101
|
Li ZJ, Wu Q, Yi CJ. Clinical efficacy of istradefylline versus rTMS on Parkinson's disease in a randomized clinical trial. Curr Med Res Opin 2015; 31:2055-8. [PMID: 26393386 DOI: 10.1185/03007995.2015.1086994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare the efficacy of istradefylline (20 mg/day, 40 mg/day) and repetitive transcranial magnetic stimulation (rTMS) (1 Hz, 10 Hz) as an adjunct therapy to levodopa in the treatment of Parkinson's disease (PD). METHODS A total of 132 PD patients from China were randomly assigned to receive 20 mg/day istradefylline plus sham-rTMS (Group I), 40 mg/day istradefylline plus sham-rTMS (Group II), placebo plus 1 Hz rTMS (Group III) and placebo plus 10 Hz rTMS (Group IV) for 12 weeks. Unified Parkinson's Disease Rating Scale (UPDRS) part III score was the primary outcome. Clinical Global Impression-Global Improvement (CGI-I) was the secondary outcome. The change in daily off time in Groups I and II was also recorded. RESULTS After 12 weeks of treatment, the changes in UPDRS part III score were -6.05, -6.39, -5.91 and -6.46 for Groups I, II, III and IV, respectively, and the difference was not significant. The difference in CGI-I among the four groups was not significant. The daily off time was reduced by -1.43 hours in Group I and -1.62 hours in Group II. No severe adverse events occurred among the four groups. CONCLUSION These results indicate that, as augmentation agents to levodopa in the treatment of PD, istradefylline and rTMS had comparable efficacy and tolerability.
Collapse
Affiliation(s)
- Zhi-jun Li
- a Department of Neurology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qian Wu
- a Department of Neurology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chen-ju Yi
- a Department of Neurology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
102
|
Robinson SJ, Petzer JP, Terre'Blanche G, Petzer A, van der Walt MM, Bergh JJ, Lourens ACU. 2-Aminopyrimidines as dual adenosine A1/A2A antagonists. Eur J Med Chem 2015; 104:177-88. [PMID: 26462195 DOI: 10.1016/j.ejmech.2015.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
In this study thirteen 2-aminopyrimidine derivatives were synthesised and screened as potential antagonists of adenosine A1 and A2A receptors in order to further investigate the structure activity relationships of this class of compounds. 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (8m) was identified as a compound with high affinities for both receptors, with an A2AKi value of 6.34 nM and an A1Ki value of 9.54 nM. The effect of selected compounds on the viability of cultured cells was assessed and preliminary results indicate low cytotoxicity. In vivo efficacy at A2A receptors was illustrated for compounds 8k and 8m since these compounds attenuated haloperidol-induced catalepsy in rats. A molecular docking study revealed that the interactions between the synthesised compounds and the adenosine A2A binding site most likely involve Phe168 and Asn253, interactions which are similar for structurally related adenosine A2A receptor antagonists.
Collapse
Affiliation(s)
- Sarel J Robinson
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Mietha M van der Walt
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus J Bergh
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anna C U Lourens
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
103
|
Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 2015; 11:389-407. [PMID: 26126429 PMCID: PMC4529847 DOI: 10.1007/s11302-015-9460-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
Adenosine receptors (ARs) have emerged as new drug targets. The majority of data on affinity/potency and selectivity of AR ligands described in the literature has been obtained for the human species. However, preclinical studies are mostly performed in mouse or rat, and standard AR agonists and antagonists are frequently used for studies in rodents without knowing their selectivity in the investigated species. In the present study, we selected a set of frequently used standard AR ligands, 8 agonists and 16 antagonists, and investigated them in radioligand binding studies at all four AR subtypes, A1, A2A, A2B, and A3, of three species, human, rat, and mouse. Recommended, selective agonists include CCPA (for A1AR of rat and mouse), CGS-21680 (for A2A AR of rat), and Cl-IB-MECA (for A3AR of all three species). The functionally selective partial A2B agonist BAY60-6583 was found to additionally bind to A1 and A3AR and act as an antagonist at both receptor subtypes. The antagonists PSB-36 (A1), preladenant (A2A), and PSB-603 (A2B) displayed high selectivity in all three investigated species. MRS-1523 acts as a selective A3AR antagonist in human and rat, but is only moderately selective in mouse. The comprehensive data presented herein provide a solid basis for selecting suitable AR ligands for biological studies.
Collapse
MESH Headings
- Adenosine A1 Receptor Agonists/metabolism
- Adenosine A1 Receptor Agonists/pharmacology
- Adenosine A1 Receptor Antagonists/metabolism
- Adenosine A1 Receptor Antagonists/pharmacology
- Adenosine A2 Receptor Agonists/metabolism
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine A2 Receptor Antagonists/metabolism
- Adenosine A2 Receptor Antagonists/pharmacology
- Adenosine A3 Receptor Agonists/metabolism
- Adenosine A3 Receptor Agonists/pharmacology
- Adenosine A3 Receptor Antagonists/metabolism
- Adenosine A3 Receptor Antagonists/pharmacology
- Animals
- Arrestin/metabolism
- Binding, Competitive/drug effects
- CHO Cells
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cricetinae
- Cricetulus
- Cyclic AMP/metabolism
- DNA, Complementary/drug effects
- DNA, Complementary/genetics
- Humans
- Mice
- Rats
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/drug effects
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Species Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Stephan Jepards
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alessandro Casari
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anke C. Schiedel
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sonja Hinz
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
104
|
Jiménez-Urbieta H, Gago B, de la Riva P, Delgado-Alvarado M, Marin C, Rodriguez-Oroz MC. Dyskinesias and impulse control disorders in Parkinson's disease: From pathogenesis to potential therapeutic approaches. Neurosci Biobehav Rev 2015. [PMID: 26216865 DOI: 10.1016/j.neubiorev.2015.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopaminergic treatment in Parkinson's disease (PD) reduces the severity of motor symptoms of the disease. However, its chronic use is associated with disabling motor and behavioral side effects, among which levodopa-induced dyskinesias (LID) and impulse control disorders (ICD) are the most common. The underlying mechanisms and pathological substrate of these dopaminergic complications are not fully understood. Recently, the refinement of imaging techniques and the study of the genetics and molecular bases of LID and ICD indicate that, although different, they could share some features. In addition, animal models of parkinsonism with LID have provided important knowledge about mechanisms underlying such complications. In contrast, animal models of parkinsonism and abnormal impulsivity, although useful regarding some aspects of human ICD, do not fully resemble the clinical phenotype of ICD in patients with PD, and until now have provided limited information. Studies on animal models of addiction could complement the previous models and provide some insights into the background of these behavioral complications given that ICD are regarded as behavioral addictions. Here we review the most relevant advances in relation to imaging, genetics, biochemistry and pharmacological interventions to treat LID and ICD in patients with PD and in animal models with a view to better understand the overlapping and unique maladaptations to dopaminergic therapy that are associated with LID and ICD.
Collapse
Affiliation(s)
- Haritz Jiménez-Urbieta
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Belén Gago
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | | | - Manuel Delgado-Alvarado
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , 08036 Barcelona, Spain.
| | - María C Rodriguez-Oroz
- Biodonostia Research Institute, 20014 San Sebastián, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain; University Hospital Donostia, 20014 San Sebastián, Spain; Ikerbasque (Basque Foundation for Science), 48011 Bilbao, Spain.
| |
Collapse
|
105
|
Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology 2015. [PMID: 26211977 DOI: 10.1016/j.neuropharm.2015.07.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purinergic signaling modulates dopaminergic neurotransmission in health and disease. Classically adenosine A1 and A2A receptors have been considered key for the fine tune control of dopamine actions in the striatum, the main CNS motor control center. The main adenosine signaling mechanism is via the cAMP pathway but the future will tell whether calcium signaling is relevant in adenosinergic control of striatal function. Very relevant is the recent approval in Japan of the adenosine A2A receptor antagonist, istradefylline, for use in Parkinson's disease patients. Purine nucleotides are also regulators of striatal dopamine neurotransmission via P2 purinergic receptors. In parallel to the alpha-synuclein hypothesis of Parkinson's disease etiology, purinergic P2X1 receptors have been identified as mediators of accumulation of the Lewy-body enriched protein alpha-synuclein. Of note is the expression in striatum of purinergic-receptor-containing heteromers that are potential targets of anti-Parkinson's disease therapies and should be taken into account in drug discovery programs. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Gemma Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Earth, Life and Environmental Sciences, Section of Physiology, Campus Scientifico Enrico Mattei, University of Urbino, Urbino, Italy.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Rafael Franco
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
106
|
Fuzzati-Armentero MT, Cerri S, Levandis G, Ambrosi G, Montepeloso E, Antoninetti G, Blandini F, Baqi Y, Müller CE, Volpini R, Costa G, Simola N, Pinna A. Dual target strategy: combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates l
-DOPA-induced rotational behavior in a rodent model of Parkinson's disease. J Neurochem 2015; 134:740-7. [DOI: 10.1111/jnc.13162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Giulia Ambrosi
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Elena Montepeloso
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Gianfilippo Antoninetti
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry; Center for Research In Neurodegenerative Diseases C. Mondino National Neurological Institute; Pavia Italy
| | - Younis Baqi
- Pharmaceutical Institute; Pharmaceutical Chemistry I; Pharma Center Bonn; University of Bonn; Bonn Germany
- Department of Chemistry; Faculty of Science; Sultan Qaboos University; Muscat Oman
| | - Christa E. Müller
- Pharmaceutical Institute; Pharmaceutical Chemistry I; Pharma Center Bonn; University of Bonn; Bonn Germany
| | - Rosaria Volpini
- School of Pharmacy; Medicinal Chemistry Unit; University of Camerino; Camerino Italy
| | - Giulia Costa
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Nicola Simola
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Annalisa Pinna
- National Research Council of Italy; Neuroscience Institute; Cagliari Italy
| |
Collapse
|
107
|
Ding HX, Leverett CA, Kyne RE, Liu KKC, Fink SJ, Flick AC, O’Donnell CJ. Synthetic approaches to the 2013 new drugs. Bioorg Med Chem 2015; 23:1895-922. [DOI: 10.1016/j.bmc.2015.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
|
108
|
Low-frequency repetitive transcranial magnetic stimulation on Parkinson motor function: a meta-analysis of randomised controlled trials. Acta Neuropsychiatr 2015; 27:82-9. [PMID: 25592544 DOI: 10.1017/neu.2014.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Previous studies have demonstrated inconsistent findings regarding the efficacy of low-frequency repetitive transcranial magnetic stimulation (rTMS) in treating motor symptoms of Parkinson's disease (PD). Therefore, this meta-analysis was conducted to assess the efficacy of low-frequency rTMS. METHODS A comprehensive literature search (including PubMed, CCTR, Embase, Web of Science, CNKI, CBM-disc, NTIS,EAGLE, Clinical Trials, Current Controlled Trials, International Clinical Trials Registry) was conducted dating until June 2014. The key search terms ('Parkinson', 'PD', 'transcranial magnetic stimulation', 'TMS', 'RTMS' and 'noninvasive brain stimulation') produced eight high-quality randomised controlled trials (RCT) of low-frequency rTMS versus sham stimulation. RESULTS These eight studies, composed of 319 patients, were meta-analysed through assessment of the decreased Unified Parkinson's Disease Rating Scale (UPDRS part III) score. Pooling of the results from these RCTs yielded an effect size of -0.40 (95%CI=-0.73 to -0.06, p<0.05) in UPDRS part III, which indicated that low-frequency rTMS could have 5.05 (95%CI=-1.73 to -8.37) point decrease in UPDRS part III score than sham stimulation. DISCUSSION Low-frequency rTMS had a significant effect on motor signs in PD. As the number of RCTs and PD patients included here was limited, further large-scale multi-center RCTs were required to validate our conclusions.
Collapse
|
109
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
110
|
Kakkar AK, Dahiya N. Management of Parkinson׳s disease: Current and future pharmacotherapy. Eur J Pharmacol 2015; 750:74-81. [DOI: 10.1016/j.ejphar.2015.01.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/18/2023]
|
111
|
Anti-inflammatory, antioxidant, and antiparkinsonian effects of adenosine A 2A receptor antagonists. Pharmacol Biochem Behav 2015; 132:71-78. [PMID: 25735490 DOI: 10.1016/j.pbb.2015.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
Abstract
The purpose of the study was to examine derivatives of annelated xanthines (imidazo-, pyrimido-, and diazepino-purinediones) for potential anti-inflammatory effects in carrageenan-induced paw edema in mice. Additionally, their antioxidant activity using the FRAP (ferric-reducing ability of plasma) assay and lipid peroxidation in rat brain homogenate were analyzed. All the studied derivatives showed affinity for adenosine A2A receptor. The preliminary assays found that five (KD-114, KD-57, KD-129, KD-50, and KD-358) pyrimidopurinedione derivatives, administered intraperitoneally (i.p.) at a dose of 100mg/kg, had stronger anti-inflammatory effects. At a concentration of 10-5M, three of the derivatives KD-57, KD-114, and KD-129 most influenced the total antioxidant ability. The most efficient anti-inflammatory compound, KD-114, also showed the strongest binding to A2A receptors and when administered at a dose of 5mg/kg (i.p.), effectively reversed haloperidol-induced catalepsy and significantly increased the striatal extracellular dopamine level in the rat striatum. This effect was weaker than the one produced by CSC (1mg/kg i.p.), and only slightly weaker than that produced by ZM 241385 (3mg/kg i.p.) used as reference drugs. From the results of the present studies, it may be concluded that anti-inflammatory and antiparkinsonian effects of the examined compounds correlate with their influence on adenosine A2A receptors, the most probable antagonism to these subtype receptors.
Collapse
|
112
|
Lambertucci C, Buccioni M, Dal Ben D, Kachler S, Marucci G, Spinaci A, Thomas A, Klotz KN, Volpini R. New substituted 9-propyladenine derivatives as A2Aadenosine receptor antagonists. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00034c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New 9-propyladenines substituted at 2- or N6- and 8 positions behave as adenosine receptor antagonists with low nM affinity at the A2A subtype.
Collapse
Affiliation(s)
- C. Lambertucci
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| | - M. Buccioni
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| | - D. Dal Ben
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| | - S. Kachler
- Universität Würzburg
- Institut für Pharmakologie und Toxikologie
- Würzburg
- Germany
| | - G. Marucci
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| | - A. Spinaci
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| | - A. Thomas
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| | - K.-N. Klotz
- Universität Würzburg
- Institut für Pharmakologie und Toxikologie
- Würzburg
- Germany
| | - R. Volpini
- School of Pharmacy
- Medicinal Chemistry Unit
- University of Camerino
- 62032 Camerino
- Italy
| |
Collapse
|
113
|
Chiu GS, Freund GG. Modulation of neuroimmunity by adenosine and its receptors: metabolism to mental illness. Metabolism 2014; 63:1491-8. [PMID: 25308443 PMCID: PMC4252699 DOI: 10.1016/j.metabol.2014.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
Adenosine is a pleiotropic bioactive with potent neuromodulatory properties. Due to its ability to easily cross the blood-brain barrier, it can act as a signaling molecule between the periphery and the brain. It functions through four (A1, A2A, A2B, and A3) cell surface G protein-coupled adenosine receptors (ARs) that are expressed in some combination on nearly all cells types within the CNS. By regulating the activity of adenylyl cyclase and changing the intracellular concentration of cAMP, adenosine can alter neuronal function and neurotransmission. A variety of illnesses related to metabolic dysregulation, such as type 1 diabetes and Alzheimer's disease, are associated with an elevated serum concentration of adenosine and a pathogenesis rooted in inflammation. This review describes the accepted physiologic function of adenosine in neurological disease and explores its new potential as a peripheral to central danger signal that can activate the neuroimmune system and contribute to symptoms of sickness and psychopathologies.
Collapse
Affiliation(s)
- Gabriel S Chiu
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana IL, USA; Department of Animal Sciences, University of Illinois, Urbana IL, USA.
| |
Collapse
|
114
|
Ioannidis K, Chamberlain SR, Müller U. Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder--was this a correct decision? A literature review. J Psychopharmacol 2014; 28:830-6. [PMID: 24989644 DOI: 10.1177/0269881114541014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Caffeine is one of the most widespread psychotropic substances in the world. It exerts multiple effects on the brain including adenosine receptor antagonism, and thereby has been found to modulate aspects of cognition, including attention, in animal models and in healthy human volunteers. This review considers what is known of the effects of caffeine on symptoms and cognitive functions in attention-deficit hyperactivity disorder (ADHD), a prototypical disorder of cognitive dysfunction. We consider the merits of investigating further caffeine's therapeutic potential as a monotherapy or as an adjunctive agent in ADHD. The potential benefits of re-opening a dialogue regarding the use of caffeine in ADHD clinical practice are highlighted, along with potential implications for the use of adenosine receptor antagonists in ADHD and other disorders characterised by cognitive impairment.
Collapse
Affiliation(s)
| | - Samuel R Chamberlain
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ulrich Müller
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
115
|
Hasegawa T. [Neurological common diseases in the super-elder society. Topics: IV. Parkinson's disease; 2. Current and new drugs for initial treatment of Parkinson's disease]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2014; 103:1861-1868. [PMID: 25654881 DOI: 10.2169/naika.103.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
116
|
Tao Y, Liang G. Efficacy of Adenosine A2A Receptor Antagonist Istradefylline as Augmentation for Parkinson’s Disease: A Meta-analysis of Randomized Controlled Trials. Cell Biochem Biophys 2014; 71:57-62. [DOI: 10.1007/s12013-014-0162-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
117
|
Barret O, Hannestad J, Alagille D, Vala C, Tavares A, Papin C, Morley T, Fowles K, Lee H, Seibyl J, Tytgat D, Laruelle M, Tamagnan G. Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys. J Nucl Med 2014; 55:1712-8. [PMID: 25082853 DOI: 10.2967/jnumed.114.142067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Motor symptoms in Parkinson disease (PD) are caused by a loss of dopamine input from the substantia nigra to the striatum. Blockade of adenosine 2A (A(2A)) receptors facilitates dopamine D(2) receptor function. In phase 2 clinical trials, A(2A) antagonists (istradefylline, preladenant, and tozadenant) improved motor function in PD. We developed a new A(2A) PET radiotracer, (18)F-MNI-444, and used it to investigate the relationship between plasma levels and A(2A) occupancy by preladenant and tozadenant in nonhuman primates (NHP). METHODS A series of 20 PET experiments was conducted in 5 adult rhesus macaques. PET data were analyzed with both plasma-input (Logan graphical analysis) and reference-region-based (simplified reference tissue model and noninvasive Logan graphical analysis) methods. Whole-body PET images were acquired for radiation dosimetry estimates. Human pharmacokinetic parameters for tozadenant and preladenant were used to predict A(2A) occupancy in humans, based on median effective concentration (EC(50)) values estimated from the NHP PET measurements. RESULTS (18)F-MNI-444 regional uptake was consistent with A(2A) receptor distribution in the brain. Selectivity was demonstrated by dose-dependent blocking by tozadenant and preladenant. The specific-to-nonspecific ratio was superior to that of other A(2A) PET radiotracers. Pharmacokinetic modeling predicted that tozadenant and preladenant may have different profiles of A(2A) receptor occupancy in humans. CONCLUSION (18)F-MNI-444 appears to be a better PET radiotracer for A(2A) imaging than currently available radiotracers. Assuming that EC(50) in humans is similar to that in NHP, it appears that tozadenant will provide a more sustained A(2A) receptor occupancy than preladenant in humans at clinically tested doses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hsiaoju Lee
- Molecular NeuroImaging, LLC, New Haven, Connecticut
| | - John Seibyl
- Molecular NeuroImaging, LLC, New Haven, Connecticut
| | | | | | | |
Collapse
|
118
|
Tarazi FI, Sahli ZT, Wolny M, Mousa SA. Emerging therapies for Parkinson's disease: from bench to bedside. Pharmacol Ther 2014; 144:123-33. [PMID: 24854598 DOI: 10.1016/j.pharmthera.2014.05.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/01/2014] [Indexed: 02/08/2023]
Abstract
The prevalence of Parkinson's disease (PD) increases with age and is projected to increase in parallel to the rising average age of the population. The disease can have significant health-related, social, and financial implications not only for the patient and the caregiver, but for the health care system as well. While the neuropathology of this neurodegenerative disorder is fairly well understood, its etiology remains a mystery, making it difficult to target therapy. The currently available drugs for treatment provide only symptomatic relief and do not control or prevent disease progression, and as a result patient compliance and satisfaction are low. Several emerging pharmacotherapies for PD are in different stages of clinical development. These therapies include adenosine A2A receptor antagonists, glutamate receptor antagonists, monoamine oxidase inhibitors, anti-apoptotic agents, and antioxidants such as coenzyme Q10, N-acetyl cysteine, and edaravone. Other emerging non-pharmacotherapies include viral vector gene therapy, microRNAs, transglutaminases, RTP801, stem cells and glial derived neurotrophic factor (GDNF). In addition, surgical procedures including deep brain stimulation, pallidotomy, thalamotomy and gamma knife surgery have emerged as alternative interventions for advanced PD patients who have completely utilized standard treatments and still suffer from persistent motor fluctuations. While several of these therapies hold much promise in delaying the onset of the disease and slowing its progression, more pharmacotherapies and surgical interventions need to be investigated in different stages of PD. It is hoped that these emerging therapies and surgical procedures will strengthen our clinical armamentarium for improved treatment of PD.
Collapse
Affiliation(s)
- F I Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
| | - Z T Sahli
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA; School of Medicine, American University of Beirut, Beirut, Lebanon
| | - M Wolny
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - S A Mousa
- The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
119
|
Adenosine A2A receptor antagonists in Parkinson's disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 2014; 28:455-74. [PMID: 24687255 DOI: 10.1007/s40263-014-0161-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurotransmitters other than dopamine, such as norepinephrine, 5-hydroxytryptamine, glutamate, adenosine and acetylcholine, are involved in Parkinson's disease (PD) and contribute to its symptomatology. Thus, the progress of non-dopaminergic therapies for PD has attracted much interest in recent years. Among new classes of drugs, adenosine A2A antagonists have emerged as promising candidates. The development of new highly selective adenosine A2A receptor antagonists, and their encouraging anti-parkinsonian responses in animal models of PD, has provided a rationale for clinical trials to evaluate the therapeutic potential and the safety of these agents in patients with PD. To date, the clinical research regarding A2A antagonists and their potential utilization in PD therapy continues to evolve between drugs just or previously discontinued (preladenant and vipadenant), new derivatives in development (tozadenant, PBF-509, ST1535, ST4206 and V81444) and the relatively old drug istradefylline, which has finally been licensed as an anti-parkinsonian drug in Japan. All these compounds have been shown to have a good safety profile and be well tolerated. Moreover, results from phase II and III trials also demonstrate that A2A antagonists are effective in reducing off-time, without worsening troublesome dyskinesia, and in increasing on-time with a mild increase of non-troublesome dyskinesia, in patients at an advanced stage of PD treated with L-DOPA. In addition, early findings suggest that A2A antagonists might also be efficacious as monotherapy in patients at an early stage of PD. This review summarizes pharmacological and clinical data available on istradefylline, tozadenant, PBF-509, ST1535, ST4206, V81444, preladenant and vipadenant.
Collapse
|
120
|
Zhu C, Wang G, Li J, Chen L, Wang C, Wang Y, Lin P, Ran H. Adenosine A2A receptor antagonist istradefylline 20 versus 40 mg/day as augmentation for Parkinson’s disease: a meta-analysis. Neurol Res 2014; 36:1028-34. [DOI: 10.1179/1743132814y.0000000375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
121
|
Perez-Lloret S, Merello M. Two new adenosine receptor antagonists for the treatment of Parkinson's disease: istradefylline versus tozadenant. Expert Opin Pharmacother 2014; 15:1097-107. [PMID: 24673462 DOI: 10.1517/14656566.2014.903924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Adenosine A2A receptors are localized in the brain, mainly within the caudate and putamen nuclei of the basal ganglia. Their activation leads to stimulation of the 'indirect' pathway. Conversely, administration of A2A receptor antagonists leads to inhibition of this pathway, which was translated into reduced hypomotility in several animal models of parkinsonism. AREAS COVERED In this review, the effects of two A2A receptor antagonists, istradefylline and tozadenant, on parkinsonian symptoms in animal and humans will be discussed. EXPERT OPINION Animal studies have shown potent antiparkinsonian effects for several A2A receptor antagonists, including istradefylline. In clinical trials, istradefylline reduced OFF time when administered with levodopa, but results are inconclusive. Results with tozadenant are scarce. Modification of thalamic blood flow compatible with reduced inhibition was noted in one small trial, followed by a significant reduction in OFF time in a larger one. Therefore, both drugs show promising efficacy for the reduction of OFF time in levodopa-treated Parkinson's disease patients, but further research is needed in order to obtain definitive conclusions.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Raul Carrea Institute for Neurological Research, Movement Disorders Section , Montañeses 2325 (1425), Buenos Aires , Argentina +54 11 57773200 ; +54 11 57773200 ;
| | | |
Collapse
|
122
|
Payami H, Factor SA. Promise of pharmacogenomics for drug discovery, treatment and prevention of Parkinson's disease. A perspective. Neurotherapeutics 2014; 11:111-6. [PMID: 24258196 PMCID: PMC3899479 DOI: 10.1007/s13311-013-0237-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by a heterogeneous array of motor and non-motor features. Anti-PD drugs that are in use target only the motor symptoms, may lose efficacy over time, and can cause serious adverse effects such as dyskinesia and psychosis. There are currently no preventative or disease modifying treatments. All attempts to develop disease modifying drugs have failed. Pharmacogenomics (PGx) has the potential to change the way new drugs are developed and the way drugs are prescribed. By using genetic markers that correlate with, and can therefore predict drug response, clinical trials can be designed to be enriched with individuals who are most likely to benefit from the drug, maximizing drug's efficacy, minimizing its adverse effects, and boosting the odds of successful drug discovery. Clinical application of PGx will help physicians to quickly and accurately determine the right drugs and the right doses for individuals, avoiding the lengthy trial and error approaches and adverse effects. In combination with known protective factors such as nicotine and caffeine, PGx may enable development of personalized methods for PD prevention and, by extension, care.
Collapse
Affiliation(s)
- Haydeh Payami
- New York State Department of Health, Division of Genetics, Wadsworth Center, Albany, NY, 12208, USA,
| | | |
Collapse
|
123
|
Hung AY, Schwarzschild MA. Treatment of Parkinson's disease: what's in the non-dopaminergic pipeline? Neurotherapeutics 2014; 11:34-46. [PMID: 24310604 PMCID: PMC3899482 DOI: 10.1007/s13311-013-0239-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dopamine depletion resulting from degeneration of nigrostriatal dopaminergic neurons is the primary neurochemical basis of the motor symptoms of Parkinson's disease (PD). While dopaminergic replacement strategies are effective in ameliorating these symptoms early in the disease process, more advanced stages of PD are associated with the development of treatment-related motor complications and dopamine-resistant symptoms. Other neurotransmitter and neuromodulator systems are expressed in the basal ganglia and contribute to the extrapyramidal refinement of motor function. Furthermore, neuropathological studies suggest that they are also affected by the neurodegenerative process. These non-dopaminergic systems provide potential targets for treatment of motor fluctuations, levodopa-induced dyskinesias, and difficulty with gait and balance. This review summarizes recent advances in the clinical development of novel pharmacological approaches for treatment of PD motor symptoms. Although the non-dopaminergic pipeline has been slow to yield new drugs, further development will likely result in improved treatments for PD symptoms that are induced by or resistant to dopamine replacement.
Collapse
Affiliation(s)
- Albert Y Hung
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA,
| | | |
Collapse
|
124
|
To Market, To Market—2013. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800167-7.00027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
125
|
Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE. 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorg Med Chem 2013; 21:7435-52. [PMID: 24139167 DOI: 10.1016/j.bmc.2013.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|