101
|
Thorns V, Walter GF, Licastro F. Effects of IL6 and IL1beta on aFGF expression and excitotoxicity in NT2N cells. J Neuroimmunol 2002; 127:22-9. [PMID: 12044971 DOI: 10.1016/s0165-5728(02)00072-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interleukin-1beta (IL1beta) and interleukin-6 (IL6) have pro-inflammatory and neuroprotective functions and are elevated in many diseases of the brain. Here, mechanisms and effects of IL1beta and IL6 on neuronal survival after excitatory stimulation were investigated in vitro. IL6 upregulated the expression of the neuroprotective acidic fibroblast growth factor (aFGF) and reduced the glutamate-induced cytotoxicity. IL1beta treatment amplified the excitotoxic effects after 24 h, but longer treatment with IL1beta stimulated the neuronal release of IL6 resulting in increased levels of aFGF and a decreased excitotoxicity. These data suggest that (1) IL6 exerts protective functions by upregulating the expression of aFGF and (2) the IL6/IL1beta balance in the brain may regulate neuronal survival during neuropathological processes.
Collapse
Affiliation(s)
- Veronika Thorns
- Department of Neuropathology, Medical School of Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
102
|
Janabi N. Selective inhibition of cyclooxygenase-2 expression by 15-deoxy-Delta(12,14)(12,14)-prostaglandin J(2) in activated human astrocytes, but not in human brain macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4747-55. [PMID: 11971025 DOI: 10.4049/jimmunol.168.9.4747] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overexpression of the inducible cyclooxygenase (COX-2) and inducible NO synthase (iNOS) in activated brain macrophages (microglia) and astrocytes appears central to many neuroinflammatory conditions. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) is a ligand for the peroxisome proliferator-activated receptor (PPAR)gamma. It has been proposed as an inhibitor of microglial activation, based on the study of iNOS down-regulation in rodent microglia. Because iNOS induction after cytokine activation remains controversial in human microglia, we examined the effect of 15d-PGJ(2) and other PPAR agonists on human microglia and astrocytes, using COX-2 induction as an index of activation. We found that PPAR alpha ligands (clofibrate and WY14643) enhanced IL-1 beta-induced COX-2 expression in human astrocytes and microglia, while inhibiting IL-1 beta plus IFN-gamma induction of iNOS in astrocytes. This is the first description of an inhibition of iNOS uncoupled from that of COX-2. 15d-PGJ(2) suppressed COX-2 induction in human astrocytes. It prevented NF-kappa B binding to the COX-2 promoter through a new pathway that is the repression of NF-kappa Bp50 induction by IL-1 beta. In contrast, 15d-PGJ(2) increased c-Jun and c-Fos DNA-binding activity in astrocytes, which may result in the activation of other inflammatory pathways. In human microglia, no effect of 15d-PGJ(2) on COX-2 and NF-kappa Bp65/p50 induction was observed. However, the entry of 15d-PGJ(2) occurred in microglia because STAT-1 and c-Jun expression was modulated. Our data suggest the existence of novel pathways mediated by 15d-PGJ(2) in human astrocytes. They also demonstrate that, unlike astrocytes and peripheral macrophages or rodent brain macrophages, human microglia are not subject to the anti-inflammatory effect of 15d-PGJ(2) in terms of COX-2 inhibition.
Collapse
Affiliation(s)
- Nazila Janabi
- Laboratory of Molecular Medicine and Neuroscience, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
103
|
Hua LL, Zhao ML, Cosenza M, Kim MO, Huang H, Tanowitz HB, Brosnan CF, Lee SC. Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFalpha expression in human fetal astrocytes. J Neuroimmunol 2002; 126:180-9. [PMID: 12020969 DOI: 10.1016/s0165-5728(02)00055-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astrocytes are important sources of proinflammatory mediators such as iNOS and TNFalpha in the diseased central nervous system. In previous studies, we showed that the cytokine IL-1 plays a critical role in the activation of human astrocytes to express TNFalpha and the inducible form of nitric oxide synthase (iNOS). In the present study, we have addressed the role of the MAP-kinase pathway in the signaling events leading to the induction of these genes. Treatment with SB203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), potently inhibited IL-1-mediated induction of iNOS and TNFalpha in cultures of human fetal astrocytes. In contrast, PD98059, an upstream inhibitor of the extracellular regulated kinase (ERK)1/2 pathway, had little or no effect. Interestingly, SB203580 reduced the mRNA expression for iNOS, TNFalpha, and IL-6, indicating inhibition prior to translation. Transfection of astrocytes with a dominant-negative Jun-NH(2)-terminal kinase (JNK) construct also reduced iNOS expression. Western blot analysis showed phosphorylated p38 and JNK in IL-1-activated astrocytes, and phosphorylated ERK in both resting and activated cells. Electrophoretic mobility shift assay (EMSA) showed that IL-1 induced NF-kappaB and AP-1 DNA complex formation in astrocytes, and that SB203580 inhibited AP-1 complex formation. Taken together, these results demonstrate the differential roles played by the three MAP kinases in human astrocyte inflammatory gene activation and point to a crucial function of p38 and JNK MAP kinases in IL-1-mediated astrocyte activation.
Collapse
Affiliation(s)
- Liwei L Hua
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Cuny E, Loiseau H, Penchet G, Ellie E, Arsaut J, Vital A, Vincendeau P, Demotes-Mainard J. Association of elevated glial expression of interleukin-1beta with improved survival in patients with glioblastomas multiforme. J Neurosurg 2002; 96:294-301. [PMID: 11838804 DOI: 10.3171/jns.2002.96.2.0294] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim of this study was to investigate the association of interleukin-1beta (IL-1beta) expression with improved survival in patients with glioblastomas multiforme (GBMs). Immune and vascular host-tumor interactions play a pivotal role in the control of tumor development, and inflammatory mechanisms may participate in the host's defense against tumor cells. Expression of proinflammatory cytokines and of inducible nitric oxide synthase (iNOS) has been noted in various types of malignant tumors, raising the possibility that endogenous expression of cytokines and the resulting cytotoxic action of sustained NO production play a role in the control of tumor growth. Indeed, human GBMs express variable amounts of iNOS. METHODS In this study, the expression of iNOS and of cytokines known to upregulate IL-1beta, tumor necrosis factor-alpha, interferon-gamma or downregulate iNOS transcription (IL-10, transforming growth factor [TGF]beta1, and TGFbeta2) were measured using reverse transcription-polymerase chain reaction with competitor DNA in 39 samples of human GBM. The iNOS level in GBM was positively correlated with IL-1beta messenger (m)RNA, but not with the other cytokines tested. Immunocytochemical double labeling revealed that both anti-iNOS immunoreactivity and anti-IL-1beta immunoreactivity colocalized with glial fibrillary acidic protein immunoreactivity in GBM. Some macrophage/microglial cells also expressed iNOS, but not IL-1beta. Comparison of biological data with clinical parameters indicated that the survival duration was enhanced when levels of IL-1beta mRNA were elevated or when levels of TGFbeta2 were low, but was independent of the level of iNOS mRNA within the tumor. CONCLUSIONS Taken together, these data indicate that the proinflammatory cytokine IL-1beta produced within GBM by glial-derived cells has a negative impact on tumor growth through a mechanism independent of iNOS induction.
Collapse
Affiliation(s)
- Emmanuel Cuny
- INSERM U-394 Neurobiologie Intégrative, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Stewart VC, Heslegrave AJ, Brown GC, Clark JB, Heales SJR. Nitric oxide-dependent damage to neuronal mitochondria involves the NMDA receptor. Eur J Neurosci 2002; 15:458-64. [PMID: 11876773 DOI: 10.1046/j.0953-816x.2001.01878.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokine-stimulated astrocytes produce nitric oxide, which can inhibit components of the mitochondrial respiratory chain. We have previously demonstrated that prolonged exposure (48 h) to rat astrocytic nitric oxide damages complexes II--III and IV of neighbouring rat neurons in coculture, resulting in neuronal death. Expanding on these observations, we have now shown that the NMDA receptor antagonist, MK-801, prevents this damage, suggesting involvement of glutamate. We postulate that astrocyte-derived nitric oxide stimulates release of neuronal glutamate. Indeed we demonstrate that neurons incubated with nitric oxide-generating astrocytes display enhanced glutamate release. Furthermore, direct exposure to the nitric oxide donor, DETA-NONOate resulted in a loss of activity of all the neuronal mitochondrial complexes, which was again prevented by MK-801. Thus, nitric oxide, generated by both cytokine-stimulated astrocytes and by a nitric oxide donor, causes activation of the NMDA receptor leading to damage to the neuronal mitochondrial respiratory chain. Glutamate exposure is known to damage the neuronal mitochondrial respiratory chain via neuronal nitric oxide synthase. Therefore, we propose that astrocyte-derived nitric oxide is capable of eliciting neuronal glutamate release, which in turn activates the neuronal NMDA receptor and stimulates further formation of reactive nitrogen species via neuronal nitric oxide synthases, leading to mitochondrial damage and neuronal death. Our findings support the hypothesis that glutamate, reactive nitrogen species and mitochondrial dysfunction may have a role in the neurodegenerative process.
Collapse
Affiliation(s)
- V C Stewart
- Division of Neurochemistry, Molecular Pathogenesis, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | |
Collapse
|
106
|
Rezaie P, Dean A. Periventricular Leukomalacia: The Role of Inflammatory Mediators and Microglia in Pathogenesis. ACTA ACUST UNITED AC 2002. [DOI: 10.1159/000054268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Yuceyar N, Taşkiran D, Sağduyu A. Serum and cerebrospinal fluid nitrite and nitrate levels in relapsing-remitting and secondary progressive multiple sclerosis patients. Clin Neurol Neurosurg 2001; 103:206-11. [PMID: 11714562 DOI: 10.1016/s0303-8467(01)00144-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) has been implicated in immune mediated cellular cytotoxicity and inflammatory processes including multiple sclerosis (MS). We aimed to assess NO production in MS patients and to delineate its involvement in different stages. The stable end-products of NO; nitrite(NO2-) and nitrate(NO3-) were analysed both in serum and CSF (cerebrospinal fluid) of patients with MS and non-inflammatory neurological diseases. Nitrite levels were quantified by calorimetric assay based on the Griess reaction. Nitrate levels were examined spectrophotometrically. MS patients exhibited significantly increased serum and CSF levels of NO2-+NO3- compared with the control subjects. CSF NO2-+NO3- levels were raised significantly in MS patients with both relapsing remitting (RR) and secondary progressive (SP) course. There was no significant difference between RR and SP MS patients with regard to NO metabolites. No significant correlation was found between NO metabolites and disability score, disease progression index, MRI (magnetic resonance imaging) activity and development of cortical atrophy on MRI. This study provides further evidence for excessive NO production both in CSF and peripheral blood of MS patients. Excessive CSF NO2-+NO3- levels being more increased than the levels in sera supports pathological inflammatory process within CNS (central nervous system) in both stages of MS. Another implication for the role of NO and INOS inhibitors in the treatment of MS patients with both RR and SP courses was also suggested.
Collapse
Affiliation(s)
- N Yuceyar
- Department of Neurology, Ege University Medical School Hospital, Bornova 35100, Izmir, Turkey
| | | | | |
Collapse
|
108
|
Chang JW, Young DA, Coleman PD, O'Banion MK. Two-dimensional gel analysis of secreted proteins induced by interleukin-1 beta in rat astrocytes. Neurochem Int 2001; 39:349-59. [PMID: 11578770 DOI: 10.1016/s0197-0186(01)00042-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-1 beta (IL-1 beta) is a pro-inflammatory cytokine produced in the brain by endogenous microglial cells responding to injury. Levels of IL-1 beta are elevated in several neurodegenerative disorders, including Alzheimer's disease. IL-1 beta, which can act as a mitogen for astrocytes, also elicits the expression and secretion of multiple factors and paracrine 'second messengers' such as other cytokines, nerve growth factor, prostaglandins and nitric oxide that may in turn modulate neuronal and glial responses to injury. Utilizing giant, high-resolution two-dimensional gel electrophoresis, we have sought to more fully define the potential range of protein mediators that are secreted by astrocytes treated with IL-1 beta. In cultured rat astrocytes, we observe dramatic increases in the secretion of eight different protein species after 24 h of treatment with human recombinant IL-1 beta (1 U/ml). Seven of the proteins are also induced by tumor necrosis factor-alpha or basic fibroblast growth factor. Based on immunoprecipitation with specific antisera, we have identified three of these proteins as plasminogen activator inhibitor type-1, ceruloplasmin, and complement component C3. The identities of the other proteins, including the IL-1 beta-specific induction, are currently unknown. Characterization of these downstream modulators of IL-1 beta action complements gene-based approaches and will provide a better understanding of astrocyte responses to injury as well as markers for astrocyte activation in neurodegenerative diseases.
Collapse
Affiliation(s)
- J W Chang
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 603, 14642, Rochester, NY, USA
| | | | | | | |
Collapse
|
109
|
Anneser JM, Cookson MR, Ince PG, Shaw PJ, Borasio GD. Glial cells of the spinal cord and subcortical white matter up-regulate neuronal nitric oxide synthase in sporadic amyotrophic lateral sclerosis. Exp Neurol 2001; 171:418-21. [PMID: 11573993 DOI: 10.1006/exnr.2001.7756] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have suggested that excessive generation of nitric oxide (NO) may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). Recently, a selective induction of the neuronal isoform of nitric oxide synthase (nNOS) in glial cells has been reported in an animal model of familial ALS. We therefore examined in postmortem tissue the expression of nNOS in patients with sporadic ALS and patients without any history of neurological disease. Using immunohistochemistry, we found an up-regulation of nNOS in glial cells of the spinal cord and subcortical white matter in ALS patients compared to controls. The enhanced glial nNOS expression seen in ALS patients could conceivably contribute to motoneuronal degeneration through NO-mediated cytotoxic effects.
Collapse
Affiliation(s)
- J M Anneser
- Department of Neurology, Ludwig-Maximilians-University, Klinikum Grosshadern, D-81366 Munich, Germany
| | | | | | | | | |
Collapse
|
110
|
Kim HT, Qiang W, Wong PK, Stoica G. Enhanced proteolysis of IkappaBalpha and IkappaBbeta proteins in astrocytes by Moloney murine leukemia virus (MoMuLV)-ts1 infection: a potential mechanism of NF-kappaB activation. J Neurovirol 2001; 7:466-75. [PMID: 11582519 DOI: 10.1080/135502801753170327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Moloney murine leukemia virus (MoMuLV)-ts1-mediated neuronal degeneration in mice is likely due to loss of glial support and release of inflammatory cytokines and neurotoxins from surrounding ts1-infected glial cells including astrocytes. NF-kappaB is a transcription factor that participates in the transcriptional activation of a variety of immune and inflammatory genes. We investigated whether ts1 activates NF-kappaB in astrocytes and examined the mechanism(s) responsible for the activation of NF-kappaB by ts1 infection in vitro. Here we present evidence that ts1 infection of astrocytes in vitro activates NF-kappaB by enhanced proteolysis of the NF-kappaB inhibitors, IkappaBalpha and IkappaBbeta. In in vitro studies using protease inhibitors, IkappaBalpha proteolysis in ts1-infected astrocytes was significantly blocked by a specific calpain inhibitor calpeptin but not by MG-132, a specific proteasome inhibitor, whereas rapid IkappaBbeta proteolysis was blocked by MG-132. Furthermore, treatment with MG-132 increased levels of multiubiquitinated IkappaBbeta protein in ts1-infected astrocytes. These results indicate that the calpain proteolysis is a major mechanism of IkappaBalpha proteolysis in ts1-infected astrocytes. Additionally, ts1 infection of astrocytes in vitro increased expression of inducible nitric oxide synthase (iNOS), a NF-kappaB-dependent gene product. Our results suggest that NF-kappaB activation in ts1-infected astrocytes is mediated by enhanced proteolysis of IkappaBalpha and IkappaBbeta through two different proteolytic pathways, the calpain and ubiquitin-proteasome pathways, resulting in increased expression of iNOS, a NF-kappaB-dependent gene.
Collapse
Affiliation(s)
- H T Kim
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
111
|
Baltrons MA, García A. The nitric oxide/cyclic GMP system in astroglial cells. PROGRESS IN BRAIN RESEARCH 2001; 132:325-37. [PMID: 11545001 DOI: 10.1016/s0079-6123(01)32086-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M A Baltrons
- Instituto de Biomedicina y Biotecnologia V. Villar Palasí, Departamento de Bioquímica y Biología Molecular, Universidad Autónoma de Barcelona, Campus de Bellaterra, 08193 Barcelona, Spain
| | | |
Collapse
|
112
|
Acarin L, González B, Castellano B. Glial activation in the immature rat brain: implication of inflammatory transcription factors and cytokine expression. PROGRESS IN BRAIN RESEARCH 2001; 132:375-89. [PMID: 11545004 DOI: 10.1016/s0079-6123(01)32089-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- L Acarin
- Department of Cell Biology, Physiology and Immunology, Unit of Histology, School of Medicine, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
113
|
Mitrasinovic OM, Perez GV, Zhao F, Lee YL, Poon C, Murphy GM. Overexpression of macrophage colony-stimulating factor receptor on microglial cells induces an inflammatory response. J Biol Chem 2001; 276:30142-9. [PMID: 11387343 DOI: 10.1074/jbc.m104265200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microglia are important in the inflammatory response in Alzheimer's disease (AD). We showed previously that macrophage colony-stimulating factor receptor (M-CSFR), encoded by the c-fms protooncogene, is overexpressed on microglia surrounding amyloid beta (Abeta) deposits in the APP(V717F) mouse model for AD. The M-CSFR is also increased on microglia after experimental brain injury and in AD. To determine the relevance of these findings, we transiently expressed M-CSFR on murine BV-2 and human SV-A3 microglial cell lines using an SV40-promoted c-fms construct. M-CSFR overexpression resulted in microglial proliferation and increased expression of inducible nitric-oxide synthase, the proinflammatory cytokines interleukin-1alpha, macrophage inflammatory protein 1-alpha, and interleukin-6 and of macrophage colony-stimulating factor (M-CSF) itself. Antibody neutralization of M-CSF showed that the M-CSFR-induced proinflammatory response was dependent on M-CSF in the culture media. By using a co-culture of c-fms-transfected murine microglia and rat organotypic hippocampal slices and a species-specific real time reverse transcriptase-polymerase chain reaction assay and enzyme-linked immunosorbent assay, we showed that M-CSFR overexpression on exogenous microglia induced expression of interleukin-1alpha by the organotypic culture. These results show that increased M-CSFR expression induces microglial proliferation, cytokine expression, and a paracrine inflammatory response, suggesting that in APP(V717F) mice increased M-CSFR on microglia could be an important factor in Abeta-induced inflammatory response.
Collapse
Affiliation(s)
- O M Mitrasinovic
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
114
|
Dugas N, Lacroix C, Kilchherr E, Delfraissy JF, Tardieu M. Role of CD23 in astrocytes inflammatory reaction during HIV-1 related encephalitis. Cytokine 2001; 15:96-107. [PMID: 11500085 DOI: 10.1006/cyto.2001.0896] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soluble factors released by intra-cerebral activated cells are implicated in neuronal alterations during central nervous system inflammatory diseases. In this study, the role of the CD23 pathway in astrocyte activation and its participation in human immunodeficiency virus-1 (HIV-1)-induced neuropathology were evaluated. In human primary astrocytes, CD23 protein membrane expression was dose-dependently upregulated by gp120. It was also upregulated by gamma-interferon (gamma-IFN) and modulated by interleukin-1-beta (IL-1beta) whereas microglial cells in these stimulation conditions did not express CD23. Cell surface stimulation of CD23 expressed by astrocytes induced production of nitric oxide (NO) and IL-1beta which was inhibited by a specific inducible NO-synthase (iNOS) inhibitor (aminoguanidine), indicating the implication of this receptor in the astrocyte inflammatory reaction. On brain tissues from five out of five patients with HIV-1-related encephalitis, CD23 was expressed by astrocytes and by some microglial cells, whereas it was not detectable on brain tissue from five of five HIV-1-infected patients without central nervous system (CNS) disease or from two of two control subjects. In addition, CD23 antigen was co-localized with iNOS and nitrotyrosine on brain tissue from patients with HIV1-related encephalitis, suggesting that CD23 participates in iNOS activation of astrocytes in vivo. In conclusion, CD23 ligation is an alternative pathway in the induction of inflammatory product synthesis by astrocytes and participates in CNS inflammation.
Collapse
Affiliation(s)
- N Dugas
- Laboratoire Virus, Neurone et Immunité, Faculté de Médecine Paris Sud, 63 rue Gabriel Péri, 94276 Le Kremlin Bicêtre, France
| | | | | | | | | |
Collapse
|
115
|
Saliba E, Henrot A. Inflammatory mediators and neonatal brain damage. BIOLOGY OF THE NEONATE 2001; 79:224-7. [PMID: 11275656 DOI: 10.1159/000047096] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammatory mediators are multifunctional cytokines that play important roles both in normal central nervous system (CNS) development and in the response of the brain to diverse forms of injury. Interleukin (IL)-1beta, tumor necrosis factor-alpha and IL-6 are among the best-characterized early-response cytokines. Recent data suggest that they may be synthesized and secreted by several CNS cell types, including microglia, astrocytes and neurons. Biological effects of these cytokines that could influence the progression of injury in the brain include stimulating the synthesis of other cytokines and neuronal injury mediators such as nitric oxide synthase, inducing leukocyte infiltration and the expression of adhesion molecules, influencing glial gene expression and damaging oligodendrocytes. In the immature brain, proinflammatory cytokines might lead to white matter damage during prenatal intrauterine infection and contribute to progressive neuronal damage in acute brain injury evoked by cerebral hypoxia-ischemia. Interrupting the proinflammatory cascade might limit the extent of irreversible injury.
Collapse
Affiliation(s)
- E Saliba
- Department of Neonatology, INSERM U 316, University of Tours, France.
| | | |
Collapse
|
116
|
Fotopoulos S, Pavlou K, Skouteli H, Papassotiriou I, Lipsou N, Xanthou M. Early markers of brain damage in premature low-birth-weight neonates who suffered from perinatal asphyxia and/or infection. BIOLOGY OF THE NEONATE 2001; 79:213-8. [PMID: 11275654 DOI: 10.1159/000047094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We studied 57 low-birth-weight premature neonates, of whom 29 suffered from perinatal asphyxia and/or infection, while the remaining 28 did not and served as controls. We measured peripheral nucleated red blood cell (NRBC) absolute numbers as well as interleukin (IL)-1beta, IL-6 and tumour necrosis factor (TNF)-alpha cytokine serum levels at 24 h postnatally and on days 3 and 7 following birth. Fourteen of the asphyxiated/infected neonates and 12 controls had neurologic assessments at the corrected postnatal age of 18 months. We found NRBC absolute numbers and serum IL-1beta and IL-6 cytokine levels at 24 h postnatally to be significantly higher in neonates with perinatal asphyxia/infection than in the controls (p = 0.022, p = 0.036 and p = 0.037, respectively). TNF-alpha levels did not differ. Neurologic examination at the corrected postnatal age of 18 months showed 8 out of the 14 children who had been asphyxiated/infected as neonates to have abnormal findings, while 12 children who were used as controls during their neonatal period were normal. Abnormal neurologic findings correlated with high NRBC counts and IL-1beta and IL-6 levels at 24 h postnatally. In conclusion, increased NRBC counts and proinflammatory cytokine levels in asphyxiated/infected neonates represent early markers for subsequent neurologic impairment.
Collapse
Affiliation(s)
- S Fotopoulos
- B' Neonatal Intensive Care Unit, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | | | | | | | | | | |
Collapse
|
117
|
Hailer NP, Wirjatijasa F, Roser N, Hischebeth GT, Korf HW, Dehghani F. Astrocytic factors protect neuronal integrity and reduce microglial activation in an in vitro model of N-methyl-D-aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures. Eur J Neurosci 2001; 14:315-26. [PMID: 11553282 DOI: 10.1046/j.0953-816x.2001.01649.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acute CNS lesions lead to neuronal injury and a parallel glial activation that is accompanied by the release of neurotoxic substances. The extent of the original neuronal damage can therefore be potentiated in a process called secondary damage. As astrocytes are known to secrete immunomodulatory and neuroprotective substances, we investigated whether astrocytic factors can attenuate the amount of neuronal injury as well as the degree of microglial activation in a model of excitotoxic neurodegeneration. Treatment of organotypic hippocampal slice cultures with N-methyl-D-aspartate (NMDA) resulted in a reproducible loss of viable granule cells, partial destruction of the regular hippocampal cytoarchitecture and a concomitant accumulation of amoeboid microglial cells at sites of neuronal damage. Astrocyte-conditioned media reduced the amount of NMDA-induced neuronal injury by 45.3%, diminished the degree of microglial activation and resulted in an improved preservation of the hippocampal cytoarchitecture. Transforming growth factor (TGF)-beta failed to act as a neuroprotectant and even enhanced the amount of neuronal injury by 52.5%. Direct effects of astrocytic factors on isolated microglial cells consisted of increased microglial ramification and down-regulated expression of intercellular adhesion molecule-1, whereas incubation with TGF-beta had no such effects. In summary, our findings show that hitherto unidentified astrocyte-derived factors that are probably not identical with TGF-beta can substantially enhance neuronal survival, either by eliciting direct neuroprotective effects or by modulating the microglial response to neuronal injury.
Collapse
Affiliation(s)
- N P Hailer
- University Hospital for Orthopaedic Surgery, Friedrichsheim, Marienburgstr. 2, D-60528 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
118
|
Kawahara K, Gotoh T, Oyadomari S, Kajizono M, Kuniyasu A, Ohsawa K, Imai Y, Kohsaka S, Nakayama H, Mori M. Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:165-73. [PMID: 11406294 DOI: 10.1016/s0169-328x(01)00100-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) produced by activated microglia has been implicated in many pathophysiological events in the brain including neurodegenerative diseases. Cellular NO production depends absolutely on the availability of arginine, a substrate of NO synthase (NOS). Murine microglial MG5 cells were treated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), and expression of inducible NO synthase (iNOS) and arginine-supplying enzymes was investigated by RNA blot analysis. iNOS mRNA was strongly induced after treatment and reached a maximum at 6-12 h. mRNA for argininosuccinate synthetase (AS), a citrulline-arginine recycling enzyme, increased at 6 h and reached a maximum at 12 h. Immunoblot analysis showed that iNOS and AS proteins were also induced. In addition, mRNA encoding the cationic amino acid transporter-2 (CAT-2) was strongly induced shortly after treatment. Induction of mRNAs for iNOS, AS, and CAT-2 by LPS/IFN-gamma was also observed following stimulation of rat primary microglial cells. These results strongly suggest that both arginine transport by CAT-2 and citrulline-arginine recycling are important for high-output production of NO in activated microglial cells.
Collapse
Affiliation(s)
- K Kawahara
- Department of Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Ohe-Honmachi, 862-0973, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Liu JS, Zhao ML, Brosnan CF, Lee SC. Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:2057-66. [PMID: 11395383 PMCID: PMC1891989 DOI: 10.1016/s0002-9440(10)64677-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide generated by the inducible form of nitric oxide synthase (iNOS) may contribute to the pathogenesis of multiple sclerosis (MS). In this report, we studied postmortem tissues of MS patients for the expression of iNOS by in situ hybridization and immunocytochemistry. Immunocytochemistry for nitrotyrosine, a putative footprint for peroxynitrite formation was also performed. In acute MS lesions, intense reactivity for iNOS mRNA and protein was detected in reactive astrocytes throughout the lesion and in adjacent normal appearing white matter. Staining of macrophages, inflammatory cell infiltrates, and endothelial cells was variable from case to case, but generally detected only in acute lesions. In chronic MS lesions reactive astrocytes at the lesion edge were positive for iNOS whereas the lesion center was nonreactive. Normal appearing white matter demonstrated little reactivity, as did tissues from noninflamed control brains. Staining for nitrotyrosine was also detected in acute but not chronic MS lesions, and displayed a diffuse parenchymal, membranous, and perivascular pattern of immunoreactivity. These results support the conclusion that iNOS is induced in multiple cell types in MS lesions and that astrocyte-derived nitric oxide could be important in orchestrating inflammatory responses in MS, particularly at the blood-brain barrier.
Collapse
Affiliation(s)
- J S Liu
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
120
|
Olsson T, Lundberg C, Lidman O, Piehl F. Genetic regulation of nerve avulsion-induced spinal cord inflammation. Ann N Y Acad Sci 2001; 917:186-96. [PMID: 11268343 DOI: 10.1111/j.1749-6632.2000.tb05383.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the animal model for multiple sclerosis (MS), experimental autoimmune encephalitis (EAE), genetic loci correlating with incidence or severity of disease are located both within and outside of the major histocompatibility complex (MHC). Whereas polymorphisms within MHC class I and II molecules are likely to be a major determinant of MHC gene influence in rat EAE, it is still unclear how non-MHC gene regions influence disease. Genetic control of inflammation can hypothetically be either general or specific for a particular target tissue. For the latter, gene regulation of pathomechanisms in the CNS could affect reactivity of microglia or astrocytes, local cytokine/chemokine production, or even neuronal vulnerability. We have obtained strong support for this notion by observations of rat strain-dependent variation in the inflammatory response after ventral root avulsion, a model in which mainly non-antigen-specific elements of the immune system promote inflammation. A comparison of strains with similar MHC haplotypes on different backgrounds and strains with different MHC haplotypes on the same background, respectively, demonstrates that the inflammatory phenotype is regulated mainly by non-MHC genes. Interestingly, different features of the inflammatory response, such as induction of MHC class II expression, glial activation, cytokine expression, and neuronal vulnerability, varied between rat strains and were largely independent of each other. The genetic control of several basic features of inflammation in the CNS is of great relevance not only for MS/EAE, but also for several other neurological conditions with inflammatory components such as cerebrovascular and neurogenerative dieases and trauma.
Collapse
Affiliation(s)
- T Olsson
- Neuroimmunology Unit, Department of Medicine, Karolinska Institute, CMM L08;04, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
121
|
Feinstein DL, Murphy P, Sharp A, Galea E, Gavrilyuk V, Weinberg G. Local anesthetics potentiate nitric oxide synthase type 2 expression in rat glial cells. J Neurosurg Anesthesiol 2001; 13:99-105. [PMID: 11294465 DOI: 10.1097/00008506-200104000-00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of the calcium-independent nitric oxide synthase (NOS2) contributes to damage in neurologic disease and trauma. The effects of local anesthetics on NOS2 expression have not been examined. The authors tested the effects of four local anesthetics on the expression of NOS2 in immunostimulated rat C6 glioma cells. Incubation with local anesthetics alone did not induce nitrite accumulation; however, the nitrite production induced by stimulation with bacterial endotoxin lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) was increased in a dose-dependent manner by bupivacaine (maximal 3-fold at 360 microM), tetracaine (maximal 7-fold at 360 microM), and lidocaine at higher doses (5-fold increase at 3.3 mM). Significant increases in nitrite production were observed in concentrations of bupivacaine or tetracaine as low as 120 microM, which correspond to 30 microg/mL (.003% weight/volume). In contrast, ropivacaine had little effect on nitrite production (160% of control values) and only at the highest concentration (3.3 mM, corresponding to 890 microg/mL or 0.089% w/v) tested. Increased nitrite production was not caused by cytotoxic effects of the drugs used, as assessed by release of intracellular lactate dehydrogenase. Increased nitrite production was accompanied by increased NOS2 catalytic activity, steady state mRNA levels, and promoter activation. These results demonstrate that submillimolar doses of two commonly used local anesthetics can increase glial NOS2 expression.
Collapse
Affiliation(s)
- D L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, 60607, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Svenungsson E, Andersson M, Brundin L, van Vollenhoven R, Khademi M, Tarkowski A, Greitz D, Dahlström M, Lundberg I, Klareskog L, Olsson T. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis 2001; 60:372-9. [PMID: 11247868 PMCID: PMC1753603 DOI: 10.1136/ard.60.4.372] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate systemic and intrathecal production of proinflammatory cytokines in relation to cerebrospinal fluid (CSF) nitric oxide (NO) release in patients with neuropsychiatric lupus erythematosus (NPLE). METHODS Thirty patients with NPLE rated as mild, moderate, or severe were studied and CSF was obtained from 21 of these. Cytokine mRNA expressing cells were detected by in situ hybridisation. Soluble cytokines were assessed by enzyme linked immunosorbent assay (ELISA). Nitrite and nitrate were determined by capillary electrophoresis. RESULTS Patients with NPLE had high numbers of lymphocytes expressing mRNA for tumour necrosis factor alpha (TNFalpha), interferon gamma, and interleukin 10 in blood. The number of peripheral blood TNFalpha mRNA positive cells correlated strongly with the level of NO metabolites in the CSF (r(2)=0.69). Both the number of peripheral blood mononuclear cells expressing mRNA for TNFalpha as well as the CSF level of NO metabolites correlated with NPLE disease severity. CONCLUSION These data suggest that increased peripheral production of proinflammatory cytokines such as TNFalpha may contribute both to an increased production of NO in the central nervous system and to generation of clinical NPLE. The data also support the possibility that measurements of NO metabolites in CSF may be of value in the diagnosis of neurological symptoms related to SLE.
Collapse
Affiliation(s)
- E Svenungsson
- Department of Medicine, Rheumatology Unit, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Barnea A, Roberts J, Keller P, Word RA. Interleukin-1beta induces expression of neuropeptide Y in primary astrocyte cultures in a cytokine-specific manner: induction in human but not rat astrocytes. Brain Res 2001; 896:137-45. [PMID: 11277982 DOI: 10.1016/s0006-8993(01)02141-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have demonstrated that astrocyte cultures express neuropeptide Y (NPY) in a regulated manner, namely, phorbol ester leads to an increase in proNPY-mRNA and NPY production. In this respect, the behavior of astrocytes derived from the human fetal or rat neonatal brain is similar (Regul. Pept. 75 (1998) 293). Since astrocytes can be exposed to high levels of IL-1beta, we addressed the question: Does IL-1beta regulate NPY expression by the astrocytes? Primary astrocytes derived from the human fetal or rat neonatal cortex were cultured in serum-free medium. IL-1beta, but not IL-6 or TNF-alpha, led to an increase in NPY production dose-dependently. IL-1beta action manifested in the human but not in the rat astrocytes and it was completely abolished by IL-1 receptor antagonist. The responsiveness to IL-1beta did not diminish upon sub-culture of the astrocytes (five passages). In addition, IL-1beta led to an increase in the abundance of proNPY-mRNA, which was preceded by a rapid and transient increase in cFos-mRNA and a rapid and sustained increase in JunB-mRNA. In contrast to cFos/JunB, IL-1beta did not alter the abundance of cJun-mRNA. In summary, we demonstrate that IL-1beta induction of NPY expression in astrocytes is species- and cytokine-specific and that IL-1 receptor is involved. Moreover, induction of NPY expression is preceded by a rapid increase in the expression of two transcription factors (cFos, JunB) that have been previously (Oncogene 9 (1994) 2369; J. Neurochem. 70 (1998) 1887) implicated in transcriptional regulation of the human NPY gene.
Collapse
Affiliation(s)
- A Barnea
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center at Dallas, 5373 Harry Hines Boulevard, Dallas, TX 75390-9032, USA.
| | | | | | | |
Collapse
|
124
|
Frohman EM, Monson NL, Lovett-Racke AE, Racke MK. Autonomic regulation of neuroimmunological responses: implications for multiple sclerosis. J Clin Immunol 2001; 21:61-73. [PMID: 11332655 DOI: 10.1023/a:1011016124524] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The expression of neural regulatory molecules by immune cells that infiltrate the nervous system upon injury may be a mechanism for cross regulation between the nervous system and the immune system. Several lines of evidence implicate nerve growth factor signaling through its receptors as a potential source of communication between the two systems. The expression of beta-adrenergic receptors and sympathetic innervation of lymphoid organs represents another example of communication between the immune and the nervous system. In this review, we discuss mechanisms of how factors in common between the nervous system and the immune system may result in regulatory circuits which are important in both healthy and diseased states. These studies may have relevance for a number of inflammatory conditions in humans, including multiple sclerosis.
Collapse
Affiliation(s)
- E M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, 75235, USA.
| | | | | | | |
Collapse
|
125
|
Persidsky Y, Limoges J, Rasmussen J, Zheng J, Gearing A, Gendelman HE. Reduction in glial immunity and neuropathology by a PAF antagonist and an MMP and TNFalpha inhibitor in SCID mice with HIV-1 encephalitis. J Neuroimmunol 2001; 114:57-68. [PMID: 11240016 DOI: 10.1016/s0165-5728(00)00454-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of anti-inflammatory drugs on glial immunity and neuropathology were determined in a severe combined immune deficiency (SCID) mouse model of HIV-1 encephalitis. HIV-1-infected human monocyte-derived macrophages (MDM) are stereotactically inoculated into basal ganglia resulting in a multinucleated giant cell encephalitis. A platelet activating factor antagonist and a matrix metalloproteinase inhibitor, which also inhibits tumor necrosis factor alpha release, were administered to animals at the time of the MDM inoculation. The drugs administered in combination markedly reduced brain inflammation, astrogliosis and microglia activation. These findings demonstrate that reduction of brain inflammatory responses, independent of viral replication, can affect HIVE pathology in an animal model system of disease.
Collapse
Affiliation(s)
- Y Persidsky
- The Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, 985215 Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | | | | | | | | | |
Collapse
|
126
|
Boullerne AI, Nedelkoska L, Benjamins JA. Role of calcium in nitric oxide-induced cytotoxicity: EGTA protects mouse oligodendrocytes. J Neurosci Res 2001; 63:124-35. [PMID: 11169622 DOI: 10.1002/1097-4547(20010115)63:2<124::aid-jnr1004>3.0.co;2-c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Active nitrogen species are overproduced in inflammatory brain lesions in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). NO has been shown to mediate the death of oligodendrocytes (OLs), a primary target of damage in MS. To develop strategies to protect OLs, we examined the mechanisms of cytotoxicity of two NO donors, S-nitroso-N-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) on mature mouse OLs. Nitrosonium ion (NO+) rather than NO. mediates damage with both SNAP and SNP, as shown by significant protection with hemoglobin (HbO2), but not with the NO. scavenger PTIO. SNAP and SNP differ in time course and mechanisms of killing OLs. With SNAP, OL death is delayed for at least 6 hr, but with SNP, OL death is continuous over 18 hr with no delay. Relative to NO release, SNP is more toxic than SNAP, due to synergism of NO with cyanide released by SNP. SNAP elicits a Ca2+ influx in over half of the OLs within min. Further, OL death due to NO release from SNAP is Ca2+-dependent, because the Ca2+ chelator EGTA protects OLs from killing by SNAP, and also from killing by the NONOates NOC-9 and NOC-18, which spontaneously release NO. SNP does not elicit a Ca2+ influx, and EGTA is not protective. In comparison to the N20.1 OL cell line (Boullerne et al., [1999] J. Neurochem. 72:1050-1060), mature OLs are (1) more sensitive to SNAP, (2) much more resistant to SNP, (3) sensitive to cyanide, but not iron, and (4) exhibit a Ca2+ influx and EGTA protection in response to NO generated by SNAP.
Collapse
Affiliation(s)
- A I Boullerne
- Department of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
127
|
Lundberg C, Lidman O, Holmdahl R, Olsson T, Piehl F. Neurodegeneration and glial activation patterns after mechanical nerve injury are differentially regulated by non-MHC genes in congenic inbred rat strains. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010226)431:1<75::aid-cne1056>3.0.co;2-m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
128
|
Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P. Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200001)47:1<54::aid-ana10>3.0.co;2-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
129
|
Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TL, Hedreen JC, Navia BA. Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: Pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 2001. [DOI: 10.1002/1531-8249(199908)46:2<207::aid-ana10>3.0.co;2-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
130
|
Castigli E, Arcuri C, Giovagnoli L, Luciani R, Giovagnoli L, Secca T, Gianfranceschi GL, Bocchini V. Interleukin-1beta induces apoptosis in GL15 glioblastoma-derived human cell line. Am J Physiol Cell Physiol 2000; 279:C2043-9. [PMID: 11078722 DOI: 10.1152/ajpcell.2000.279.6.c2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1-beta (IL-1beta) induces apoptosis in a glioblastoma-derived human cell line, exhibiting a poorly differentiated astrocytic phenotype. The apoptotic effect was demonstrated by analyzing nuclear morphology, in situ DNA fragmentation, and by ELISA detection of cytoplasmatic nucleosomes. We correlated the degree of differentiation of GL15 cells with the apoptotic response: 1) 4',6-diamidino-2-phenylindole staining, combined with glial fibrillary acidic protein (GFAP) immunofluorescence, showed that the cells with apoptotic nuclei express low levels of GFAP; and 2) at 13 days of subculture, in a more differentiated state, GL15 cells did not respond with apoptosis to IL-1beta. In this cell line, nonrandom chromosome changes and the expression of SV40 early region have been previously shown. The involvement of p42/p44 mitogen-activated protein kinase (MAPK) pathway in the induction of apoptosis by IL-1beta was hypothesized. Previous studies have shown that SV40 small T antigen partially inhibits phosphatase 2A, leading to an enhancement of the steady-state activity of p42/p44 MAPK pathway. PD-098059, specific inhibitor of p42/p44 MAPK pathway, counteracts the apoptotic effect of IL-1beta, whereas SB-203580, specific inhibitor of p38 stress-activated protein kinase (SAPK) pathway, is ineffective. The imbalance between MAPK and SAPK pathways has been proposed as a key factor in determination of cell fate. Our results demonstrate that a further stimulation of p42/p44 MAPK pathway can constitute a death signal in tumor cells in which genomic damage and MAPK pathway control alterations occur.
Collapse
Affiliation(s)
- E Castigli
- Section of Physiology and Biophysics, Department of Cellular and Molecular Biology, University of Perugia, 06100 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Taniguchi Y, Ono K, Yoshida S, Tanaka R. Antigen-presenting capability of glial cells under glioma-harboring conditions and the effect of glioma-derived factors on antigen presentation. J Neuroimmunol 2000; 111:177-85. [PMID: 11063836 DOI: 10.1016/s0165-5728(00)00361-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antigen-presenting capability of syngeneic rat glial cells was investigated under glioma-harboring conditions. Microglia induced a significant proliferation of glioma-primed splenocytes, but astrocytes did not. Furthermore, astrocytes suppressed the accessory cell function of microglia. The presence of both indomethacin and anti-interleukin (IL)-10 neutralizing antibody during priming of microglia enhanced splenocyte proliferation. The glioma culture supernatants down-regulated the interferon-gamma-induced expression of major histocompatibility complex class II molecules on microglia. The down-regulation was blocked by indomethacin and anti-IL-10 antibody. The results suggest that microglia but not astrocytes may function as antigen-presenting cells in glioma, and that glioma may suppress the antigen-presenting abilities of microglia.
Collapse
Affiliation(s)
- Y Taniguchi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Asahimachi 1, 951-8585, Niigata, Japan
| | | | | | | |
Collapse
|
132
|
Molina-Holgado F, Toulmond S, Rothwell NJ. Involvement of interleukin-1 in glial responses to lipopolysaccharide: endogenous versus exogenous interleukin-1 actions. J Neuroimmunol 2000; 111:1-9. [PMID: 11063815 DOI: 10.1016/s0165-5728(00)00344-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interleukin-1beta (IL-1beta) participates in neuroinflammation and neurodegeneration. Its mechanisms of action are not fully understood, but appear to involve complex interactions between neurons and glia. The objective of this study was to determine the involvement of endogenous IL-1beta in inflammatory responses to LPS in cultured mouse glial cells, and compare this to the effects of exogenous IL-1beta. Activation of primary mixed glial cultures by incubation with LPS (1 microgram/ml, 24 h), caused marked (approximately ten-fold) increases in release of NO, twenty-fold increases in PGE(2) and ninety-fold increases of IL-6 release. Incubation with human recombinant IL-1beta (100 ng/ml) also stimulated NO and IL-6 release to a similar extent to LPS, but IL-1beta (1 or 100 ng/ml) caused only modest increases (approximately seven-fold) in PGE(2) release. Co-incubation with IL-1ra inhibited the effects of LPS on NO release (-65%) and IL-6 production (-30%), but failed to reduce PGE(2) release. These results indicate that exogenous IL-1beta induces release of NO, PGE(2) and IL-6 in mixed glial cultures, and that endogenous IL-1beta mediates inflammatory actions of LPS on NO and to a lesser extent IL-6, but not on PGE(2) release in mixed glial cultures. Indeed endogenous IL-1beta appears to inhibit LPS-induced PGE(2) release.
Collapse
Affiliation(s)
- F Molina-Holgado
- School of Biological Sciences 1.124 Stopford Building, The University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | |
Collapse
|
133
|
Acarin L, González B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 2000; 12:3505-20. [PMID: 11029620 DOI: 10.1046/j.1460-9568.2000.00226.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines are important intercellular messengers involved in neuron-glia interactions and in the microglial-astroglial crosstalk, modulating the glial response to brain injury and the lesion outcome. In this study, excitotoxic lesions were induced by the injection of N-methyl-D-aspartate in postnatal day 9 rats, and the cytokines interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), tumour necrosis factor alpha (TNFalpha) and transforming growth factor beta 1 (TGF-beta1) analysed by ELISA and/or immunohistochemistry. Moreover, cytokine-expressing glial cells were identified by means of double labelling with glial fibrillary acidic protein or tomato lectin binding. Our results show that both neurons and glia were capable of cytokine expression following different patterns in the excitotoxically damaged area vs. the nondegenerating surrounding grey matter (SGM). Excitotoxically damaged neurons showed upregulation of IL-6 and downregulation of TNFalpha and TGF-beta1 before they degenerated. Moreover, in the SGM, an increased expression of neuronal IL-6, TNFalpha and TGF-beta1 was observed. A subpopulation of microglial cells, located in the SGM and showing IL-1beta and TNFalpha expression, were the earliest glial cells producing cytokines, at 2-10 h postinjection. Later on, cytokine-positive glial cells were found within the excitotoxically damaged area and the adjacent white matter: some reactive astrocytes expressed TNFalpha and IL-6, and microglia/macrophages showed mild IL-1beta and TGF-beta1. Finally, the expression of all cytokines was observed in the glial scar. As discussed, this pattern of cytokine production suggests their implication in the evolution of excitotoxic neuronal damage and the associated glial response.
Collapse
Affiliation(s)
- L Acarin
- Unit of Histology, School of Medicine, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra 08193, Spain.
| | | | | |
Collapse
|
134
|
Pereira CF, Boven LA, Middel J, Verhoef J, Nottet HSLM. Induction of cyclooxygenase‐2 expression during HIV‐1‐infected monocyte‐derived macrophage and human brain microvascular endothelial cell interactions. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.3.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Cândida F. Pereira
- Eijkman‐Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| | - Leonie A. Boven
- Eijkman‐Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| | - Jeena Middel
- Eijkman‐Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| | - Jan Verhoef
- Eijkman‐Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| | - Hans S. L. M. Nottet
- Eijkman‐Winkler Institute for Microbiology, Infectious Diseases and Inflammation, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
135
|
Stasiolek M, Gavrilyuk V, Sharp A, Horvath P, Selmaj K, Feinstein DL. Inhibitory and stimulatory effects of lactacystin on expression of nitric oxide synthase type 2 in brain glial cells. The role of Ikappa B-beta. J Biol Chem 2000; 275:24847-56. [PMID: 10827092 DOI: 10.1074/jbc.m910284199] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of inflammatory nitric oxide synthase (NOS2) is mediated by transcription factor NFkappaB. By using the specific proteasome inhibitor lactacystin to examine IkappaB degradation, we observed a paradoxical increase in lipopolysaccharide- and cytokine-dependent NOS2 expression at low concentrations or when lactacystin was added subsequent to cytokines. Lactacystin reduced the initial accumulation of NOS2 mRNA but reduced its subsequent decrease. Lactacystin increased NOS2 promoter activation after 24 h, but not after 4 h, and similarly prevented initial NFkappaB activation and at later times caused NFkappaB reactivation. Lactacystin reduced initial degradation of IkappaB-alpha and IkappaB-beta, however, at later times selectively increased IkappaB-beta, which was predominantly non-phosphorylated. Expression of full-length rat IkappaB-beta, but not a carboxyl-terminal truncated form, inhibited NOS2 induction and potentiation by lactacystin. Lactacystin increased IkappaB-beta expression in the absence of NOS2 inducers, as well as expression of heat shock protein 70, and the heat shock response due to hyperthermia increased IkappaB-beta expression. These results suggest that IkappaB-beta contributes to persistent NFkappaB activation and NOS2 expression in glial cells, that IkappaB-beta is a stress protein inducible by hyperthermia or proteasome inhibitors, and that delayed addition of proteasome inhibitors can have stimulatory rather than inhibitory actions.
Collapse
Affiliation(s)
- M Stasiolek
- Department of Neurology, Medical Academy of Lodz, Lodz 90-153, Poland and the Department of Anesthesiology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
136
|
Modulation of interleukin-1beta and tumor necrosis factor alpha signaling by P2 purinergic receptors in human fetal astrocytes. J Neurosci 2000. [PMID: 10884313 DOI: 10.1523/jneurosci.20-14-05292.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In human astrocytes, interleukin-1beta (IL-1beta) is a potent inducer of genes associated with inflammation. In this study, we tested the hypothesis that in primary cultures of human fetal astrocytes signaling by the P2 purinergic nucleotide receptor pathway contributes to, or modulates, cytokine-mediated signal transduction. Calcium imaging studies indicated that most cells in culture responded to ATP, whereas only a subpopulation responded to UTP. Pretreatment of astrocytes with P2 receptor antagonists, including suramin and periodate oxidized ATP (oATP), resulted in a significant downregulation of IL-1beta-stimulated expression of nitric oxide, tumor necrosis factor (TNFalpha), and IL-6 at both the protein and mRNA levels, without affecting cell viability. In cells transiently transfected with reporter constructs, IL-1beta demonstrated more potent activation of the transcription factors nuclear factor -kappaB (NF-kappaB) and activator protein-1 (AP-1) than TNFalpha. However, pretreatment with oATP downregulated activation of NF-kappaB and AP-1 by IL-1beta or TNFalpha. Electromobility shift assays using oligonucleotides containing specific NF-kappaB binding sequences confirmed that pretreatment with oATP or apyrase attenuated cytokine-mediated induction of this transcription factor. From these data, we conclude that P2 receptor-mediated signaling intersects with that of IL-1beta and TNFalpha to regulate responses to cytokines in the CNS. Because inflammation, trauma, and stress all lead to the release of high levels of extracellular nucleotides, such as ATP and UTP, signaling via P2 receptors may provide a mechanism whereby cells can sense and respond to events occurring in the extracellular environment and can fine tune the transcription of genes involved in the inflammatory response.
Collapse
|
137
|
Ishii K, Muelhauser F, Liebl U, Picard M, Kühl S, Penke B, Bayer T, Wiessler M, Hennerici M, Beyreuther K, Hartmann T, Fassbender K. Subacute NO generation induced by Alzheimer's β‐amyloid in the living brain: reversal by inhibition of the inducible NO synthase. FASEB J 2000. [DOI: 10.1096/fj.99-0786com] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- K. Ishii
- Center of Molecular BiologyZMBHUniversity of HeidelbergGermany
| | - F. Muelhauser
- Department of NeurologyUniversity of HeidelbergMannheimGermany
| | - U. Liebl
- Department of NeurologyUniversity of HeidelbergMannheimGermany
| | - M. Picard
- Center of Molecular BiologyZMBHUniversity of HeidelbergGermany
| | - S. Kühl
- Department of NeurologyUniversity of HeidelbergMannheimGermany
| | - B. Penke
- Department of Medical ChemistryAlbert Szent Gyorgyi Medical UniversitySzegedHungary
| | - T. Bayer
- Department of PsychiatryUniversity of BonnGermany
| | - M. Wiessler
- German Cancer Research CenterHeidelbergGermany
| | - M. Hennerici
- Department of NeurologyUniversity of HeidelbergMannheimGermany
| | - K. Beyreuther
- Center of Molecular BiologyZMBHUniversity of HeidelbergGermany
| | - T. Hartmann
- Center of Molecular BiologyZMBHUniversity of HeidelbergGermany
| | - K. Fassbender
- Department of NeurologyUniversity of HeidelbergMannheimGermany
| |
Collapse
|
138
|
Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett ED. Pathophysiology of septic encephalopathy: a review. Crit Care Med 2000; 28:3019-24. [PMID: 10966289 DOI: 10.1097/00003246-200008000-00057] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Encephalopathy is a common complication of sepsis. This review describes the different pathologic mechanisms that may be involved in its etiology. DATA SOURCES The studies described here were derived from the database PubMed (http:¿¿www.nlm.nih.gov) and from references identified in the bibliographies of pertinent articles and books. The citations are largely confined to English language articles between 1966 and 1998. Older publications were used if they were of historical significance. STUDY SELECTION All investigations in which any aspect of septic encephalopathy was reported were included. This selection encompasses clinical, animal, and in vitro cell culture work. DATA EXTRACTION The literature cited was published in peer-reviewed clinical or basic science journals or in books. DATA SYNTHESIS Contradictions between the results of published studies are discussed. CONCLUSIONS The most immediate and serious complication of septic encephalopathy is impaired consciousness, for which the patient may require ventilation. The etiology of septic encephalopathy involves reduced cerebral blood flow and oxygen extraction by the brain, cerebral edema, and disruption of the blood-brain barrier that may arise from the action of inflammatory mediators on the cerebrovascular endothelium, abnormal neurotransmitter composition of the reticular activating system, impaired astrocyte function, and neuronal degeneration. Currently, there is no treatment.
Collapse
Affiliation(s)
- M C Papadopoulos
- Department of Anaesthetics and Intensive Care Medicine, St. George's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|
139
|
Abstract
We investigated the effect of agmatine, an arginine metabolite synthesized in the brain, in cultured microglia obtained from neonatal rat cerebral cortex. Agmatine (1-300 microM) did not affect viability of cultured microglia. Activation of microglia by lipopolysaccharide (LPS, 1 microg/ml) caused the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) assessed as the accumulation of nitrite in the culture supernatants. Agmatine had no effect on the expression of iNOS, but significantly suppressed the LPS-induced NO production in a concentration-dependent manner. Agmatine was also effective in suppressing the production of NO induced by a combination of interferon-gamma (500 U/ml) and amyloid beta protein (10 microM). In co-cultures of rat cortical neurons and microglia, LPS caused significant loss of neuron viability. The LPS neurotoxicity was not observed in the absence of microglia, and was completely blocked by the NOS inhibitor diphenyleneiodoium chloride. The neuronal death induced by microglia-derived NO was significantly attenuated by the presence of agmatine. These results suggest that agmatine works to protect neurons by inhibiting the production of NO in microglia.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, 113-0033, Tokyo, Japan.
| | | | | |
Collapse
|
140
|
Pahan K, Liu X, McKinney MJ, Wood C, Sheikh FG, Raymond JR. Expression of a dominant-negative mutant of p21(ras) inhibits induction of nitric oxide synthase and activation of nuclear factor-kappaB in primary astrocytes. J Neurochem 2000; 74:2288-95. [PMID: 10820188 DOI: 10.1046/j.1471-4159.2000.0742288.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study underlines the importance of p21(ras) in regulating the inducible nitric oxide synthase (iNOS) in primary astrocytes. Bacterial lipopolysaccharides induced the GTP loading of p21(ras), and the expression of a dominant-negative mutant of p21(ras) (Deltap21(ras)) inhibited lipopolysaccharide-induced GTP loading in rat primary astrocytes. To delineate the role of p21(ras) in the induction of iNOS, we examined the effect of Deltap21(ras) on the expression of iNOS and the production of nitric oxide. It is interesting that expression of Deltap21(ras) markedly inhibited the production of nitric oxide and the expression of iNOS in lipopolysaccharide- and proinflammatory cytokine (tumor necrosis factor-alpha, interleukin-1beta; interferon-gamma)-stimulated rat and human primary astrocytes. Inhibition of iNOS promoter-derived chloramphenicol acetyltransferase activity by Deltap21(ras) suggests that p21(ras) is involved in the transcription of iNOS. As activation of nuclear factor-kappaB (NF-kappaB) is necessary for the transcription of iNOS, we examined the effect of Deltap21(ras) on the activation of NF-kappaB. Expression of Deltap21(ras) inhibited the DNA binding as well as the transcriptional activity of NF-kappaB in activated astrocytes, suggesting that Deltap21(ras) inhibits the expression of iNOS by inhibiting the activation of NF-kappaB. These studies also suggest that inhibitors of p21(ras) may be used as therapeutics in nitric oxide- and cytokine-mediated neuroinflammatory diseases.
Collapse
Affiliation(s)
- K Pahan
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
141
|
Morgan AC, Chang HY, Liu JS, Hua LL, Lee SC. High extracellular potassium modulates nitric oxide synthase expression in human astrocytes. J Neurochem 2000; 74:1903-12. [PMID: 10800933 DOI: 10.1046/j.1471-4159.2000.0741903.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is a molecule of great interest, given the numerous biological activities of nitric oxide and the documented expression of iNOS in several CNS pathologies. There also appears to be species-dependent regulation of iNOS expression as well as CNS-specific regulation. In this study, we have examined cultures of cytokine-activated primary human astrocytes as a model system with which to study the mechanisms of iNOS regulation in human CNS. As one of the major functions of astrocytes is spatial buffering of K+ ion, we examined the effect of high extracellular KCI on astrocyte iNOS expression. The results demonstrate that KCI at 25-75 mM potently inhibits astrocyte nitrite production stimulated by interleukin-1 (IL-1)/interferon-gamma (IFNgamma). In addition, several potassium channel inhibitors such as CsCl, tetraethylammonium, and 4-aminopyridine as well as nigericin inhibited astrocyte iNOS expression induced by IL-1/IFNgamma. These results demonstrate a novel role for astrocyte potassium channel activity in modulation of astrocyte function. They further suggest neural-specific mechanisms for glial iNOS regulation.
Collapse
Affiliation(s)
- A C Morgan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
142
|
Sloane JA, Hollander W, Rosene DL, Moss MB, Kemper T, Abraham CR. Astrocytic hypertrophy and altered GFAP degradation with age in subcortical white matter of the rhesus monkey. Brain Res 2000; 862:1-10. [PMID: 10799662 DOI: 10.1016/s0006-8993(00)02059-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive astrocytosis is a well known phenomenon that occurs in the normal aging process of the brain. While many studies indicate astrocytic hypertrophy and glial fibrillary acidic protein (GFAP) content increase with age in the hippocampal formation of certain animal models, it is unclear whether these findings are generalizable to the primate and to other areas of the brain. In this study, we quantitatively assessed age-related changes in astrocytic cell size and density in a rhesus monkey model of normal aging. By GFAP immunohistochemistry, we observed an increase in GFAP(+) cell size but not density in all subcortical white matter areas of the frontal, temporal, and parietal cortices. No significant increases in astrocyte hypertrophy were observed in any gray matter area examined. In addition, Western blotting experiments showed increases in total and degraded GFAP content with age, suggesting altered degradation and possibly production of GFAP occur with age.
Collapse
Affiliation(s)
- J A Sloane
- Department of Pathology, Boston University School of Medicine, 715 Albany, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
Inducible nitric oxide synthase (NOS-2) is abundantly present in the optic nerve heads of glaucoma patients. To determine the regulation of NOS-2 expression in the glaucomatous optic nerve head, the specific cells that express NOS-2 in the optic nerve heads of patients with primary open-angle glaucoma were studied by immunohistochemical double-labeling of NOS-2 and one of the characteristic cell markers for different cell types. Most of the labeling for NOS-2 was identified in reactive astrocytes that were clustered in the areas of nerve damage in the prelaminar and lamina cribrosa regions of the glaucomatous optic nerve heads. In vitro, the expression of GFAP and NOS-2 by reactive astrocytes of human optic nerve heads was demonstrated by immunocytochemistry and Western blot. In primary cultures of human lamina cribrosa astrocytes, stimulation by interferon-gamma and interleukin-1beta upregulated GFAP and induced expression of NOS-2 protein. At 24, 48 and 72 h of stimulation, NOS-2 appeared first in the Golgi body and then was sent out into the cytoplasm in granules. These results demonstrated that the astrocytes of human optic nerve head are capable of inducing the expression of NOS-2. Reactive astrocytes in the glaucomatous optic nerve heads apparently play an important role in local neurotoxicity to the axons of the retinal ganglion cells by producing excessive nitric oxide in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- B Liu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
144
|
Akama KT, Van Eldik LJ. Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 2000; 275:7918-24. [PMID: 10713108 DOI: 10.1074/jbc.275.11.7918] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease, beta-amyloid (Abeta) plaques are surrounded by activated astrocytes and microglia. A growing body of evidence suggests that these activated glia contribute to neurotoxicity through the induction of inflammatory cytokines such as interleukin (IL)-1beta and tumor necrosis factor-alpha (TNFalpha) and the production of neurotoxic free radicals, mediated in part by the expression of inducible nitric-oxide synthase (iNOS). Here, we address the possibility that Abeta-stimulated iNOS expression might result from an initial induction of IL-1beta and TNFalpha. We find that in Abeta-stimulated astrocyte cultures, IL-1beta and TNFalpha production occur before iNOS production, new protein synthesis is required for increased iNOS mRNA levels, and the IL-1 receptor antagonist IL-1ra can inhibit nitrite accumulation. Likewise, dominant-negative mutants of tumor necrosis factor-alpha receptor-associated factor (TRAF) 6, TRAF2, and NFkappaB-inducing kinase (NIK), intracellular proteins involved in IL-1 and TNFalpha receptor signaling cascades, inhibit Abeta-stimulated iNOS promoter activity. Our data suggest that Abeta stimulation of astrocyte iNOS is mediated in part by IL-1beta and TNFalpha, and involves a TRAF6-, TRAF2-, and NIK-dependent signaling mechanism.
Collapse
Affiliation(s)
- K T Akama
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
145
|
Kopnisky KL, Sumners C. Angiotensin II-induced decrease in expression of inducible nitric oxide synthase in rat astroglial cultures: role of protein kinase C. J Neurochem 2000; 74:613-20. [PMID: 10646512 DOI: 10.1046/j.1471-4159.2000.740613.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inducible nitric oxide synthase (iNOS) has been implicated as a mediator of cellular toxicity in a variety of neurodegenerative disorders. Nitric oxide, which is generated in high quantities following induction of iNOS, combines with other oxygen radicals to form highly reactive, death-inducing compounds. Given the frequency of neuronal death due to neurodegenerative diseases, cerebral trauma, and stroke, it is important to study the mechanisms of regulation of iNOS in the brain. We demonstrated previously that angiotensin II (Ang II) decreases the expression of iNOS produced by bacterial endotoxin or cytokines in cultured astroglia prepared from adult rat brain. Here, we have addressed the mechanisms by which Ang II negatively modulates iNOS. The inhibitory effects of Ang II on lipopolysaccharide-induced expression of iNOS mRNA and protein and nitrite accumulation were mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate. Down-regulation of PKC produced by long-term treatment of astroglia with phorbol 12-myristate 13-acetate abolished the inhibitory effect of Ang II on lipopolysaccharide-stimulated expression of iNOS mRNA and nitrite accumulation. Finally, the reduction of lipopolysaccharide-induced nitrite accumulation by Ang II was attenuated by the selective PKC inhibitor chelerythrine. Collectively, these data indicate a role for PKC in the inhibitory actions of Ang II on iNOS expression in cultured astroglia.
Collapse
Affiliation(s)
- K L Kopnisky
- Department of Physiology, College of Medicine and University of Florida Brain Institute, University of Florida, Gainesville 32610, USA
| | | |
Collapse
|
146
|
Petrova TV, Hu J, Van Eldik LJ. Modulation of glial activation by astrocyte-derived protein S100B: differential responses of astrocyte and microglial cultures. Brain Res 2000; 853:74-80. [PMID: 10627310 DOI: 10.1016/s0006-8993(99)02251-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The astrocyte-derived protein S100B stimulates production of inducible nitric oxide synthase and nitric oxide (NO) in astrocytes [Hu et al., 1996, J. Biol. Chem. 271:2543], but its effect on microglia is not known. In addition, S100B's ability to modulate the activity of other glial activating agents has not been defined. In this study, we compared the ability of S100B to stimulate NO in cultures of rat primary astrocytes and the BV-2 murine microglial cell line, and investigated the effect of the combined action of S100B and other stimuli known to activate glial cells. S100B itself stimulated the production of NO in astrocytes, and did not modify or potentiated only weakly the NO production induced by interleukin-1 beta, tumor necrosis factor alpha, dibutyryl cyclic AMP, zymosan A or lipid A. In contrast, S100B alone did not induce NO in BV-2 cells but strongly potentiated NO production in the presence of lipid A but not zymosan A. The deletion of eight C-terminal amino acid residues in S100B leads to a loss of the effect of S100B on microglia but not on astrocytes. These results demonstrate that responses of glial cells to extracellular S100B can vary depending on the cell type, and suggest that different structural features of S100B are important for the protein's effects on microglia and astrocytes.
Collapse
Affiliation(s)
- T V Petrova
- Department of Cell and Molecular Biology, Northwestern University Medical School, Ward 4-202, 303 E. Chicago Avenue, Chicago 60611 IL, USA
| | | | | |
Collapse
|
147
|
Cheeran MC, Hu S, Gekker G, Lokensgard JR. Decreased cytomegalovirus expression following proinflammatory cytokine treatment of primary human astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:926-33. [PMID: 10623841 DOI: 10.4049/jimmunol.164.2.926] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding the influence of immune effector mechanisms on CMV infection of the CNS may facilitate the development of immunotherapies for viral encephalitis. Using cultures of highly purified, fully permissive primary human astrocytes, proinflammatory cytokines, but not antiinflammatory cytokines or beta-chemokines, were found to inhibit CMV expression, DNA synthesis, and replication. Treatment with certain proinflammatory cytokines 24 h before CMV infection markedly suppressed viral expression in astrocytes. TNF-alpha, IL-1beta, and IFN-gamma all inhibited CMV expression (70 +/- 4.2%, 65 +/- 3.4%, and 82 +/- 3.6% inhibition of viral expression, respectively, n = 5). In contrast, no viral suppression was observed following IL-6 treatment. Suppressive activity was dependent on the addition of cytokines before CMV infection. Cytokine pretreatment did not affect CMV entry into primary astrocytes, and the observed cytokine-induced suppressive activity was not affected by the NO synthase inhibitor NG-monomethyl- -arginine (NGMA). Instead, the suppressive effect appeared to be mediated through a mechanism involving inhibition of CMV major immediate early promoter activity. These results support the hypothesis that proinflammatory cytokines possess anti-CMV activity in brain cells and may lead to new interventions for CMV encephalitis based upon immunotherapy.
Collapse
Affiliation(s)
- M C Cheeran
- Institute for Brain Disorders, Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | | | | | | |
Collapse
|
148
|
Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 2000; 7:153-9. [PMID: 10754403 DOI: 10.1159/000026433] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glutamate uptake by astrocytes has been postulated to play a neuroprotective role during brain inflammation. Using primary human fetal astrocyte cultures, we investigated the influence of selected cytokines on glutamate uptake activity. Interleukin (IL)-1beta and tumor necrosis factor-alpha dose-dependently inhibited astrocyte glutamate uptake, whereas interferon (IFN)-gamma alone stimulated this activity. The nitric oxide synthase inhibitor, N(G)-monomethyl-L-arginine, blocked IL-1beta-mediated inhibition of glutamate uptake, suggesting involvement of nitric oxide in the effect of IL-1beta. IL-1 receptor antagonist protein totally reversed the inhibitory effect of cytokines, suggesting a critical role of IL-1beta. The anti-inflammatory cytokine IFN-beta blocked cytokine (IL-1beta plus IFN-gamma)-induced inhibition of glutamate uptake with a corresponding reduction in nitric oxide generation. Taken together, these findings suggest that proinflammatory cytokines inhibit astrocyte glutamate uptake by a mechanism involving nitric oxide, and that IFN-beta may exert a therapeutically beneficial effect by blocking cytokine-induced nitric oxide production in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- S Hu
- Institute for Brain and Immune Disorders, Minneapolis Medical Research Foundation and the University of Minnesota Medical School, Minneapolis, Minnesota 55404, USA
| | | | | | | | | |
Collapse
|
149
|
Raso GM, Meli R, Gualillo O, Pacilio M, Di Carlo R. Prolactin induction of nitric oxide synthase in rat C6 glioma cells. J Neurochem 1999; 73:2272-7. [PMID: 10582584 DOI: 10.1046/j.1471-4159.1999.0732272.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the neuroimmunoregulatory function of prolactin (PRL) on astrocytic inducible nitric oxide synthase (iNOS) expression in the C6 glioma cell line. After 24 h of PRL (5-100 nM) stimulation, a concentration-dependent increase of NO release, evaluated as nitrite, was observed in C6 culture medium. Moreover, both NO release and iNOS expression induced by interferon-gamma (250 U/ml) were enhanced by PRL (18-100 nM). PRL-induced NO release was inhibited by dexamethasone, an inhibitor of de novo iNOS synthesis. We used erbstatin (5 microg/ml), a potent inhibitor of protein tyrosine kinases, to test whether these proteins were required for signaling events evoked by PRL in these cells. This inhibitor was able to inhibit completely the PRL-induced NO production and iNOS expression. In conclusion, we provide evidence that NO production in glial cells can be regulated not only by cytokines but also by neuroimmunoregulatory hormones such as PRL, which is present in normal brain but may be elevated in several pathological states.
Collapse
Affiliation(s)
- G M Raso
- Department of Experimental Pharmacology, University of Naples Frederico II, Italy
| | | | | | | | | |
Collapse
|
150
|
Balter-Seri J, Yuhas Y, Weizman A, Nofech-Mozes Y, Kaminsky E, Ashkenazi S. Role of nitric oxide in the enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae. Infect Immun 1999; 67:6364-8. [PMID: 10569751 PMCID: PMC97043 DOI: 10.1128/iai.67.12.6364-6368.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Convulsions and encephalopathy are frequent complications of childhood shigellosis. We studied the role of nitric oxide (NO) in Shigella-related seizures in an animal model. Pretreatment of mice with Shigella dysenteriae 60R sonicate elevated serum NO levels and enhanced the convulsive response to pentylenetetrazole (PTZ), as indicated by a higher mean convulsion score and a higher number of mice responding with seizures. Treatment of the mice with S-methylisothiourea sulfate (SMT), a potent inhibitor of inducible NO synthase (NOS), prevented the elevation of serum NO levels and concomitantly reduced the enhanced response to PTZ. The mean convulsion scores were 0.7, 0.7, 1.3, and 0.8 for mice treated with saline, saline and SMT, S. dysenteriae 60R sonicate, and S. dysenteriae 60R sonicate with SMT, respectively (P = 0.001 for 60R sonicate versus saline and P = 0.013 for 60R sonicate versus 60R sonicate with SMT). The corresponding seizure rates were 40, 44, 75, and 47% for saline, saline with SMT, S. dysenteriae 60R sonicate, and S. dysenteriae 60R sonicate with SMT, respectively (P = 0.0004 for 60R sonicate versus saline and P = 0.005 for 60R sonicate versus 60R sonicate with SMT). In contrast, injection of N-nitro-L-arginine, a selective inhibitor of constitutive NOS, neither abolished the elevation of serum NO nor attenuated the enhancement of seizures. These findings indicate that NO, induced by S. dysenteriae 60R sonicate, is involved in enhancing the susceptibility to seizures caused by S. dysenteriae.
Collapse
Affiliation(s)
- J Balter-Seri
- Felsenstein Medical Research Center, Petah Tiqva, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|