101
|
Esposito MS, Ramirez RM, Bruschi CV. Nonrandomly-associated forward mutation and mitotic recombination yield yeast diploids homozygous for recessive mutations. Curr Genet 1994; 26:302-7. [PMID: 7882423 DOI: 10.1007/bf00310493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have employed the analysis of spontaneous forward mutations that confer the ability to utilize L-alpha-aminoadipate as a nitrogen source (alpha-Aa+) to discern the events that contribute to mitotic segregation of spontaneous recessive mutations by diploid cells. alpha-Aa- diploid cells yield alpha-Aa+ mutants at a rate of 7.8 +/- 3.6 x 10(-9). As in haploid strains, approximately 97% (30/31) of alpha-Aa+ mutants are spontaneous lys2-x recessive mutations. alpha-Aa+ mutants of diploid cells reflect mostly the fate of LYS2/lys2-x heterozygotes that arise by mutation within LYS2/LYS2 populations at a rate of 1.2 +/- 0.4 x 10(-6). Mitotic recombination occurs in nonrandom association with forward mutation of LYS2 at a rate of 1.3 +/- 0.6 x 10(-3). This mitotic recombination rate is tenfold higher than that of a control LYS2/lys2-1 diploid. Mitotic segregation within LYS2/lys2-x subpopulations yields primarily lys2-x/lys2-x diploids and a minority of lys2-x aneuploids. Fifteen percent of lys2-x/lys2-x diploids appear to have arisen by gene conversion of LYS2 to lys2-x; 85% of lys2-x/lys2-x diploids appear to have arisen by mitotic recombination in the CENII-LYS2 interval. lys2-1/lys2-1 mitotic segregants of a control LYS2/lys2-1 diploid consist similarity of 18% of lys2-1/lys2-1 diploids that appear to have arisen by gene conversion of LYS2 to lys2-1 and 82% of lys2-1/lys2-1 diploids that appear to have arisen by mitotic recombination in the CENII-LYS2 interval.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M S Esposito
- Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
102
|
Bardwell AJ, Bardwell L, Tomkinson AE, Friedberg EC. Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 1994; 265:2082-5. [PMID: 8091230 DOI: 10.1126/science.8091230] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for both nucleotide excision repair and certain mitotic recombination events. Here, model recombination and repair intermediates were used to show that Rad1-Rad10-mediated cleavage occurs at duplex-single-strand junctions. Moreover, cleavage occurs only on the strand containing the 3' single-stranded tail. Thus, both biochemical and genetic evidence indicate a role for the Rad1-Rad10 complex in the cleavage of specific recombination intermediates. Furthermore, these data suggest that Rad1-Rad10 endonuclease incises DNA 5' to damaged bases during nucleotide excision repair.
Collapse
Affiliation(s)
- A J Bardwell
- Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center at Dallas 75235
| | | | | | | |
Collapse
|
103
|
Larminat F, Bohr VA. Role of the human ERCC-1 gene in gene-specific repair of cisplatin-induced DNA damage. Nucleic Acids Res 1994; 22:3005-10. [PMID: 8065913 PMCID: PMC310268 DOI: 10.1093/nar/22.15.3005] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human excision repair gene ERCC-1 gene restores normal resistance to UV and mitomycin C in excision repair deficient chinese hamster ovary cells of complementation group 1. To investigate the involvement of the ERCC-1 gene in gene-specific repair of bulky lesions, we have studied the removal of damage induced by the antitumor agent cisplatin in CHO mutant 43-3B cells of group 1, with or without transfection with the ERCC-1 gene. Firstly, we determined the contribution of the ERCC-1 gene to the repair of interstrand crosslinks (ICL) induced by cisplatin and found efficient removal of ICLs from the dihydrofolate reductase (DHFR) gene in the ERCC-1 transfected 43-3B cells. We then assessed the contribution of ERCC-1 to the repair of intrastrand adducts (IA) induced by cisplatin. Compared to the wild-type parental cell line, the ERCC-1 transfected 43-3B cells repaired the IAs in the DHFR gene inefficiently. Thus, our data suggest that the ERCC-1 gene is more involved in the repair of interstrand crosslinks than in the removal of intrastrand adducts.
Collapse
Affiliation(s)
- F Larminat
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224
| | | |
Collapse
|
104
|
Dabholkar M, Vionnet J, Bostick-Bruton F, Yu JJ, Reed E. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 1994; 94:703-8. [PMID: 8040325 PMCID: PMC296149 DOI: 10.1172/jci117388] [Citation(s) in RCA: 309] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nucleotide excision repair is a DNA repair pathway that is highly conserved in nature, with analogous repair systems described in Escherichia coli, yeast, and mammalian cells. The rate-limiting step, DNA damage recognition and excision, is effected by the protein products of the genes ERCC1 and XPAC. We therefore assessed mRNA levels of ERCC1 and XPAC in malignant ovarian cancer tissues from 28 patients that were harvested before the administration of platinum-based chemotherapy. Cancer tissues from patients whose tumors were clinically resistant to therapy (n = 13) showed greater levels of total ERCC1 mRNA (P = 0.059), full length transcript of ERCC1 mRNA (P = 0.026), and XPAC mRNA (P = 0.011), as compared with tumor tissues from those individuals clinically sensitive to therapy (n = 15). In 19 of these tissues, the percentage of alternative splicing of ERCC1 mRNA was assessed. ERCC1 splicing was highly variable, with no difference observed between responders and nonresponders. The alternatively spliced species constituted 2-58% of the total ERCC1 mRNA in responders (median = 18%) and 4-71% in nonresponders (median = 13%). These data suggest greater activity of the DNA excision repair genes ERCC1 and XPAC in ovarian cancer tissues of patients clinically resistant to platinum compounds. These data also indicate highly variable splicing of ERCC1 mRNA in ovarian cancer tissues in vivo, whether or not such tissues are sensitive to platinum-based therapy.
Collapse
Affiliation(s)
- M Dabholkar
- Medical Ovarian Cancer Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
105
|
Marcucci L, Petrinelli P, Antonelli A, Elli R. Expression of genes carried by pR plasmid in damaged E. coli and mouse cells. Mutat Res 1994; 309:53-61. [PMID: 7519733 DOI: 10.1016/0027-5107(94)90042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In LTA mouse cells pR plasmid constitutively expresses itself resulting in protection against typical SOS inducers (UV, 4NQO) and in sensitization to different DNA-damaging agents (MNNG, cisDDP, BLM and geneticin (G418). The pR sensitizing effect is specific to mammalian cells, since the plasmid can only protect prokaryotic cells against the damaging agents tested. The pR protecting effect requires the expression of both the uvp1 and uvp2 (mucAB) regions in bacteria as well as in mouse cells. The coordinated function of these regions could result in protection against typical SOS inducers through an SOS/SOS-like pathway. The sensitization conferred by pR plasmid depends mostly on the expression of the mucAB genes, as shown by the survival of mouse cells transfected with different pR::Tn5 mutants. In particular, BLM and G418 survival data demonstrate that, inserted into the pR plasmid, the ble and neo genes of the Tn5 transposon express themselves. This was confirmed by the presence of Tn5 transcripts in untreated mouse cells. The comparison between the pR effects in bacterial and mouse cells shows that during evolution the repair pathways against UV damage are better conserved than those against other kinds of damage.
Collapse
Affiliation(s)
- L Marcucci
- Dipartimento di Biopatologia Umana, Policlinico Umberto I, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
106
|
Thompson LH, Brookman KW, Weber CA, Salazar EP, Reardon JT, Sancar A, Deng Z, Siciliano MJ. Molecular cloning of the human nucleotide-excision-repair gene ERCC4. Proc Natl Acad Sci U S A 1994; 91:6855-9. [PMID: 8041709 PMCID: PMC44296 DOI: 10.1073/pnas.91.15.6855] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ERCC4 was previously identified in somatic cell hybrids as a human gene that corrects the nucleotide-excision-repair deficiency in mutant hamster cells. The cloning strategy for ERCC4 involved transfection of the repair-deficient hamster cell line UV41 with a human sCos-1 cosmid library derived from chromosome 16. Enhanced UV resistance was seen with one cosmid-library transformant and two secondary transformants of UV41. Cosmid clones carrying a functional ERCC4 gene were isolated from a library of a secondary transformant by selecting in Escherichia coli for expression of a linked neomycin-resistance gene that was present in the sCos-1 vector. The cosmids mapped to 16p13.13-p13.2, the location assigned to ERCC4 by using somatic cell hybrids. Upon transfection into UV41, six cosmid clones gave partial correction ranging from 30% to 64%, although all appeared to contain the complete gene. The capacity for in vitro excision of thymine dimers from a plasmid by transformant cell extracts correlated qualitatively with enhanced UV resistance.
Collapse
Affiliation(s)
- L H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94551-0808
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Mutational analysis of ERCC3, which is involved in DNA repair and transcription initiation: identification of domains essential for the DNA repair function. Mol Cell Biol 1994. [PMID: 8196650 DOI: 10.1128/mcb.14.6.4126] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human ERCC3 gene, which corrects specifically the nucleotide excision repair defect in human xeroderma pigmentosum group B and cross-complements the repair deficiency in rodent UV-sensitive mutants of group 3, encodes a presumed DNA helicase that is identical to the p89 subunit of the general transcription factor TFIIH/BTF2. To examine the significance of the postulated functional domains in ERCC3, we have introduced mutations in the ERCC3 cDNA by means of site-specific mutagenesis and have determined the repair capacity of each mutant to complement the UV-sensitive phenotype of rodent group 3 cells. A conservative substitution of arginine for the invariant lysine residue in the ATPase motif (helicase domain I), six deletion mutations in the other helicase domains, and a deletion in the potential helix-turn-helix DNA-binding motif fail to complement the ERCC3 excision repair defect of rodent group 3 mutants, which implies that the helicase domains as well as the potential DNA-binding motif are required for the repair function of ERCC3. Analysis of carboxy-terminal deletions suggests that the carboxy-terminal exon may comprise a distinct determinant for the DNA repair function. In addition, we show that a functional epitope-tagged version of ERCC3 accumulates in the nucleus. Deletion of the putative nuclear location signal impairs neither the nuclear location nor the repair function, indicating that other sequences may (also) be involved in translocation of ERCC3 to the nucleus.
Collapse
|
108
|
Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol Cell Biol 1994. [PMID: 8196602 DOI: 10.1128/mcb.14.6.3569] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rad2, Rad3, Rad4, and Ss12 proteins are required for nucleotide excision repair in yeast cells and are homologs of four human proteins which are involved in a group of hereditary repair-defective diseases. We have previously shown that Rad3 protein is one of the five subunits of purified RNA polymerase II basal transcription initiation factor b (TFIIH) and that Ss12 protein physically associates with factor b (W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg, Cell 75:1379-1387, 1993). Here we show that the Rad2 and Rad4 proteins interact with purified factor b in vitro. Rad2 (a single-stranded DNA endonuclease) specifically interacts with the Tfb1 subunit of factor b, and we have mapped a limited region of the Rad2 polypeptide which is sufficient for this interaction. Rad2 also interacts directly with Ss12 protein (a putative DNA helicase). The binding of Rad2 and Rad4 proteins to factor b may define intermediates in the assembly of the nucleotide excision repair repairosome. Furthermore, the loading of factor b (or such intermediates) onto promoters during transcription initiation provides a mechanism for the preferential targeting of repair proteins to actively transcribing genes.
Collapse
|
109
|
Ma L, Westbroek A, Jochemsen AG, Weeda G, Bosch A, Bootsma D, Hoeijmakers JH, van der Eb AJ. Mutational analysis of ERCC3, which is involved in DNA repair and transcription initiation: identification of domains essential for the DNA repair function. Mol Cell Biol 1994; 14:4126-34. [PMID: 8196650 PMCID: PMC358778 DOI: 10.1128/mcb.14.6.4126-4134.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human ERCC3 gene, which corrects specifically the nucleotide excision repair defect in human xeroderma pigmentosum group B and cross-complements the repair deficiency in rodent UV-sensitive mutants of group 3, encodes a presumed DNA helicase that is identical to the p89 subunit of the general transcription factor TFIIH/BTF2. To examine the significance of the postulated functional domains in ERCC3, we have introduced mutations in the ERCC3 cDNA by means of site-specific mutagenesis and have determined the repair capacity of each mutant to complement the UV-sensitive phenotype of rodent group 3 cells. A conservative substitution of arginine for the invariant lysine residue in the ATPase motif (helicase domain I), six deletion mutations in the other helicase domains, and a deletion in the potential helix-turn-helix DNA-binding motif fail to complement the ERCC3 excision repair defect of rodent group 3 mutants, which implies that the helicase domains as well as the potential DNA-binding motif are required for the repair function of ERCC3. Analysis of carboxy-terminal deletions suggests that the carboxy-terminal exon may comprise a distinct determinant for the DNA repair function. In addition, we show that a functional epitope-tagged version of ERCC3 accumulates in the nucleus. Deletion of the putative nuclear location signal impairs neither the nuclear location nor the repair function, indicating that other sequences may (also) be involved in translocation of ERCC3 to the nucleus.
Collapse
Affiliation(s)
- L Ma
- MGC-Laboratory for Molecular Carcinogenesis, Sylvius Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Bardwell AJ, Bardwell L, Iyer N, Svejstrup JQ, Feaver WJ, Kornberg RD, Friedberg EC. Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol Cell Biol 1994; 14:3569-76. [PMID: 8196602 PMCID: PMC358724 DOI: 10.1128/mcb.14.6.3569-3576.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Rad2, Rad3, Rad4, and Ss12 proteins are required for nucleotide excision repair in yeast cells and are homologs of four human proteins which are involved in a group of hereditary repair-defective diseases. We have previously shown that Rad3 protein is one of the five subunits of purified RNA polymerase II basal transcription initiation factor b (TFIIH) and that Ss12 protein physically associates with factor b (W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg, Cell 75:1379-1387, 1993). Here we show that the Rad2 and Rad4 proteins interact with purified factor b in vitro. Rad2 (a single-stranded DNA endonuclease) specifically interacts with the Tfb1 subunit of factor b, and we have mapped a limited region of the Rad2 polypeptide which is sufficient for this interaction. Rad2 also interacts directly with Ss12 protein (a putative DNA helicase). The binding of Rad2 and Rad4 proteins to factor b may define intermediates in the assembly of the nucleotide excision repair repairosome. Furthermore, the loading of factor b (or such intermediates) onto promoters during transcription initiation provides a mechanism for the preferential targeting of repair proteins to actively transcribing genes.
Collapse
Affiliation(s)
- A J Bardwell
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | | | |
Collapse
|
111
|
Park CH, Sancar A. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc Natl Acad Sci U S A 1994; 91:5017-21. [PMID: 8197175 PMCID: PMC43921 DOI: 10.1073/pnas.91.11.5017] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The xeroderma pigmentosum complementation group A (XP-A) protein, XPA, has recently been expressed in Escherichia coli in a soluble and fully functional form. An affinity column was prepared by linking the XPA protein to a solid support. When HeLa cell-free extract capable of excision repair was applied to the column, > 99.9% of the proteins were in the flow-through. However, the flow-through fraction lacked excision activity. The activity was restored by adding the high salt (1 M KCl) eluate of the column to the flow-through fraction. The XPA protein-bound fraction was tested for specific proteins by an in vitro complementation assay with a panel of cell-free extracts from DNA repair-deficient human and rodent cell lines. The XPA-bound fraction complemented cell-free extracts of excision repair cross-complementing 1 (ERCC-1), ERCC-4 (XP-F), and XP-A mutants. We conclude that the XPA damage recognition protein makes a ternary complex with the ERCC1/ERCC4(XPF) heterodimer with a potential nuclease function.
Collapse
Affiliation(s)
- C H Park
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
112
|
Li L, Elledge SJ, Peterson CA, Bales ES, Legerski RJ. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci U S A 1994; 91:5012-6. [PMID: 8197174 PMCID: PMC43920 DOI: 10.1073/pnas.91.11.5012] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Processing of DNA damage by the nucleotide-excision repair pathway in eukaryotic cells is most likely accomplished by multiprotein complexes. However, the nature of these complexes and the details of the molecular interactions between DNA repair factors are for the most part unknown. Here, we demonstrate both in vivo, using the two-hybrid system, and in vitro, using recombinant proteins, that the human repair factors XPA and ERCC1 specifically interact. In addition, we report an initial determination of the domains in ERCC1 and XPA that mediate this interaction. These results suggest that XPA may play a role in the localization or loading of an incision complex, composed of ERCC1 and possibly other repair factors, onto a damaged site.
Collapse
Affiliation(s)
- L Li
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|
113
|
Tomkinson AE, Bardwell AJ, Tappe N, Ramos W, Friedberg EC. Purification of Rad1 protein from Saccharomyces cerevisiae and further characterization of the Rad1/Rad10 endonuclease complex. Biochemistry 1994; 33:5305-11. [PMID: 8172904 DOI: 10.1021/bi00183a038] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The yeast recombination and repair proteins Rad1 and Rad10 associate with a 1:1 stoichiometry to form a stable complex with a relative molecular mass of 190 kDa. This complex, which has previously been shown to degrade single-stranded DNA endonucleolytically, also cleaves supercoiled duplex DNA molecules. In this reaction, supercoiled (form I) molecules are rapidly converted to nicked, relaxed (form II) molecules, presumably as a result of nicking at transient single-stranded regions in the supercoiled DNA. At high enzyme concentrations, there is a slow conversion of the form II molecules to linear (form III) molecules. The Rad1/Rad10 endonuclease does not preferentially cleave UV-irradiated DNA and has no detectable exonuclease activity. The nuclease activity of the Rad1/Rad10 complex is consistent with the predicted roles of the RAD1 and RAD10 genes of Saccharomyces cerevisiae in both the incision events of nucleotide excision repair and the removal of nonhomologous 3' single strands during intrachromosomal recombination between repeated sequences. In these pathways, the specificity and reactivity of the Rad1/Rad10 endonuclease will probably be modulated by further protein-protein interactions.
Collapse
Affiliation(s)
- A E Tomkinson
- Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | |
Collapse
|
114
|
Wang Z, Svejstrup JQ, Feaver WJ, Wu X, Kornberg RD, Friedberg EC. Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 1994; 368:74-6. [PMID: 8107888 DOI: 10.1038/368074a0] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nucleotide-excision repair (NER) is an important cellular defence mechanism against mutagenesis and carcinogenesis. The essential yeast genes RAD3 (ref. 2) and SSL2 (RAD25), homologues of the human xeroderma pigmentosum genes XPD and XPB respectively, have been implicated in NER in yeast. The products of these genes are also subunits of (Rad3 protein) or associate with (Ssl2 protein) purified yeast RNA polymerase II transcription initiation factor b, the counterpart of human TFIIH. Rad3 and Ssl2 proteins may participate directly in NER. Alternatively, they may function exclusively as transcription factors that support NER by influencing the expression of other NER genes. Here we show that defective NER in rad3 mutant extracts can be specifically complemented by purified transcription factor b. Similarly, defective NER in ssl2 mutant extracts is corrected by purified factor b/Ssl2 complex. These results support a direct role of factor b during NER in yeast. Hence, factor b (TFIIH) has a dual role in transcription and NER.
Collapse
Affiliation(s)
- Z Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | |
Collapse
|
115
|
Parkkonen P, Hyöty H, Ilonen J, Reijonen H, Ylä-Herttuala S, Leinikki P. Antibody reactivity to an Epstein-Barr virus BERF4-encoded epitope occurring also in Asp-57 region of HLA-DQ8 beta chain. Childhood Diabetes in Finland Study Group. Clin Exp Immunol 1994; 95:287-93. [PMID: 7508347 PMCID: PMC1534924 DOI: 10.1111/j.1365-2249.1994.tb06525.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A five amino acids-long sequence (GPPAA) in the region of the 57th amino acid of HLA-DQ8 beta chain, which seems to be important in defining the risk for type 1 diabetes, occurs also in the BERF4-encoded EBNA3C protein of Epstein-Barr virus (EBV) in six successive repeats. The antigenicity of this region was analysed using synthetic peptides containing different modifications of the GPPAA sequence. Two of the seven individuals who had acute EBV infection produced antibodies against an EBV-derived peptide (GPPAAGPPAAGPPAA) paralleling the EBNA2 antibodies. These two cases also contracted type 1 diabetes immediately after the infection. High antibody levels against this peptide were found in a total of 12% of EBV+ individuals, and in most cases antibodies remained at high levels for several years. Human sera as well as affinity-purified antibodies specific for the GPPAAGPPAAGPPAA peptide reacted also with shorter peptide analogues (GPPAAGPPAA and GPPAA), as well as with peptides containing the surrounding motifs from DQ8 beta chains. However, none of these antibodies bound to denatured DQ8 beta chains in immunoblotting. The charge of the 57th amino acid modulated the antigenicity of this epitope, as peptides from Asp-57-negative DQ molecules were reactive, while peptides from Asp-57-positive DQ molecules were not. The responsiveness was seen in both HLA-DQ8-positive and -negative subjects as well as in type 1 diabetic individuals. The results suggest that some individuals who carry the GPPAA sequence in their HLA-DQ molecule recognize this epitope in EBV. This phenomenon may have potential importance in EBV-induced immune abnormalities, although cross-reactivity against DQ molecules could not be demonstrated in the present study.
Collapse
Affiliation(s)
- P Parkkonen
- Institute of Biomedical Sciences, University of Tampere, Finland
| | | | | | | | | | | |
Collapse
|
116
|
Skovsgaard T, Nielsen D, Maare C, Wassermann K. Cellular resistance to cancer chemotherapy. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 156:77-157. [PMID: 7860220 DOI: 10.1016/s0074-7696(08)62253-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Skovsgaard
- Department of Oncology, University of Copenhagen, Herlev Hospital, Denmark
| | | | | | | |
Collapse
|
117
|
McConville C, Byrd P, Ambrose H, Taylor A. Genetic and Physical Mapping of the Ataxia-telangiectasia Locus on Chromosome 11q22–q23. Int J Radiat Biol 1994. [DOI: 10.1080/09553009414551851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C.M. McConville
- CRC Institute of Cancer Studies, The Medical School, University of Birmingham, Birmingham, B15 2TJ, UK
| | - P.J. Byrd
- CRC Institute of Cancer Studies, The Medical School, University of Birmingham, Birmingham, B15 2TJ, UK
| | - H.J. Ambrose
- CRC Institute of Cancer Studies, The Medical School, University of Birmingham, Birmingham, B15 2TJ, UK
| | - A.M.R. Taylor
- CRC Institute of Cancer Studies, The Medical School, University of Birmingham, Birmingham, B15 2TJ, UK
| |
Collapse
|
118
|
Esposito MS, Ramirez RM, Bruschi CV. Recombinators, recombinases and recombination genes of yeasts. Curr Genet 1994; 25:1-11. [PMID: 8082158 DOI: 10.1007/bf00712959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M S Esposito
- Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
119
|
|
120
|
Hill BT, Scanlon KJ, Hansson J, Harstrick A, Pera M, Fichtinger-Schepman AM, Shellard SA. Deficient repair of cisplatin-DNA adducts identified in human testicular teratoma cell lines established from tumours from untreated patients. Eur J Cancer 1994; 30A:832-7. [PMID: 7917544 DOI: 10.1016/0959-8049(94)90301-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Germ cell tumour lines appear generally more sensitive in vitro to cisplatin than other cultured cell lines, reflecting their clinical responsiveness. We proposed (Cancer Res 1988, 48, 3019-3024) that cisplatin hypersensitivity, expressed by a testicular teratoma line (SuSa), might be explained by an inability to repair platinated DNA. We have now quantitated cisplatin cytotoxicity by clonogenic assay, and platinum (Pt)-DNA adduct formation and removal immunochemically in four other testicular teratoma continuous cell lines (GCT46, GCT27 clone 4, H32 and H12.1), all established from tissue from non-drug-treated patients. For 1-h in vitro drug exposures, the cisplatin concentration required to reduce survival by 50% (IC50) ranged from 0.09 to 0.42 micrograms/ml (0.3-1.4 microM). Immediately following a 1-h exposure to 5 mu/ml cisplatin, total cellular platination levels ranged from 4.5 to 36.8 fmol Pt per microgram DNA, with lower platination occurring in the most sensitive lines. Following an 18-h post-treatment incubation period, the levels of the major cis-Pt-(NH3)2d(pGpG) (Pt-GG) adducts were not significantly reduced in any of the four lines, indicating a general deficiency in either the rate or extent of removal of these lesions. Deficient removal of the cis-Pt-(NH3)2d(pApG) adducts was also noted in two of the lines. DNA polymerase beta gene expression was comparable in all the tested testicular lines established from previously untreated patients, but markedly lower than that identified in the 833K testicular line, established from a drug-treated patient and identified earlier as proficient in Pt-GG adduct removal (Cancer Res 1988, 48, 3019-3024). Expression of the DNA excision repair genes ERCC-1 and XPBC/ERCC-3 was not significantly different in any of the five lines tested, including the 833K cell line. These data provide evidence of the apparent inability of testicular cell lines, derived from untreated tumours, to repair the major platinum-DNA intrastrand crosslinks, and so provide a biological basis for their hypersensitivity to cisplatin.
Collapse
Affiliation(s)
- B T Hill
- Laboratory of Cellular Chemotherapy, Imperial Cancer Research Fund, London, U.K
| | | | | | | | | | | | | |
Collapse
|
121
|
Park CH, Sancar A. Reconstitution of mammalian excision repair activity with mutant cell-free extracts and XPAC and ERCC1 proteins expressed in Escherichia coli. Nucleic Acids Res 1993; 21:5110-6. [PMID: 8255764 PMCID: PMC310624 DOI: 10.1093/nar/21.22.5110] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nucleotide excision repair in humans involves the coordinated actions of 8-10 proteins. To understand the roles of each of these proteins in excision it is necessary to develop an in vitro excision repair system reconstituted entirely from purified proteins. Towards this goal we have expressed in E. coli two of the 8 genes known to be essential for the excision reaction. XPAC and ERCC1 were expressed as fusion proteins with the Escherichia coli maltose binding protein (MBP) and purified to > 80% homogeneity by affinity chromatography. The purified proteins either as fusions or after cleavage from the MBP were able to complement the CFE of cells with mutations in the corresponding genes in an excision assay with thymine dimer containing substrate.
Collapse
Affiliation(s)
- C H Park
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
122
|
Muris DF, Vreeken K, Carr AM, Broughton BC, Lehmann AR, Lohman PH, Pastink A. Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Res 1993; 21:4586-91. [PMID: 8233794 PMCID: PMC311194 DOI: 10.1093/nar/21.19.4586] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The RAD51 gene of Saccharomyces cerevisiae encodes a RecA like protein, which is involved in the recombinational repair of double strand breaks. We have isolated the RAD51 homologue, rhp51+, of the distantly related yeast strain Schizosaccharomyces pombe by heterologous hybridization. DNA sequence analysis of the rhp51+ gene revealed an open reading frame of 365 amino acids. Comparison of the amino acid sequences of RAD51 and rhp51+ showed a high level of conservation: 69% identical amino acids. There are two Mlul sites in the upstream region which may be associated with cell cycle regulation of the rhp51+ gene. The rhp51+ null allele, constructed by disruption of the coding region, is extremely sensitive to X-rays, indicating that the rhp51+ gene, like RAD51, is also involved in the repair of X-ray damage. The structural and functional homology between rhp51+ and RAD51 suggests evolutionary conservation of certain steps in the recombinational repair pathway.
Collapse
Affiliation(s)
- D F Muris
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
123
|
Guzder SN, Sung P, Prakash L, Prakash S. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc Natl Acad Sci U S A 1993; 90:5433-7. [PMID: 8516285 PMCID: PMC46734 DOI: 10.1073/pnas.90.12.5433] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A-G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. We have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. We also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair.
Collapse
Affiliation(s)
- S N Guzder
- Department of Biology, University of Rochester, NY 14627
| | | | | | | |
Collapse
|
124
|
Pang Q, Hays JB, Rajagopal I, Schaefer TS. Selection of Arabidopsis cDNAs that partially correct phenotypes of Escherichia coli DNA-damage-sensitive mutants and analysis of two plant cDNAs that appear to express UV-specific dark repair activities. PLANT MOLECULAR BIOLOGY 1993; 22:411-426. [PMID: 8329681 DOI: 10.1007/bf00015972] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To resist terrestrial UV radiation, plants employ DNA-damage-repair/toleration (DRT) activities, as well as shielding mechanisms. Little is known about the structure and regulation of plant DRT genes. We isolated DRT cDNAs from Arabidopsis thaliana, by selecting for complementation of Escherichia coli mutants lacking all bacterial defenses against UV-light damage to DNA. These mutants are phenotypically deficient in recombinational and mutagenic toleration (RecA-), excision repair (Uvr-) and photoreactivation (Phr-). Among 840 survivors of heavily UV-irradiated (10(-7) survival) mutants harboring plasmids derived from an Arabidopsis cDNA library in the vector lambda YES, we identified four unique plant cDNAs, designated DRT100, DRT101, DRT102, and DRT103. Drt101 and Drt102 activity were specific for UV-light damage, and complemented both UvrB- and UvrC- phenotypes in the dark. Apparent Uvr- correction efficiencies were 1 to 40% for Drt101, and 0.2 to 15% for Drt102, depending on the UV fluence. Drt101 and Drt102 showed no extensive amino-acid homology with any known DNA-repair proteins. Drt100 appeared to correct RecA-, rather than Uvr-, phenotypes. Although the light dependence of Drt103 activity was consistent with its identification as a photoreactivating enzyme, its predicted amino-acid sequence did not resemble known photolyase sequences. The N-terminal coding sequence of Drt101 suggests that it is targeted to chloroplasts, as reported for Drt100. These cDNAs afforded only modest increases in survival during the original selection procedure. The fact that they were readily isolated nevertheless suggests that selections may be made powerful enough to overcome barriers to expression and function in bacteria, at least for cDNAs of reasonable abundance.
Collapse
Affiliation(s)
- Q Pang
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | | | | | |
Collapse
|
125
|
Bardwell AJ, Bardwell L, Johnson DK, Friedberg EC. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains. Mol Microbiol 1993; 8:1177-88. [PMID: 8361362 DOI: 10.1111/j.1365-2958.1993.tb01662.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Saccharomyces cerevisiae Rad1 and Rad10 proteins are required for damage-specific incision during nucleotide excision repair and also for certain mitotic recombination events between repeated sequences. Previously we have demonstrated that Rad1 and Rad10 form a specific complex in vitro. Using the 'two-hybrid' genetic assay system we now report that Rad1 and Rad10 proteins are subunits of a specific complex in the cell nucleus. The Rad10-binding domain of Rad1 protein maps to a localized region between amino acids 809-997. The Rad1-binding domain of Rad10 protein maps between amino acids 90-210. These domains are evolutionarily conserved and are hydrophobic in character. Although significant homology exists between Rad10 and the human-DNA-repair protein Ercc1 in this region, we were unable to detect any interaction between Ercc1 and Rad1 proteins. We conclude that Rad1 and Rad10 operate in DNA repair and mitotic recombination as a constitutive complex.
Collapse
Affiliation(s)
- A J Bardwell
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | | | | | | |
Collapse
|
126
|
Abstract
The sequence and functional homology of certain genes between mammalian and non-mammalian eukaryotes has facilitated significant advances in our understanding of mammalian DNA repair. Several novel DNA damage and repair genes have been identified by using a variety of approaches. Study of these genes will lead to an increased understanding of the biological consequences of aberrant DNA maintenance in humans and other species.
Collapse
Affiliation(s)
- R Wevrick
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
127
|
Abstract
Nucleotide excision repair is the major DNA repair mechanism in all species tested. This repair system is the sole mechanism for removing bulky adducts from DNA, but it repairs essentially all DNA lesions, and thus, in addition to its main function, it plays a back-up role for other repair systems. In both pro- and eukaryotes nucleotide excision is accomplished by a multisubunit ATP-dependent nuclease. The excision nuclease of prokaryotes incises the eighth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified nucleotide and thus excises a 12-13-mer. The excision nuclease of eukaryotes incises the 22nd, 23rd, or 24th phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion and thus removes the adduct in a 27-29-mer. A transcription repair coupling factor encoded by the mfd gene in Escherichia coli and the ERCC6 gene in humans directs the excision nuclease to RNA polymerase stalled at a lesion in the transcribed strand and thus ensures preferential repair of this strand compared to the nontranscribed strand.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
128
|
Tomkinson AE, Bardwell AJ, Bardwell L, Tappe NJ, Friedberg EC. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 1993; 362:860-2. [PMID: 8479526 DOI: 10.1038/362860a0] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Damage-specific recognition and incision of DNA during nucleotide excision repair in yeast and mammalian cells requires multiple gene products. Amino-acid sequence homology between several yeast and mammalian genes suggests that the mechanism of nucleotide excision repair is conserved in eukaryotes, but very little is known about its biochemistry. In the yeast Saccharomyces cerevisiae at least 6 genes are needed for this process, including RAD1 and RAD10 (ref. 1). Mutations in the two genes inactivate nucleotide excision repair and result in a reduced efficiency of mitotic recombinational events between repeated sequences. The Rad10 protein has a stable and specific interaction with Rad1 protein and also binds to single-stranded DNA and promotes annealing of homologous single-stranded DNA. The amino-acid sequence of the yeast Rad10 protein is homologous with that of the human excision repair gene ERCC1 (ref. 3). Here we demonstrate that a complex of purified Rad1 and Rad10 proteins specifically degrades single-stranded DNA by an endonucleolytic mechanism. This endonuclease activity is presumably required to remove non-homologous regions of single-stranded DNA during mitotic recombination between repeated sequences as previously suggested, and may also be responsible for the specific incision of damaged DNA during nucleotide excision repair.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235-9072
| | | | | | | | | |
Collapse
|
129
|
Weeda G, Hoeijmakers JH, Bootsma D. Genes controlling nucleotide excision repair in eukaryotic cells. Bioessays 1993; 15:249-58. [PMID: 8517854 DOI: 10.1002/bies.950150405] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The maintenance of genetic integrity is of vital importance to all living organisms. However, DNA--the carrier of genetic information--is continuously subject to damage induced by numerous agents from the environment and endogenous cellular metabolites. To prevent the deleterious consequences of DNA injury, an intricate network of repair systems has evolved. The biological impact of these repair mechanisms is illustrated by a number of genetic diseases that are characterized by a defect in one of the repair machineries and in general predispose individuals to cancer. This article intends to review our current understanding of the complex nucleotide excision repair pathway, a universal repair system with a broad lesion specificity. Emphasis will be on the recent advances in the genetic analysis of this process in mammalian cells.
Collapse
Affiliation(s)
- G Weeda
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
130
|
Genetic damage and escape from proliferation control. Int J Cancer 1993. [DOI: 10.1002/ijc.2910530129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
131
|
Bootsma D. The genetic defect in DNA repair deficiency syndromes. EACR--Mühlbock Memorial Lecture, 1993. Eur J Cancer 1993; 29A:1482-8. [PMID: 8398280 DOI: 10.1016/0959-8049(93)90026-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D Bootsma
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| |
Collapse
|
132
|
Dabholkar M, Bostick-Bruton F, Weber C, Egwuagu C, Bohr VA, Reed E. Expression of excision repair genes in non-malignant bone marrow from cancer patients. Mutat Res 1993; 293:151-60. [PMID: 7678143 DOI: 10.1016/0921-8777(93)90066-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The patterns of expression of 3 human DNA-repair genes (ERCC1, ERCC2, ERCC6) were assessed in 52 bone-marrow specimens obtained from cancer patients prepared for autologous bone-marrow transplantation. Marrow was collected prior to the initiation of treatment in patients with sarcoma or testicular cancer; marrow was collected after initial cytoreductive therapy for patients with non-Hodgkin's lymphoma, Hodgkin's disease, and other tumors. Slot-blot analysis of marrow RNA showed a bimodal pattern of ERCC1, ERCC2 and ERCC6 gene expression with relative expression values ranging more than 200-fold. This pattern was seen in all patient groups and appeared to be independent of whether or not patients had received prior chemotherapy. In all patient groups, when expression was low for ERCC1, expression was also low for ERCC2 and ERCC6, suggesting that expression of these genes may be coordinated within an individual although they are located on two different chromosomes. Southern blot analyses of Pst I digests of DNA from 6 bone-marrow samples indicate no differences in ERCC1 gene copy number between high expressors and low expressors. There is absence of restriction fragment length polymorphism for ERCC1 suggesting that the different levels of expression in high and low expressors were not due to major deletions or rearrangements of the ERCC1 gene. We conclude that expression of these ERCC genes may vary widely between individuals, and that within an individual, their expression may be linked and coordinated by a common regulatory mechanism.
Collapse
Affiliation(s)
- M Dabholkar
- Medicine Branch, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
133
|
Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 1992; 71:939-53. [PMID: 1339317 DOI: 10.1016/0092-8674(92)90390-x] [Citation(s) in RCA: 554] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells from patients with the UV-sensitive nucleotide excision repair disorder Cockayne's syndrome (CS) have a specific defect in preferential repair of lesions from the transcribed strand of active genes. This system permits quick resumption of transcription after UV exposure. Here we report the characterization of ERCC6, a gene involved in preferential repair in eukaryotes. ERCC6 corrects the repair defect of CS complementation group B (CS-B). It encodes a protein of 1493 amino acids, containing seven consecutive domains conserved between DNA and RNA helicases. The entire helicase region bears striking homology to segments in recently discovered proteins involved in transcription regulation, chromosome stability, and DNA repair. Mutation analysis of a CS-B patient indicates that the gene is not essential for cell viability and is specific for preferential repair of transcribed sequences.
Collapse
Affiliation(s)
- C Troelstra
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
134
|
Rödel C, Kirchhoff S, Schmidt H. The protein sequence and some intron positions are conserved between the switching gene swi10 of Schizosaccharomyces pombe and the human excision repair gene ERCC1. Nucleic Acids Res 1992; 20:6347-53. [PMID: 1475195 PMCID: PMC334526 DOI: 10.1093/nar/20.23.6347] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The switching gene swi10+ has a function in mating-type switching as well as in the repair of radiation damages. We have cloned the genomic swi10+ gene by functional complementation of the switching defect of the swi10-154 mutant. The swi10+ gene is not essential for viability. The DNA sequence revealed an open reading frame of 759 nucleotides interrupted by three introns of 127, 52 and 60 bp, respectively. The positions of intron I as well as of intron III of swi10 are evolutionary conserved in comparison to the introns III and IV of the human ERCC1 gene. The analysis of cDNA clones isolated by PCR amplification confirmed the structure of the swi10 gene. The putative Swi10 protein has homologies to the human and mouse ERCC1 protein, to Rad10 of Saccharomyces cerevisiae and to parts of UvrA and UvrC of E. coli. All these proteins are essential components for excision repair of damaged DNA. The Swi10 protein contains a putative DNA binding domain previously found in other proteins. Northern blot experiments and the analyses of cDNA clones indicate that intron I of the swi10 gene is not efficiently spliced.
Collapse
Affiliation(s)
- C Rödel
- Institut für Genetik, Biozentrum, Technische Universität Braunschweig, Germany
| | | | | |
Collapse
|
135
|
Mounkes LC, Jones RS, Liang BC, Gelbart W, Fuller MT. A Drosophila model for xeroderma pigmentosum and Cockayne's syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell 1992; 71:925-37. [PMID: 1458540 DOI: 10.1016/0092-8674(92)90389-t] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The haywire gene of Drosophila encodes a protein with 66% identity to the product of the human ERCC3 gene, associated with xeroderma pigmentosum B (XP-B) and Cockayne's syndrome (CS). XP is a human autosomal recessive disease characterized by extreme sensitivity to ultraviolet irradiation and marked susceptibility to skin cancer. In addition, XP and CS patients often exhibit a variety of defects, ranging from central nervous system disorders to hypogonadism. Phenotypes of haywire mutants mimic some of the effects of XP. Many haywire alleles are recessive lethal, viable alleles cause ultraviolet sensitivity, and files expressing marginal levels of haywire display motor defects and reduced life span. Progeny of females carrying a maternal effect allele show central nervous system defects.
Collapse
Affiliation(s)
- L C Mounkes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | | | |
Collapse
|
136
|
Hao H, Jiang Y, Zhang SJ, Zhang P, Zeng RX, Lee MY. Structural and functional relationships of human DNA polymerases. Chromosoma 1992; 102:S121-7. [PMID: 1291233 DOI: 10.1007/bf02451795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A continuing theme of our laboratory has been the understanding of human DNA polymerases at the structural level. We have purified DNA polymerases delta, epsilon and alpha from human placenta. Monoclonal antibodies to these polymerases were isolated and used as tools to study their immunochemical relationships. These studies have shown that while DNA polymerases delta, epsilon and alpha are discrete proteins, they must share common structural features by virtue of the ability of several of our monoclonal antibodies to exhibit cross-reactivity. A second approach we have taken is the molecular cloning of human DNA polymerase delta and epsilon. We have cloned the DNA polymerase delta cDNA, and this has allowed us to compare its primary structure to those of human polymerase alpha and other members of this polymerase family. Multiple sequence alignments have revealed that human DNA polymerase delta is also closely related to the herpes virus family of DNA polymerases. In situ hybridization has shown that the human DNA polymerase delta gene is localized to chromosome 19 q13.3-q13.4. In order to further determine the functional regions of the DNA polymerase delta structure we are currently expressing human pol delta in E. coli and baculovirus systems. Other work in our laboratory is directed toward examining the expression of DNA polymerase delta during the cell cycle.
Collapse
Affiliation(s)
- H Hao
- Department of Medicine and Biochemistry & Molecular Biology, University of Miami, FL 33101
| | | | | | | | | | | |
Collapse
|
137
|
Park E, Guzder SN, Koken MH, Jaspers-Dekker I, Weeda G, Hoeijmakers JH, Prakash S, Prakash L. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci U S A 1992; 89:11416-20. [PMID: 1333609 PMCID: PMC50561 DOI: 10.1073/pnas.89.23.11416] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M(r) 95,356). The RAD25 (SSL2)- and XPBC-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UV sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys392 residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD25 (SSL2) ATPase/DNA helicase activity in viability.
Collapse
Affiliation(s)
- E Park
- Department of Biophysics, University of Rochester School of Medicine, NY 14642
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Koken MH, Vreeken C, Bol SA, Cheng NC, Jaspers-Dekker I, Hoeijmakers JH, Eeken JC, Weeda G, Pastink A. Cloning and characterization of the Drosophila homolog of the xeroderma pigmentosum complementation-group B correcting gene, ERCC3. Nucleic Acids Res 1992; 20:5541-8. [PMID: 1454518 PMCID: PMC334384 DOI: 10.1093/nar/20.21.5541] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously the human nucleotide excision repair gene ERCC3 was shown to be responsible for a rare combination of the autosomal recessive DNA repair disorders xeroderma pigmentosum (complementation group B) and Cockayne's syndrome (complementation group C). The human and mouse ERCC3 proteins contain several sequence motifs suggesting that it is a nucleic acid or chromatin binding helicase. To study the significance of these domains and the overall evolutionary conservation of the gene, the homolog from Drosophila melanogaster was isolated by low stringency hybridizations using two flanking probes of the human ERCC3 cDNA. The flanking probe strategy selects for long stretches of nucleotide sequence homology, and avoids isolation of small regions with fortuitous homology. In situ hybridization localized the gene onto chromosome III 67E3/4, a region devoid of known D.melanogaster mutagen sensitive mutants. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. A slight increase (2-3 times) of ERCC3Dm transcript was observed in the later stages. Two almost full length cDNAs were isolated, which have different 5' untranslated regions (UTR). The SD4 cDNA harbours only one long open reading frame (ORF) coding for ERCC3Dm. Another clone (SD2), however, has the potential to encode two proteins: a 170 amino acids polypeptide starting at the optimal first ATG has no detectable homology with any other proteins currently in the data bases, and another ORF beginning at the suboptimal second startcodon which is identical to that of SD4. Comparison of the encoded ERCC3Dm protein with the homologous proteins of mouse and man shows a strong amino acid conservation (71% identity), especially in the postulated DNA binding region and seven 'helicase' domains. The ERCC3Dm sequence is fully consistent with the presumed functions and the high conservation of these regions strengthens their functional significance. Microinjection and DNA transfection of ERCC3Dm into human xeroderma pigmentosum (c.g. B) fibroblasts and group 3 rodent mutants did not yield detectable correction. One of the possibilities to explain these negative findings is that the D.melanogaster protein may be unable to function in a mammalian repair context.
Collapse
Affiliation(s)
- M H Koken
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Takahashi E, Shiomi N, Shiomi T. Precise localization of the excision repair gene, ERCC5, to human chromosome 13q32.3-q33.1 by direct R-banding fluorescence in situ hybridization. Jpn J Cancer Res 1992; 83:1117-9. [PMID: 1483924 PMCID: PMC5918714 DOI: 10.1111/j.1349-7006.1992.tb02731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genomic DNA fragment encoding the excision repair gene, ERCC5, was mapped by direct R-banding fluorescence in situ hybridization. The signals were localized to human chromosome 13q32.3-q33.1. This result was in agreement with previous reports, and the gene was assigned to a narrower region.
Collapse
Affiliation(s)
- E Takahashi
- Division of Genetics, National Institute of Radiological Sciences, Chiba
| | | | | |
Collapse
|
140
|
Bailly V, Sommers CH, Sung P, Prakash L, Prakash S. Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Proc Natl Acad Sci U S A 1992; 89:8273-7. [PMID: 1518857 PMCID: PMC49900 DOI: 10.1073/pnas.89.17.8273] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for excision repair of ultraviolet light-damaged DNA, and they also function in a mitotic recombination pathway that is distinct from the double-strand-break recombination pathway controlled by RAD52. Here, we show that the RAD1 and RAD10 proteins are complexed with each other in vivo. Immunoprecipitation of yeast cell extracts with either anti-RAD1 antibody or anti-RAD10 antibody coprecipitated quantitative amounts of both RAD1 and RAD10 proteins. The level of coprecipitable RAD1 and RAD10 increased when both proteins were overproduced together, but not if only one of the proteins was overproduced. The RAD1/RAD10 complex is highly stable, being refractory to 1 M NaCl and to low concentrations of SDS. By hydroxylamine mutagenesis, we have identified a rad1 mutant allele whose encoded protein fails to complex with RAD10. The interaction-defective rad1 mutant resembles the rad1 or rad10 null mutant in defective DNA repair and recombination, implying that complex formation is essential for the expression of biological activities controlled by RAD1 and RAD10.
Collapse
Affiliation(s)
- V Bailly
- Department of Biophysics, University of Rochester School of Medicine, NY 14642
| | | | | | | | | |
Collapse
|
141
|
Stable and specific association between the yeast recombination and DNA repair proteins RAD1 and RAD10 in vitro. Mol Cell Biol 1992. [PMID: 1620114 DOI: 10.1128/mcb.12.7.3041] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are two of at least seven genes which are known to be required for damage-specific recognition and/or damage-specific incision of DNA during nucleotide excision repair. RAD1 and RAD10 are also involved in a specialized mitotic recombination pathway. We have previously reported the purification of the RAD10 protein to homogeneity (L. Bardwell, H. Burtscher, W. A. Weiss, C. M. Nicolet, and E. C. Friedberg, Biochemistry 29:3119-3126, 1990). In the present studies we show that the RAD1 protein, produced by in vitro transcription and translation of the cloned gene, specifically coimmunoprecipitates with the RAD10 protein translated in vitro or purified from yeast. Conversely, in vitro-translated RAD10 protein specifically coimmunoprecipitates with the RAD1 protein. The sites of this stable and specific interaction have been mapped to the C-terminal regions of both polypeptides. This portion of RAD10 protein is evolutionarily conserved. These results are the first biochemical evidence of a specific association between any eukaryotic proteins genetically identified as belonging to a recombination or DNA repair pathway and suggest that the RAD1 and RAD10 proteins act at the same or consecutive biochemical steps in both nucleotide excision repair and mitotic recombination.
Collapse
|
142
|
Vrieling H, Zhang LH, van Zeeland AA, Zdzienicka MZ. UV-induced hprt mutations in a UV-sensitive hamster cell line from complementation group 3 are biased towards the transcribed strand. Mutat Res 1992; 274:147-55. [PMID: 1378206 DOI: 10.1016/0921-8777(92)90061-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecular nature of 254 nm ultraviolet light (UV)-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in UV24 Chinese hamster ovary (CHO) cells, which are defective in nucleotide excision repair, was determined. Sequence analysis of 19 hprt mutants showed that single base substitutions (9 mutants) and tandem base changes (7 mutants) dominated the UV mutation spectrum in this cell line. Sixty-five percent of the base substitutions were GC greater than AT transitions, whereas the rest consisted of transitions and transversions at AT base pairs. Analysis of the distribution of dipyrimidine sites over the two DNA strands, where the photoproducts causing these mutations presumably were formed, showed that 12 out of 14 mutations were located in the transcribed strand of the hprt gene. A similar strand distribution of mutagenic photoproducts as in UV24 has previously been found in two other UV-sensitive Chinese hamster cell lines (V-H1 and UV5), indicating that under defective nucleotide excision repair conditions the induction of mutations is strongly biased towards lesions in the transcribed strand of the hprt gene. A plausible explanation for this phenomenon is that during DNA replication large differences exist in the error rate with which DNA polymerase(s) bypass lesions in the templates for the leading and lagging strand, respectively.
Collapse
Affiliation(s)
- H Vrieling
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, Netherlands
| | | | | | | |
Collapse
|
143
|
Bardwell L, Cooper AJ, Friedberg EC. Stable and specific association between the yeast recombination and DNA repair proteins RAD1 and RAD10 in vitro. Mol Cell Biol 1992; 12:3041-9. [PMID: 1620114 PMCID: PMC364518 DOI: 10.1128/mcb.12.7.3041-3049.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are two of at least seven genes which are known to be required for damage-specific recognition and/or damage-specific incision of DNA during nucleotide excision repair. RAD1 and RAD10 are also involved in a specialized mitotic recombination pathway. We have previously reported the purification of the RAD10 protein to homogeneity (L. Bardwell, H. Burtscher, W. A. Weiss, C. M. Nicolet, and E. C. Friedberg, Biochemistry 29:3119-3126, 1990). In the present studies we show that the RAD1 protein, produced by in vitro transcription and translation of the cloned gene, specifically coimmunoprecipitates with the RAD10 protein translated in vitro or purified from yeast. Conversely, in vitro-translated RAD10 protein specifically coimmunoprecipitates with the RAD1 protein. The sites of this stable and specific interaction have been mapped to the C-terminal regions of both polypeptides. This portion of RAD10 protein is evolutionarily conserved. These results are the first biochemical evidence of a specific association between any eukaryotic proteins genetically identified as belonging to a recombination or DNA repair pathway and suggest that the RAD1 and RAD10 proteins act at the same or consecutive biochemical steps in both nucleotide excision repair and mitotic recombination.
Collapse
Affiliation(s)
- L Bardwell
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | |
Collapse
|
144
|
Murray JM, Doe CL, Schenk P, Carr AM, Lehmann AR, Watts FZ. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucleic Acids Res 1992; 20:2673-8. [PMID: 1319571 PMCID: PMC336906 DOI: 10.1093/nar/20.11.2673] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RAD3 gene of Saccharomyces cerevisiae encodes an ATP-dependent 5'-3' DNA helicase, which is involved in excision repair of ultraviolet radiation damage. By hybridisation of a Schizosaccharomyces pombe genomic library with a RAD3 gene probe we have isolated the S. pombe homologue of RAD3. We have also cloned the rad15 gene of S. pombe by complementation of radiation-sensitive phenotype of the rad15 mutant. Comparison of the restriction map and DNA sequence, shows that the S. pombe rad15 gene is identical to the gene homologous to S. cerevisiae RAD3, identified by hybridisation. The S. pombe rad15.P mutant is highly sensitive to UV radiation, but only slightly sensitive to ionising radiation, as expected for a mutant defective in excision repair. DNA sequence analysis of the rad15 gene indicates an open reading frame of 772 amino acids, and this is consistent with a transcript size of 2.6 kb as detected by Northern analysis. The predicted rad15 protein has 65% identity to RAD3 and 55% identity to the human homologue ERCC2. This homology is particularly striking in the regions identified as being conserved in a group of DNA helicases. Gene deletion experiments indicate that, like the S. cerevisiae RAD3 gene, the S. pombe rad15 gene is essential for viability, suggesting that the protein product has a role in cell proliferation and not solely in DNA repair.
Collapse
Affiliation(s)
- J M Murray
- School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | | | | | | | |
Collapse
|
145
|
Mutational analysis of the structure and function of the xeroderma pigmentosum group A complementing protein. Identification of essential domains for nuclear localization and DNA excision repair. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49821-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
146
|
Reynolds PR, Biggar S, Prakash L, Prakash S. The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res 1992; 20:2327-34. [PMID: 1534406 PMCID: PMC312349 DOI: 10.1093/nar/20.9.2327] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions.
Collapse
Affiliation(s)
- P R Reynolds
- Department of Biophysics, University of Rochester School of Medicine, NY 14642-8408
| | | | | | | |
Collapse
|
147
|
Martin-Gallardo A, McCombie WR, Gocayne JD, FitzGerald MG, Wallace S, Lee BM, Lamerdin J, Trapp S, Kelley JM, Liu LI. Automated DNA sequencing and analysis of 106 kilobases from human chromosome 19q13.3. Nat Genet 1992; 1:34-9. [PMID: 1301997 DOI: 10.1038/ng0492-34] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A total of 116,118 basepairs (bp) derived from three cosmids spanning the ERCC1 locus of human chromosome 19q13.3 have been sequenced with automated fluorescence-based sequencers and analysed by polymerase chain reaction amplification and computer methods. The assembled sequence forms two contigs totalling 105,831 bp, which contain a human fosB proto-oncogene, a gene encoding a protein phosphatase, two genes of unknown function and the previously-characterized ERCC1 DNA repair gene. This light band region has a high average density of 1.4 Alu repeats per kilobase. Human chromosome light bands could therefore contain up to 75,000 genes and 1.5 million Alu repeats.
Collapse
Affiliation(s)
- A Martin-Gallardo
- Receptor Biochemistry and Molecular Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Requirement for ERCC-1 and ERCC-3 gene products in DNA excision repair in vitro. Complementation using rodent and human cell extracts. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50510-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
149
|
Ma L, Weeda G, Jochemsen AG, Bootsma D, Hoeijmakers JH, van der Eb AJ. Molecular and functional analysis of the XPBC/ERCC-3 promoter: transcription activity is dependent on the integrity of an Sp1-binding site. Nucleic Acids Res 1992; 20:217-24. [PMID: 1741247 PMCID: PMC310357 DOI: 10.1093/nar/20.2.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human XPBC/ERCC-3 gene, which corrects the excision-repair defect in xeroderma pigmentosum group B cells and the UV-sensitive CHO mutant 27-1 cells, appears to be expressed constitutively in various cell types and tissues. We have analysed the structure and functionality of the XPBC/ERCC-3 promoter. Transcription of the XPBC/ERCC-3 gene is initiated from heterogeneous sites, with a major startpoint mapped at position -54 (relative to the translation start codon ATG). The promoter region does not possess classical TATA and CAAT elements, but it is GC-rich and contains three putative Sp1-binding sites. In addition, there are two elements related to the cyclic AMP (cAMP)-response element (CRE) and the 12-O-tetradecanoyl phorbol-13-acetate-response element (TRE) in the 5'-flanking region. Transient expression analysis of XPBC/ERCC-3 promoter-CAT chimeric plasmids revealed that a 127-bp fragment, spanning position -129 to -3, is minimally required for the promoter activity. Transcription of the XPBC/ERCC-3 promoter depends on the integrity of a putative Sp1-binding site in close proximity to the major cap site. Band shift assays showed that this putative Sp1-binding site can interact specifically with a nuclear factor, most likely transcription factor Sp1 (or an Sp1-like factor) in vitro.
Collapse
Affiliation(s)
- L Ma
- Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
150
|
Liu P, Perryman MB, Liao W, Siciliano MJ. Efficiency and limitations of the hn-cDNA library approach for the isolation of human transcribed genes from hybrid cells. ACTA ACUST UNITED AC 1992; 18:7-18. [PMID: 1372133 DOI: 10.1007/bf01233445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of splice donor site consensus sequences as primers in cDNA synthesis (to make a cDNA library from heterogeneous RNA or unprocessed transcript--an hn-cDNA library) and the screening of such an hn-cDNA library with human repeat DNA probe in order to isolate human genes from somatic cell hybrids have been demonstrated. Here, we optimize and evaluate the efficiency and limitations of the approach. Computer analysis of genomic sequences of 22 randomly selected human genes indicated that hexamers CTTACC, CTCACC, and CCTACC were most efficient at beginning first-strand cDNA synthesis at donor splice sites of hnRNA and suggested that the procedure is efficient for priming cDNA synthesis of at least one exon from most every gene. Primer extension experiments established conditions in which the primers would initiate synthesis of cDNA starting from a perfectly matched position on the RNA template at more than 60-fold higher yield than any other product. By isolation of a clone containing exon III of the human DNA repair gene ERCC1, we indicate that the approach is capable of cloning exons from weakly expressed genes. Sequencing of clones revealed a structure of hn-cDNA clones consistent with the expectations of the cloning strategy and indicated the potential of the clones in detecting polymorphisms. Finally, we demonstrate that the expression of these hn-cDNA sequences in cells can be detected efficiently at the hnRNA level by reverse transcriptase-polymerase chain reaction (RT/PCR).
Collapse
Affiliation(s)
- P Liu
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston
| | | | | | | |
Collapse
|