation by tuning hydrodynamic parameters. Large numbers of spheroids were obtained (typically 1000-1500 spheroids/mL) presenting features of native tumors, namely morphology, proliferation and hypoxia gradients, in a cell line-dependent mode. Heterotypic 3D cancer models, based on co-cultures of tumor cells and fibroblasts, were also established in the absence or presence of additional physical support from an alginate matrix, with maintenance of high cell viability. Altogether, we demonstrate that 3D tumor cell model production in stirred-tank culture systems is a robust and versatile approach, providing reproducible tools for drug screening and target verification in pre-clinical oncology research.
Collapse
Affiliation(s)
- Vítor E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia Abreu
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Inês Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Catarina Pinto
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Susana C Veloso
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | | | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
111
|
Pei S, Yang X, Wang H, Zhang H, Zhou B, Zhang D, Lin D. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer 2015; 15:965. [PMID: 26674531 PMCID: PMC4682252 DOI: 10.1186/s12885-015-1960-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metastasis is the major cause of death in breast cancers. MMPs play a key role in tumor microenvironment that facilitates metastasis. The existing researches suggest that the high expression of gelatinase A and B (MMP2 and MMP9) promote the metastasis of breast cancer. Therefore, gelatinase inhibitor can effectively suppress tumor metastasis. However, at present, there is no dramatically effective gelatinase inhibitor against breast cancer. METHODS We screened gelatinase inhibitor among Chinese herbal medicine by molecular docking technology; investigated the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line in response to the treatment with the screened inhibitor by wound assay, invasion assay and gelatin zymography; then further examined the effects of inhibitor on allograft mammary tumors of mice by immunohistochemistry. RESULTS We successfully screened an Chinese herbal medicine-Plantamajoside(PMS)-which can reduce the gelatinase activity of MMP9 and MMP2. In vitro, PMS can inhibit the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line by decreasing MMP9 and MMP2 activity. In vivo, oral administration of PMS to the mice bearing 4T1 cells induced tumors resulted in significant reduction in allograft tumor volume and weights, significant decrease in microvascular density and significant lower lung metastasis rate. CONCLUSIONS Our results indicate that as a promising anti-cancer agent, PMS may inhibit growth and metastasis of breast cancer by inhibiting the activity of MMP9 and MMP2.
Collapse
Affiliation(s)
- Shimin Pei
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xu Yang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Hong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Bin Zhou
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
112
|
Mizuno K, Seki N, Mataki H, Matsushita R, Kamikawaji K, Kumamoto T, Takagi K, Goto Y, Nishikawa R, Kato M, Enokida H, Nakagawa M, Inoue H. Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. Int J Oncol 2015; 48:450-60. [PMID: 26676674 PMCID: PMC4725458 DOI: 10.3892/ijo.2015.3289] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Lung cancer remains the most frequent cause of cancer-related death in developed countries. A recent molecular-targeted strategy has contributed to improvement of the remarkable effect of adenocarcinoma of the lung. However, such treatment has not been developed for squamous cell carcinoma (SCC) of the disease. Our recent studies of microRNA (miRNA) expression signatures of human cancers showed that the microRNA-29 family (miR‑29a, miR‑29b and miR‑29c) significantly reduced cancer tissues compared to normal tissues. These findings suggest that miR‑29s act as tumor-suppressors by targeting several oncogenic genes. The aim of the study was to investigate the functional significance of miR‑29s in lung SCC and to identify miR‑29s modulating molecular targets in lung SCC cells. Restoration of all mature members of the miR‑29s inhibited cancer cell migration and invasion. Gene expression data combined in silico analysis and luciferase reporter assays demonstrated that the lysyl oxidase-like 2 (LOXL2) gene was a direct regulator of tumor‑suppressive miR‑29s. Moreover, overexpressed LOXL2 was confirmed in lung SCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in lung SCC cell lines. Our present data suggested that loss of tumor-suppressive miR‑29s enhanced cancer cell invasion in lung SCC through direct regulation of oncogenic LOXL2. Elucidation of the novel lung SCC molecular pathways and targets regulated by tumor-suppressive miR‑29s will provide new insights into the potential mechanisms of oncogenesis and metastasis of the disease.
Collapse
Affiliation(s)
- Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hiroko Mataki
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kazuto Kamikawaji
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Tomohiro Kumamoto
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichi Takagi
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Rika Nishikawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
113
|
Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015; 17:1-15. [PMID: 25622895 PMCID: PMC4309685 DOI: 10.1016/j.neo.2014.12.004] [Citation(s) in RCA: 779] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.
Collapse
Affiliation(s)
- Louis-Bastien Weiswald
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France.
| | - Dominique Bellet
- Laboratoire d'Oncobiologie, Hôpital René Huguenin, Institut Curie, St Cloud, France; Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, UMR 8151 CNRS-U1022 Inserm, Sorbonne Paris Cité, Paris, France
| | - Virginie Dangles-Marie
- Université Paris Descartes, Faculté de Pharmacie de Paris, Sorbonne Paris Cité, Paris, France; Département de Recherche Translationnelle, Research Center, Institut Curie, Paris, France.
| |
Collapse
|
114
|
Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 2015; 73:110-9. [PMID: 26406451 DOI: 10.1016/j.biomaterials.2015.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
Abstract
Non-Hodgkin lymphomas are a heterogeneous group of lymphoproliferative disorders of B and T cell origin that are treated with chemotherapy drugs with variable success rate that has virtually not changed over decades. Although new classes of chemotherapy-free epigenetic and metabolic drugs have emerged, durable responses to these conventional and new therapies are achieved in a fraction of cancer patients, with many individuals experiencing resistance to the drugs. The paucity in our understanding of what regulates the drug resistance phenotype and establishing a predictive indicator is, in great part, due to the lack of adequate ex vivo lymphoma models to accurately study the effect of microenvironmental cues in which malignant B and T cell lymphoma cells arise and reside. Unlike many other tumors, lymphomas have been neglected from biomaterials-based microenvironment engineering standpoint. In this study, we demonstrate that B and T cell lymphomas have different pro-survival integrin signaling requirements (αvβ3 and α4β1) and the presence of supporting follicular dendritic cells are critical for enhanced proliferation in three-dimensional (3D) microenvironments. We engineered adaptable 3D tumor organoids presenting adhesive peptides with distinct integrin specificities to B and T cell lymphoma cells that resulted in enhanced proliferation, clustering, and drug resistance to the chemotherapeutics and a new class of histone deacetylase inhibitor (HDACi), Panobinostat. In Diffuse Large B cell Lymphomas, the 3D microenvironment upregulated the expression level of B cell receptor (BCR), which supported the survival of B cell lymphomas through a tyrosine kinase Syk in the upstream BCR pathway. Our integrin specific ligand functionalized 3D organoids mimic a lymphoid neoplasm-like heterogeneous microenvironment that could, in the long term, change the understanding of the initiation and progression of hematological tumors, allow primary biospecimen analysis, provide prognostic values, and importantly, allow a faster and more rational screening and translation of therapeutic regimens.
Collapse
|
115
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|
116
|
Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 2015; 7:1120-34. [PMID: 25959051 DOI: 10.1039/c5ib00040h] [Citation(s) in RCA: 691] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta.
Collapse
Affiliation(s)
- I Acerbi
- Center for Bioengineering, Tissue Regeneration, Department of Surgery, UCSF, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Giussani M, De Maria C, Michele V, Montemurro F, Triulzi T, Tagliabue E, Gelfi C, Vozzig G. Biomimicking of the Breast Tumor Microenvironment. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0014-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
118
|
da Silva R, Uno M, Marie SKN, Oba-Shinjo SM. LOX expression and functional analysis in astrocytomas and impact of IDH1 mutation. PLoS One 2015; 10:e0119781. [PMID: 25790191 PMCID: PMC4366168 DOI: 10.1371/journal.pone.0119781] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/16/2015] [Indexed: 12/19/2022] Open
Abstract
Lysyl oxidase (LOX) is involved in vital biological processes such as cell motility, cell signaling and gene regulation. Deregulation of this protein can contribute to tumor formation and progression. Although it is known that LOX is involved in invasion, proliferation and tumor migration in other types of tumors, studies of LOX in astrocytomas of different grades are scarce. The purpose of our study was to characterize LOX, BMP1 and HIF1A expression by real-time PCR in astrocytomas with WHO grades I to IV compared to non-neoplastic brain tissue. IDH1 mutational status was determined by PCR and sequencing. LOX protein expression was also analyzed by immunohistochemistry. LOX functional analyses were performed using siRNA knockdown and the specific inhibitor BAPN in two glioblastoma cell lines. The expression levels of LOX, BMP1 and HIF1A were correlated and analyzed according to IDH1 mutation status and to the clinical end-point of overall survival of glioblastoma patients. The results demonstrate that increased expression and activity of LOX, BMP1 and HIF1A were positively correlated with the malignant grade of astrocytomas. LOX protein expression also increased according to the degree of malignancy, with localization in the cytoplasm and nucleus and staining observed in endothelial cells. Glioblastoma with a mutation in IDH1 expressed lower levels of LOX in the nucleus, and IDH1-mutated cases showed lower LOX expression levels when compared to wild-type IDH1 cases. LOX knockdown and inhibition by BAPN in U87MG and A172 cell lines affected migration, invasion and soft agar colony formation. Taken together, these results corroborate the role of LOX in the migration, invasion and angiogenesis of astrocytomas. Furthermore, LOX expression is influenced by IDH1 mutational status. This work provides new insights for researchers aiming to design targeted therapies to control astrocytomas.
Collapse
Affiliation(s)
- Roseli da Silva
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil
- * E-mail:
| | - Miyuki Uno
- Center of Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), 01246-000, São Paulo, Brazil
| | - Suely K. Nagahashi Marie
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil
- Center for Studies of Cellular and Molecular Therapy (NETCEM), University of São Paulo, São Paulo, Brazil
| | - Sueli M. Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-903, Brazil
| |
Collapse
|
119
|
Furukawa M, Wheeler S, Clark AM, Wells A. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells. PLoS One 2015; 10:e0118060. [PMID: 25635394 PMCID: PMC4311980 DOI: 10.1371/journal.pone.0118060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 01/05/2015] [Indexed: 01/21/2023] Open
Abstract
Purpose The lung is one of the most common sites of breast cancer metastasis. While metastatic seeding is often accompanied by a dormancy-promoting mesenchymal to epithelial reverting transitions (MErT), we aimed to determine whether lung epithelial cells can impart this phenotype on aggressive breast cancer cells. Methods Co-culture experiments of normal lung epithelial cell lines (SAEC, NHBE or BEAS-2B) and breast cancer cell lines (MCF-7 or MDA-MB-231) were conducted. Flow cytometry analysis, immunofluorescence staining for E-cadherin or Ki-67 and senescence associated beta-galactosidase assays assessed breast cancer cell outgrowth and phenotype. Results Co-culture of the breast cancer cells with the normal lung cells had different effects on the epithelial and mesenchymal carcinoma cells. The epithelial MCF-7 cells were increased in number but still clustered even if in a slightly more mesenchymal-spindle morphology. On the other hand, the mesenchymal MDA-MB-231 cells survived but did not progressively grow out in co-culture. These aggressive carcinoma cells underwent an epithelial shift as indicated by cuboidal morphology and increased E-cadherin. Disruption of E-cadherin expressed in MDA-MB-231 using shRNA prevented this phenotypic reversion in co-culture. Lung cells limited cancer cell growth kinetics as noted by both (1) some of the cells becoming larger and positive for senescence markers/negative for proliferation marker Ki-67, and (2) Ki-67 positive cells significantly decreasing in MDA-MB-231 and MCF-7 cells after co-culture. Conclusions Our data indicate that normal lung epithelial cells can drive an epithelial phenotype and suppress the growth kinetics of breast cancer cells coincident with changing their phenotypes.
Collapse
Affiliation(s)
- Masashi Furukawa
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Amanda M. Clark
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, and Pittsburgh VA Health System, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
120
|
Sapudom J, Rubner S, Martin S, Thoenes S, Anderegg U, Pompe T. The interplay of fibronectin functionalization and TGF-β1 presence on fibroblast proliferation, differentiation and migration in 3D matrices. Biomater Sci 2015; 3:1291-301. [DOI: 10.1039/c5bm00140d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TGF-β1 dependent fibroblast behaviour in a wound healing context is mimicked by topologically and mechanically defined collagen matrices with fibronectin functionalization.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Universität Leipzig
- Leipzig 04103
| | - Stefan Rubner
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Universität Leipzig
- Leipzig 04103
| | - Steve Martin
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Universität Leipzig
- Leipzig 04103
| | - Stephan Thoenes
- Department of Dermatology
- Venereology and Allergology
- Universitätsklinikum Leipzig
- Leipzig 04103
- Germany
| | - Ulf Anderegg
- Department of Dermatology
- Venereology and Allergology
- Universitätsklinikum Leipzig
- Leipzig 04103
- Germany
| | - Tilo Pompe
- Institute of Biochemistry
- Faculty of Biosciences
- Pharmacy and Psychology
- Universität Leipzig
- Leipzig 04103
| |
Collapse
|
121
|
Chang J, Nicolau MM, Cox TR, Wetterskog D, Martens JWM, Barker HE, Erler JT. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling. Breast Cancer Res 2014; 15:R67. [PMID: 23971878 PMCID: PMC3978831 DOI: 10.1186/bcr3461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/23/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigated the effects of LOXL2 expression in normal mammary epithelial cells to gain insight into how LOXL2 mediates cancer progression. METHODS LOXL2 was expressed in MCF10A normal human mammary epithelial cells. The 3D acinar morphogenesis of these cells was assessed, as well as the ability of the cells to form branching structures on extracellular matrix (ECM)-coated surfaces. Transwell-invasion assays were used to assess the invasive properties of the cells. Clinically relevant inhibitors of ErbB2, lapatinib and Herceptin (traztuzumab), were used to investigate the role of ErbB2 signaling in this model. A retrospective study on a previously published breast cancer patient dataset was carried out by using Disease Specific Genomic Analysis (DSGA) to investigate the correlation of LOXL2 mRNA expression level with metastasis and survival of ErbB2-positive breast cancer patients. RESULTS Fluorescence staining of the acini revealed increased proliferation, decreased apoptosis, and disrupted polarity, leading to abnormal lumen formation in response to LOXL2 expression in MCF10A cells. When plated onto ECM, the LOXL2-expressing cells formed branching structures and displayed increased invasion. We noted that LOXL2 induced ErbB2 activation through reactive oxygen species (ROS) production, and ErbB2 inhibition by using Herceptin or lapatinib abrogated the effects of LOXL2 on MCF10A cells. Finally, we found LOXL2 expression to be correlated with decreased overall survival and metastasis-free survival in breast cancer patients with ErbB2-positive tumors. CONCLUSIONS These findings suggest that LOXL2 expression in normal epithelial cells can induce abnormal changes that resemble oncogenic transformation and cancer progression, and that these effects are driven by LOXL2-mediated activation of ErbB2. LOXL2 may also be a beneficial marker for breast cancer patients that could benefit most from anti-ErbB2 therapy.
Collapse
|
122
|
Fine Needle Elastography (FNE) device for biomechanically determining local variations of tissue mechanical properties. J Biomech 2014; 48:81-8. [PMID: 25468668 DOI: 10.1016/j.jbiomech.2014.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
Abstract
Diseased tissues exhibit changes in mechanical properties and thus possess clinical diagnostic significance. We report the design and development of a Fine Needle Elastography (FNE) prototype device integrated with Fine Needle Aspiration Cytology (FNAC) needle that allows for quantitative and sensitive assessment of tissues and materials based on local variations in elastic, friction, and cutting forces on needle insertion. A piezoelectric force-sensor at the base of FNA needle measures the forces opposing needle penetration with micrometer scale resolution. Measurement precision (±5 μm) and axial resolution (~20 μm) of FNE device was tested using control mm size gelatin matrices and unripe pear in assessing needle penetration resistance, force heterogeneity and optimization of needle penetration velocity. Further, we demonstrated the usefulness of FNE in quantitative, biomechanical differentiation of simulated thyroid tumor nodules in an ultrasound neck phantom. Fluid or solid nodules were probed in the phantom study coupled with ultrasound guidance. Our data shows significantly higher force variations (1-D force heterogeneity; HF,a=6.5 mN, HF,q=8.25 mN and stiffness heterogeneity; HS,a=0.0274 kN/m, HS,q=0.0395 kN/m) in solid nodules compared either to fluid nodules or to regions corresponding to healthy thyroid tissue within the ultrasound phantom. The results suggest future applications of in vivo FNE biopsies based on force heterogeneity to diagnose thyroid tumors in areas where ultrasound instrumentation or access to a qualified pathologist for FNAC are unavailable, as well as an ancillary diagnostic tool in thyroid cancer management.
Collapse
|
123
|
Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS One 2014; 9:e111137. [PMID: 25390361 PMCID: PMC4229076 DOI: 10.1371/journal.pone.0111137] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
It is well known that the microenvironment plays a major role in breast cancer progression. Yet, the mechanism explaining the transition from normal fibroblasts to cancer-stimulated fibroblasts remains to be elucidated. Here we report a FTIR imaging study of the effects of three different breast cancer cell lines on normal fibroblasts in culture. Fibroblast activation process was monitored by FTIR imaging and spectra compared by multivariate statistical analyses. Principal component analysis evidenced that the fibroblasts stimulated by these cancer cell lines grouped together and remained distinctly separated from normal fibroblasts indicating a modified different chemical composition in the cancer-stimulated fibroblasts. Similar changes in fibroblasts were induced by the various breast cancer cell lines belonging to different sub-types. Most significant changes were observed in the region of 2950 and 1230 cm−1, possibly related to changes in lipids and in the 1230 cm−1 area assigned to phosphate vibrations (nucleotides). Interestingly, the cancer-cell induced changes in the fibroblasts also occurred when there was no possible direct contact between the two cell lines in the co-culture. When contact was possible, the spectral changes were similar, suggesting that soluble factors but not direct cell-cell interactions were responsible for fibroblast activation. Overall, the results indicate that IR imaging could be used in the future for analyzing the microenvironment of breast tumors.
Collapse
Affiliation(s)
- Saroj Kumar
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail: (SK); (EG)
| | - Thankaraj Salammal Shabi
- Organic Semiconductor Lab, Department of Polymer Science and Engineering, Zhejiang University, P. R. China
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail: (SK); (EG)
| |
Collapse
|
124
|
Abstract
Dr. Tuveson and colleagues provide a comprehensive review on the fundamental role of cancer-associated fibroblasts in shaping the tumor microenvironment and promoting tumor initiation and progression. Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
125
|
The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts. Biomaterials 2014; 35:9591-8. [PMID: 25176070 DOI: 10.1016/j.biomaterials.2014.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/23/2014] [Indexed: 11/23/2022]
Abstract
Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing.
Collapse
|
126
|
Xi W, Schmidt CK, Sanchez S, Gracias DH, Carazo-Salas RE, Jackson SP, Schmidt O. Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies. NANO LETTERS 2014; 14:4197-204. [PMID: 24598026 PMCID: PMC4133182 DOI: 10.1021/nl4042565] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/24/2014] [Indexed: 05/17/2023]
Abstract
We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.
Collapse
Affiliation(s)
- Wang Xi
- Institute
for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Christine K. Schmidt
- The
Gurdon Institute and Departments of Biochemistry and Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Samuel Sanchez
- Institute
for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - David H. Gracias
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rafael E. Carazo-Salas
- The
Gurdon Institute and Departments of Biochemistry and Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Stephen P. Jackson
- The
Gurdon Institute and Departments of Biochemistry and Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- The
Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Oliver
G. Schmidt
- Institute
for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Material
Systems for Nanoelectronics, Chemnitz University
of Technology, Reichenhainer
Strasse 70, D-09107 Chemnitz, Germany
- Center
for Advancing Electronics Dresden, Dresden
University of Technology, Georg-Schumann-Str. 11, 01187 Dresden, Germany
| |
Collapse
|
127
|
Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem 2014; 57:231-241. [PMID: 25146937 DOI: 10.1016/j.bioorg.2014.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
Abstract
Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu(2+)- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Joel Finney
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Trey Ronnebaum
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Minae Mure
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
128
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
129
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
130
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
131
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
132
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
133
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- dyrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
134
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
135
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
136
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
137
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
138
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
139
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
140
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
141
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
142
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
143
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
144
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
145
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
146
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
147
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
148
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- eloc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
149
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
150
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|