101
|
Fan L, Jones SN, Padden C, Shen Q, Newburger PE. Nuclease sensitive element binding protein 1 gene disruption results in early embryonic lethality. J Cell Biochem 2006; 99:140-5. [PMID: 16598782 PMCID: PMC3725130 DOI: 10.1002/jcb.20911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclease sensitive element binding protein 1 (NSEP1) is a member of the EFIA/NSEP1/YB-1 family of DNA-binding proteins whose members share a cold shock domain; it has also been termed DNA-binding protein B and Y box binding protein-1 because of its recognition of transcriptional regulatory elements. In addition, NSEP1 functions in the translational regulation of renin, ferritin, and interleukin 2 transcripts, and our laboratory has reported that it plays a role in the biosynthesis of selenium-containing proteins. To test the functional importance of NSEP1 in murine embryonic development, we have utilized a clone of ES cells in which the NSEP1 gene had been disrupted by integration of a plasmid gene-trapping vector into the seventh exon. Injection of these cells into C57BL/6 blastocysts resulted in 11 high percentage chimeric mice; crosses to wild type C57BL/6 mice generated 82 F1 agouti mice, indicating germ line transmission of the ES cell clone, but genotyping showed no evidence of the disrupted allele in any of these agouti offspring even though spermatozoa from four of five tested mice contained the targeted allele. Embryos harvested after timed matings of chimeric male mice demonstrated only the wildtype allele in 27 embryos tested at E7.5, E12.5, and E18.5. These results suggest that gene targeting of NSEP1 induces a lethal phenotype in early embryos, due to either haploinsufficiency of NSEP1 or formation of a dominant negative form of the protein. In either case, these data indicate the functional importance of the NSEP1 gene in murine early embryonic development.
Collapse
Affiliation(s)
- Lin Fan
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Stephen N. Jones
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Carolyn Padden
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Qichang Shen
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Peter E. Newburger
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Correspondence to: Peter E. Newburger, MD, LRB 404, University of Massachusetts Medical School, Worcester, MA 01655.
| |
Collapse
|
102
|
Allmang C, Krol A. Selenoprotein synthesis: UGA does not end the story. Biochimie 2006; 88:1561-71. [PMID: 16737768 DOI: 10.1016/j.biochi.2006.04.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/24/2006] [Indexed: 11/15/2022]
Abstract
It is well established that the beneficial effects of the trace element selenium are mediated by its major biological product, the amino acid selenocysteine, present in the active site of selenoproteins. These fulfill different functions, as varied as oxidation-reduction of metabolites in bacteria, reduction of reactive oxygen species, control of the redox status of the cell or thyroid hormone maturation. This review will focus on the singularities of the selenocysteine biosynthesis pathway and its unique incorporation mechanism into eukaryal selenoproteins. Selenocysteine biosynthesis from serine is achieved on tRNA(Sec) and requires four proteins. As this amino acid is encoded by an in-frame UGA codon, otherwise signaling termination of translation, ribosomes must be told not to stop at this position in the mRNA. Several molecular partners acting in cis or in trans have been identified, but their knowledge has not enabled yet to firmly establish the molecular events underlying this mechanism. Data suggest that other, so far uncharacterized factors might exist. In this survey, we attempted to compile all the data available in the literature and to describe the latest developments in the field.
Collapse
Affiliation(s)
- C Allmang
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS Architecture et Réactivité de l'ARN. Université Louis-Pasteur, 15, rue René-Descartes, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
103
|
Charalabopoulos K, Kotsalos A, Batistatou A, Charalabopoulos A, Vezyraki P, Peschos D, Kalfakakou V, Evangelou A. Selenium in serum and neoplastic tissue in breast cancer: correlation with CEA. Br J Cancer 2006; 95:674-6. [PMID: 16880784 PMCID: PMC2360505 DOI: 10.1038/sj.bjc.6603292] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trace element selenium (Se) is regarded to be a breast cancer preventive factor involved in multiple protective pathways. In all, 80 women with breast cancer who underwent a radical mastectomy were enrolled in the study. Serum Se and carcinoembryonic antigen levels were measured using a fluorometric and IRMA assay, respectively. Se tissue concentration was determined by a tissue extracting fluorometric assay. For statistical analysis purposes t-test was used and P-values <0.001 were regarded as statistically significant. Serum Se was 42.5±7.5 μg l−1 in breast cancer patients and 67.6±5.36 μg l−1 in the age-matched control group of healthy individuals. Serum carcinoembryonic antigen in patients was 10±1.7 U ml−1 (normal <2.5 U ml−1 in nonsmokers/<3.5 U ml−1 in smokers). A statistically significant difference was found for both serum Se and CEA between two groups studied (P<0.001). Neoplastic tissue Se concentration was 2660±210 mg g−1 tissue; its concentration in the adjacent non-neoplastic tissue was 680±110 mg g−1 tissue (P<0.001). An inverse relationship between Se and CEA serum levels was found in the two groups studied (r=−0.794). There was no correlation between serum/tissue Se concentration and stage of the disease. The decrease in serum Se concentration as well as its increased concentration in the neoplastic breast tissue is of great significance. These alterations may reflect part of the defence mechanisms against the carcinogenetic process.
Collapse
Affiliation(s)
- K Charalabopoulos
- Department of Physiology, Clinical Unit, Medical Faculty, University of Ioannina, 13, Solomou str., 452 21 Ioannina, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Shen Q, Fan L, Newburger PE. Nuclease sensitive element binding protein 1 associates with the selenocysteine insertion sequence and functions in mammalian selenoprotein translation. J Cell Physiol 2006; 207:775-83. [PMID: 16508950 PMCID: PMC3730826 DOI: 10.1002/jcp.20619] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosynthesis of selenium-containing proteins requires insertion of the unusual amino acid selenocysteine by alternative translation of a UGA codon, which ordinarily serves as a stop codon. In eukaryotes, selenoprotein translation depends upon one or more selenocysteine insertion sequence (SECIS) elements located in the 3'-untranslated region of the mRNA, as well as several SECIS-binding proteins. Our laboratory has previously identified nuclease sensitive element binding protein 1 (NSEP1) as another SECIS-binding protein, but evidence has been presented both for and against its role in SECIS binding in vivo and in selenoprotein translation. Our current studies sought to resolve this controversy, first by investigating whether NSEP1 interacts closely with SECIS elements within intact cells. After reversible in vivo cross-linking and ribonucleoprotein immunoprecipitation, mRNAs encoding two glutathione peroxidase family members co-precipitated with NSEP1 in both human and rat cell lines. Co-immunoprecipitation of an epitope-tagged GPX1 construct depended upon an intact SECIS element in its 3'-untranslated region. To test the functional importance of this interaction on selenoprotein translation, we used small inhibitory RNAs to reduce the NSEP1 content of tissue culture cells and then examined the effect of that reduction on the activity of a SECIS-dependent luciferase reporter gene for which expression depends upon readthrough of a UGA codon. Co-transfection of small inhibitory RNAs directed against NSEP1 decreased its expression by approximately 50% and significantly reduced luciferase activity. These studies demonstrate that NSEP1 is an authentic SECIS binding protein that is structurally associated with the selenoprotein translation complex and functionally involved in the translation of selenoproteins in mammalian cells.
Collapse
Affiliation(s)
- Qichang Shen
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lin Fan
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Peter E. Newburger
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Correspondence to: Dr. Peter E. Newburger, Department of Pediatrics, LRB 404, 364 Plantation Street, Worcester, Massachusetts 01605.
| |
Collapse
|
105
|
Hatfield DL, Carlson BA, Xu XM, Mix H, Gladyshev VN. Selenocysteine Incorporation Machinery and the Role of Selenoproteins in Development and Health. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:97-142. [PMID: 16891170 DOI: 10.1016/s0079-6603(06)81003-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dolph L Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
106
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
107
|
Kim HY, Gladyshev VN. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol 2005; 3:e375. [PMID: 16262444 PMCID: PMC1278935 DOI: 10.1371/journal.pbio.0030375] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/06/2005] [Indexed: 12/04/2022] Open
Abstract
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties. Altering cysteine-containing residues in a family of oxidoreductases reveals the role of selenocysteine in influencing the catalytic mechanism.
Collapse
Affiliation(s)
- Hwa-Young Kim
- 1Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Vadim N Gladyshev
- 1Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
108
|
Abstract
Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie und Endokrinologisches Forschungs-Centrum der Charité EnForCé, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
109
|
Romero H, Zhang Y, Gladyshev VN, Salinas G. Evolution of selenium utilization traits. Genome Biol 2005; 6:R66. [PMID: 16086848 PMCID: PMC1273633 DOI: 10.1186/gb-2005-6-8-r66] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/07/2005] [Accepted: 06/27/2005] [Indexed: 11/25/2022] Open
Abstract
Completely sequenced genomes were analyzed for occurrence of SelA, B, C, D and ybbB genes. SelB and SelC were found to be signatures for the Sec decoding trait, while SelD defines the overall selenium utilization. Background The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor. Results We analyzed completely sequenced genomes for occurrence of the selA, B, C, D and ybbB genes. We found that selB and selC are gene signatures for the Sec-decoding trait. However, selD is also present in organisms that do not utilize Sec, and shows association with either selA, B, C and/or ybbB. Thus, selD defines the overall selenium utilization. A global species map of Sec-decoding and 2-selenouridine synthesis traits is provided based on the presence/absence pattern of selenium-utilization genes. The phylogenies of these genes were inferred and compared to organismal phylogenies, which identified horizontal gene transfer (HGT) events involving both traits. Conclusion These results provide evidence for the ancient origin of these traits, their independent maintenance, and a highly dynamic evolutionary process that can be explained as the result of speciation, differential gene loss and HGT. The latter demonstrated that the loss of these traits is not irreversible as previously thought.
Collapse
Affiliation(s)
- Héctor Romero
- Laboratorio de Organización y Evolución del Genoma, Dpto. de Biología Celular y Molecular, Instituto de Biología, Facultad de Ciencias, Iguá 4225, Montevideo, CP 11400, Uruguay
- Escuela Universitaria de Tecnología Médica, Facultad de Medicina, Piso 3 Hospital de Clínicas, Avda. Italia s/n, Montevideo, CP 11600, Uruguay
| | - Yan Zhang
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Vadim N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química/Ciencias, Instituto de Higiene, Avda. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| |
Collapse
|
110
|
Wu HL, Bagby S, van den Elsen JMH. Evolution of the Genetic Triplet Code via Two Types of Doublet Codons. J Mol Evol 2005; 61:54-64. [PMID: 16059752 DOI: 10.1007/s00239-004-0224-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
Explaining the apparent non-random codon distribution and the nature and number of amino acids in the 'standard' genetic code remains a challenge, despite the various hypotheses so far proposed. In this paper we propose a simple new hypothesis for code evolution involving a progression from singlet to doublet to triplet codons with a reading mechanism that moves three bases each step. We suggest that triplet codons gradually evolved from two types of ambiguous doublet codons, those in which the first two bases of each three-base window were read ('prefix' codons) and those in which the last two bases of each window were read ('suffix' codons). This hypothesis explains multiple features of the genetic code such as the origin of the pattern of four-fold degenerate and two-fold degenerate triplet codons, the origin of its error minimising properties, and why there are only 20 amino acids.
Collapse
Affiliation(s)
- Huan-Lin Wu
- Department of Biology and Biochemistry, University of Bath, 4 South, Claverton Down, Bath BA2 7AY, UK
| | | | | |
Collapse
|
111
|
Johansson L, Gafvelin G, Arnér ESJ. Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta Gen Subj 2005; 1726:1-13. [PMID: 15967579 DOI: 10.1016/j.bbagen.2005.05.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/04/2005] [Accepted: 05/07/2005] [Indexed: 01/11/2023]
Abstract
Selenocysteine (Sec), the 21st amino acid, exists naturally in all kingdoms of life as the defining entity of selenoproteins. Sec is a cysteine (Cys) residue analogue with a selenium-containing selenol group in place of the sulfur-containing thiol group in Cys. The selenium atom gives Sec quite different properties from Cys. The most obvious difference is the lower pK(a) of Sec, and Sec is also a stronger nucleophile than Cys. Proteins naturally containing Sec are often enzymes, employing the reactivity of the Sec residue during the catalytic cycle and therefore Sec is normally essential for their catalytic efficiencies. Other unique features of Sec, not shared by any of the other 20 common amino acids, derive from the atomic weight and chemical properties of selenium and the particular occurrence and properties of its stable and radioactive isotopes. Sec is, moreover, incorporated into proteins by an expansion of the genetic code as the translation of selenoproteins involves the decoding of a UGA codon, otherwise being a termination codon. In this review, we will describe the different unique properties of Sec and we will discuss the prerequisites for selenoprotein production as well as the possible use of Sec introduction into proteins for biotechnological applications. These include residue-specific radiolabeling with gamma or positron emitters, the use of Sec as a reactive handle for electophilic probes introducing fluorescence or other peptide conjugates, as the basis for affinity purification of recombinant proteins, the trapping of folding intermediates, improved phasing in X-ray crystallography, introduction of 77Se for NMR spectroscopy, or, finally, the analysis or tailoring of enzymatic reactions involving thiol or oxidoreductase (redox) selenolate chemistry.
Collapse
Affiliation(s)
- Linda Johansson
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
112
|
Zhang Y, Baranov PV, Atkins JF, Gladyshev VN. Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies. J Biol Chem 2005; 280:20740-51. [PMID: 15788401 DOI: 10.1074/jbc.m501458200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) and pyrrolysine (Pyl) are known as the 21st and 22nd amino acids in protein. Both are encoded by codons that normally function as stop signals. Sec specification by UGA codons requires the presence of a cis-acting selenocysteine insertion sequence (SECIS) element. Similarly, it is thought that Pyl is inserted by UAG codons with the help of a putative pyrrolysine insertion sequence (PYLIS) element. Herein, we analyzed the occurrence of Pyl-utilizing organisms, Pyl-associated genes, and Pyl-containing proteins. The Pyl trait is restricted to several microbes, and only one organism has both Pyl and Sec. We found that methanogenic archaea that utilize Pyl have few genes that contain in-frame UAG codons, and many of these are followed with nearby UAA or UGA codons. In addition, unambiguous UAG stop signals could not be identified. This bias was not observed in Sec-utilizing organisms and non-Pyl-utilizing archaea, as well as with other stop codons. These observations as well as analyses of the coding potential of UAG codons, overlapping genes, and release factor sequences suggest that UAG is not a typical stop signal in Pyl-utilizing archaea. On the other hand, searches for conserved Pyl-containing proteins revealed only four protein families, including methylamine methyltransferases and transposases. Only methylamine methyltransferases matched the Pyl trait and had conserved Pyl, suggesting that this amino acid is used primarily by these enzymes. These findings are best explained by a model wherein UAG codons may have ambiguous meaning and Pyl insertion can effectively compete with translation termination for UAG codons obviating the need for a specific PYLIS structure. Thus, Sec and Pyl follow dissimilar decoding and evolutionary strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | |
Collapse
|
113
|
Torres-Collado AX, Czaja AJ, Gelpí C. Anti-tRNP(ser)sec/SLA/LP autoantibodies. Comparative study using in-house ELISA with a recombinant 48.8 kDa protein, immunoblot, and analysis of immunoprecipitated RNAs. Liver Int 2005; 25:410-9. [PMID: 15780067 DOI: 10.1111/j.1478-3231.2005.01079.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Antibodies against tRNP((ser)sec) (ribonucleoproteins, RNP) have been described in our laboratory as markers of poor outcome in type 1 autoimmune hepatitis (AIH). The antigenic protein has been sequenced and cloned as a 48.8 kDa protein and identified with soluble liver antigen (SLA) and liver-pancreas (LP) antigen. The aim of this paper was to determine the best assay by which to detect these antibodies in type 1 AIH. METHODS A simple and reliable enzyme linked immunoassay based on prokaryotically expressed protein was compared with an immunoblot assay using prokaryotically- and eukaryotically-expressed proteins and an assay based on immunoprecipitated RNAs from HeLa cell extracts. Eighty-one sera from 58 patients with type 1 AIH, 168 sera from patients with autoimmune diseases or chronic hepatitis C, and 60 sera from healthy subjects were similarly tested. RESULTS The specificity of the assays was 100%, but the frequency of seropositivity was higher in the assay based on immunoprecipitated RNAs (44.4%) than in the enzyme-linked immunosorbent assay (ELISA) (16%) and the immunoblot assay with prokaryotically (12.34%) and eukaryotically (14.8%)-expressed protein. There were no clinical differences between the patients positive by ELISA, immunoblot assay, or immunoprecipitated RNAs. CONCLUSIONS These results suggest that the analysis of the immunoprecipitated RNAs is the most useful, sensitive and specific method to detect anti-tRNP((ser)sec)/SLA/LP autoantibodies.
Collapse
Affiliation(s)
- Antoni Xavier Torres-Collado
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Avnda. S. Antoni Ma Claret 167, 08025-Barcelona, Spain
| | | | | |
Collapse
|
114
|
|
115
|
Suzuki KT. Metabolomics of Selenium: Se Metabolites Based on Speciation Studies. ACTA ACUST UNITED AC 2005. [DOI: 10.1248/jhs.51.107] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuo T. Suzuki
- Department of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
116
|
Phadnis PP, Mugesh G. Internally stabilized selenocysteine derivatives: syntheses, 77Se NMR and biomimetic studies. Org Biomol Chem 2005; 3:2476-81. [PMID: 15976866 DOI: 10.1039/b505299h] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenocystine ([Sec]2) and aryl-substituted selenocysteine (Sec) derivatives are synthesized, starting from commercially available amino acid l-serine. These compounds are characterized by a number of analytical techniques such as NMR (1H, 13C and 77Se) and TOF mass spectroscopy. This study reveals that the introduction of amino/imino substituents capable of interacting with selenium may stabilize the Sec derivatives. This study further suggests that the oxidation-elimination reactions in Sec derivatives could be used for the generation of biologically active selenols having internally stabilizing substituents.
Collapse
Affiliation(s)
- Prasad P Phadnis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
117
|
Suzuki KT, Kurasaki K, Okazaki N, Ogra Y. Selenosugar and trimethylselenonium among urinary Se metabolites: dose- and age-related changes. Toxicol Appl Pharmacol 2004; 206:1-8. [PMID: 15963339 DOI: 10.1016/j.taap.2004.10.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 10/27/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Once selenium (Se) is absorbed by the body, it is excreted mostly into the urine and the major metabolite is 1beta-methylseleno-N-acetyl-d-galactosamine (selenosugar) within the required to low-toxic range. Selenosugar plateaus with a dose higher than 2.0 microg Se/ml water or g diet, and trimethylselenonium (TMSe) starts to increase, indicating that TMSe can be a biomarker of excessive and toxic doses of Se. Here, we show dose-related changes in the two urinary Se metabolites to clarify the relationship between the dose and urinary metabolites by feeding selenite to rats. It was also examined whether the metabolites are related to age, and further whether a possible exogenous source of the N-acetyl-d-galactosamine moiety, chondroitin 4-sulfate, affects the urinary metabolites. Selenite in drinking water was fed ad libitum to male Wistar rats of 36 and 5 weeks of age, and the concentrations of Se in the urine and organs were determined together with speciation of the urinary Se metabolites. In young rats, selenosugar was always the major urinary metabolite and TMSe increased with a dose higher than 2.0 microg Se/ml drinking water. On the other hand, in adult rats, TMSe increased only marginally despite that the rats suffered much more greatly from the Se toxicity, suggesting that TMSe cannot be a biomarker of Se toxicity. The results suggest that sources of the sugar moiety of selenosugar are more abundant in adult rats than in young rats. Chondroitin 4-sulfate did not affect the ratio of the two urinary metabolites, suggesting that the sugar source is of endogenous origin and that it increases with age.
Collapse
Affiliation(s)
- Kazuo T Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675, Japan.
| | | | | | | |
Collapse
|
118
|
Weiller M, Latta M, Kresse M, Lucas R, Wendel A. Toxicity of nutritionally available selenium compounds in primary and transformed hepatocytes. Toxicology 2004; 201:21-30. [PMID: 15297016 DOI: 10.1016/j.tox.2004.03.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 11/27/2022]
Abstract
The essential trace element selenium is also toxic at low doses. Since supplementation of selenium is discussed as cancer prophylaxis, we investigated whether or not bioavailable selenium compounds are selectively toxic on malignant cells by comparing primary and transformed liver cells as to the extent and mode of cell death. Sodium selenite and selenate exclusively induced necrosis in a concentration-dependent manner in all cell types investigated. In primary murine hepatocytes, the EC50 was 20 microM for selenite, 270 microM for selenate, and 30 microM for Se-methionine. In the human carcinoma cell line HepG2, the EC50 for selenite was 40 microM, and for selenate 1.1 mM, whereas Se-methionine was essentially non-toxic up to 10 mM. Similar results were found in murine Hepa1-6 cells. Exposure of primary murine cells to selenate or selenite resulted in increased lipid peroxidation. Toxicity was inhibited by superoxide dismutase plus catalase, indicating an important role for reactive oxygen intermediates. In primary hepatocytes, metabolical depletion of intracellular ATP by the ketohexose tagatose, significantly decreased the cytotoxicity of Se-methionine, while the one of selenite was increased. These data do not provide any in vitro evidence that bioavailable selenium compounds induce preferentially apoptotic cell death or selectively kill transformed hepatocytes.
Collapse
Affiliation(s)
- Markus Weiller
- Biochemical Pharmacology, Faculty of Biology, University of Konstanz, M668, D-78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
119
|
Strub MP, Hoh F, Sanchez JF, Strub JM, Böck A, Aumelas A, Dumas C. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 2004; 11:1359-67. [PMID: 14604526 DOI: 10.1016/j.str.2003.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A protocol for the quantitative incorporation of both selenomethionine and selenocysteine into recombinant proteins overexpressed in Escherichia coli is described. This methodology is based on the use of a suitable cysteine auxotrophic strain and a minimal medium supplemented with selenium-labeled methionine and cysteine. The proteins chosen for these studies are the cathelin-like motif of protegrin-3 and a nucleoside-diphosphate kinase. Analysis of the purified proteins by electrospray mass spectrometry and X-ray crystallography revealed that both cysteine and methionine residues were isomorphously replaced by selenocysteine and selenomethionine. Moreover, selenocysteines allowed the formation of unstrained and stable diselenide bridges in place of the canonical disulfide bonds. In addition, we showed that NDP kinase contains a selenocysteine adduct on Cys122. This novel selenium double-labeling method is proposed as a general approach to increase the efficiency of the MAD technique used for phase determination in protein crystallography.
Collapse
Affiliation(s)
- Marie Paule Strub
- Centre de Biochimie Structurale, UMR CNRS 5048, UMR 554 INSERM, Université Montpellier I, 34090 Cedex, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
120
|
Gladyshev VN, Kryukov GV, Fomenko DE, Hatfield DL. IDENTIFICATION OF TRACE ELEMENT–CONTAINING PROTEINS IN GENOMIC DATABASES. Annu Rev Nutr 2004; 24:579-96. [PMID: 15189132 DOI: 10.1146/annurev.nutr.24.012003.132241] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of bioinformatics tools provided researchers with the ability to identify full sets of trace element-containing proteins in organisms for which complete genomic sequences are available. Recently, independent bioinformatics methods were used to identify all, or almost all, genes encoding selenocysteine-containing proteins in human, mouse, and Drosophila genomes, characterizing entire selenoproteomes in these organisms. It also should be possible to search for entire sets of other trace element-associated proteins, such as metal-containing proteins, although methods for their identification are still in development.
Collapse
Affiliation(s)
- Vadim N Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.
| | | | | | | |
Collapse
|
121
|
Matsugi J, Murao K. Genomic investigation of the system for selenocysteine incorporation in the bacterial domain. ACTA ACUST UNITED AC 2004; 1676:23-32. [PMID: 14732487 DOI: 10.1016/j.bbaexp.2003.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The elucidation of nearly 100 bacterial genomes has made it possible to categorize them into two groups, according to the presence or absence of a selenocysteine (Sec) tRNA. In the group with the tRNA, a Sec incorporation system like that of Escherichia coli would be expected. However, for the other group, the following question has been left unsolved. Is it reasonable to assume that bacteria without the tRNA lack the entire Sec system, and do such bacteria exist commonly? To explore it experimentally, we chose Bacillus subtilis, a representative eubacterium for which a Sec tRNA has not been found. First, we reviewed the genome to search for the tRNA gene. Second, we examined the possible expression of an unknown tRNA. Third, we examined Sec-related enzymes and proteins in B. subtilis cell extracts. Fourth, the B. subtilis and E. coli seryl-tRNA synthetases were expressed, and the specificity was analyzed. Consequently, all of the data showed negative results about the existence of the Sec system in B. subtilis. Additionally, we discuss the possibility of predicting the existence or absence of the system in each bacterial organism by using the Sec tRNA and seryl-tRNA synthetase as indicators.
Collapse
Affiliation(s)
- Jitsuhiro Matsugi
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical School, 3311-1 Yakushiji Minamikawachi-machi, Kawachi-gun, Tochigi 329-0498, Japan.
| | | |
Collapse
|
122
|
Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH, Schirmer RH, Arnér ESJ. Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci U S A 2003; 100:12618-23. [PMID: 14569031 PMCID: PMC240667 DOI: 10.1073/pnas.2134510100] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Indexed: 11/18/2022] Open
Abstract
Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.
Collapse
Affiliation(s)
- Stephan Gromer
- Biochemie-Zentrum Heidelberg, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Rao M, Carlson BA, Novoselov SV, Weeks DP, Gladyshev VN, Hatfield DL. Chlamydomonas reinhardtii selenocysteine tRNA[Ser]Sec. RNA (NEW YORK, N.Y.) 2003; 9:923-30. [PMID: 12869703 PMCID: PMC1370458 DOI: 10.1261/rna.5510503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Accepted: 05/07/2003] [Indexed: 05/19/2023]
Abstract
Eukaryotic selenocysteine (Sec) protein insertion machinery was thought to be restricted to animals, but the occurrence of both Sec-containing proteins and the Sec insertion system was recently found in Chlamydomonas reinhardtii, a member of the plant kingdom. Herein, we used RT-PCR to determine the sequence of C. reinhardtii Sec tRNA[Ser]Sec, the first non-animal eukaryotic Sec tRNA[Ser]Sec sequence. Like its animal counterpart, it is 90 nucleotides in length, is aminoacylated with serine by seryl-tRNA synthetase, and decodes specifically UGA. Evolutionary analyses of known Sec tRNAs identify the C. reinhardtii form as the most diverged eukaryotic Sec tRNA[Ser]Sec and reveal a common origin for this tRNA in bacteria, archaea, and eukaryotes.
Collapse
Affiliation(s)
- Mahadev Rao
- Section on the Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
124
|
Sancak B, Ünal A, Candan S, Coşkun U, Günel N. Association between oxidative stress and selenium levels in patients with breast cancer at different clinical stages. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/jtra.10030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
125
|
Bell EA. Nonprotein amino acids of plants: significance in medicine, nutrition, and agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2854-65. [PMID: 12720365 DOI: 10.1021/jf020880w] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Those nonprotein amino acids found in food and fodder plants and known to be toxic to man and domestic animals are described. These include toxins from many legume genera including Lathyrus, from other higher plant families, from seaweeds, and from fungi. Some inhibit protein synthesis, while others are incorporated into proteins with toxic effects. Basic processes such as urea synthesis and neurotransmission may be disrupted. The probable roles of nonprotein amino acids in protecting plants against predators, pathogens, and competing plant species are considered. The need to learn more of the nutritive value of nontoxic nonprotein amino acids and to explore the potential of others either as drugs or as leads to drugs in human and veterinary medicine is emphasized.
Collapse
Affiliation(s)
- E Arthur Bell
- Neurodegenerative Diseases Research Centre, Hodgkin Building, Guy's Campus, King's College London, London SE1 1UL, U.K
| |
Collapse
|
126
|
Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH. Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. PLANT PHYSIOLOGY 2003; 131:1250-7. [PMID: 12644675 PMCID: PMC166885 DOI: 10.1104/pp.102.014639] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 10/10/2002] [Accepted: 11/27/2002] [Indexed: 05/18/2023]
Abstract
Selenium (Se) toxicity is thought to be due to nonspecific incorporation of selenocysteine (Se-Cys) into proteins, replacing Cys. In an attempt to direct Se flow away from incorporation into proteins, a mouse (Mus musculus) Se-Cys lyase (SL) was expressed in the cytosol or chloroplasts of Arabidopsis. This enzyme specifically catalyzes the decomposition of Se-Cys into elemental Se and alanine. The resulting SL transgenics were shown to express the mouse enzyme in the expected intracellular location, and to have SL activities up to 2-fold (cytosolic lines) or 6-fold (chloroplastic lines) higher than wild-type plants. Se incorporation into proteins was reduced 2-fold in both types of SL transgenics, indicating that the approach successfully redirected Se flow in the plant. Both the cytosolic and chloroplastic SL plants showed enhanced shoot Se concentrations, up to 1.5-fold compared with wild type. The cytosolic SL plants showed enhanced tolerance to Se, presumably because of their reduced protein Se levels. Surprisingly, the chloroplastic SL transgenics were less tolerant to Se, indicating that (over) production of elemental Se in the chloroplast is toxic. Expression of SL in the cytosol may be a useful approach for the creation of plants with enhanced Se phytoremediation capacity.
Collapse
Affiliation(s)
- Marinus Pilon
- Department of Biology, Colorado State University, Anatomy/Zoology Building, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 2003; 100:1990-5. [PMID: 12566566 PMCID: PMC149946 DOI: 10.1073/pnas.0337704100] [Citation(s) in RCA: 1061] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3,308,274-bp sequence of the chromosome of Lactobacillus plantarum strain WCFS1, a single colony isolate of strain NCIMB8826 that was originally isolated from human saliva, has been determined, and contains 3,052 predicted protein-encoding genes. Putative biological functions could be assigned to 2,120 (70%) of the predicted proteins. Consistent with the classification of L. plantarum as a facultative heterofermentative lactic acid bacterium, the genome encodes all enzymes required for the glycolysis and phosphoketolase pathways, all of which appear to belong to the class of potentially highly expressed genes in this organism, as was evident from the codon-adaptation index of individual genes. Moreover, L. plantarum encodes a large pyruvate-dissipating potential, leading to various end-products of fermentation. L. plantarum is a species that is encountered in many different environmental niches, and this flexible and adaptive behavior is reflected by the relatively large number of regulatory and transport functions, including 25 complete PTS sugar transport systems. Moreover, the chromosome encodes >200 extracellular proteins, many of which are predicted to be bound to the cell envelope. A large proportion of the genes encoding sugar transport and utilization, as well as genes encoding extracellular functions, appear to be clustered in a 600-kb region near the origin of replication. Many of these genes display deviation of nucleotide composition, consistent with a foreign origin. These findings suggest that these genes, which provide an important part of the interaction of L. plantarum with its environment, form a lifestyle adaptation region in the chromosome.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The biochemistry of selenium-containing natural products, including selenoproteins, is reviewed up to May 2002. Particular emphasis is placed on the assimilation of selenium from inorganic and organic selenium sources for selenoprotein synthesis, the catalytic role of selenium in enzymes, and medical implications of an unbalanced selenium supply. The review contains 393 references on key discoveries and recent progress.
Collapse
Affiliation(s)
- Marc Birringer
- Dept. of Vitamins and Atherosclerosis, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | | | |
Collapse
|
129
|
Abstract
My undergraduate education at Cornell University was followed by graduate studies on methane fermentations under the guidance of H.A. Barker at the University of California, Berkeley. My Ph.D. degree was granted in June 1949. Two anaerobic microorganisms isolated from the mud flats of San Francisco Bay served as sources of biochemical research material for later studies at the National Institutes of Health in Bethesda. These organisms, Methanococcus vannielii and Clostridium sticklandii, proved to be especially rich sources of selenium-dependent enzymes and seleno-tRNAs. New B12 coenzyme-dependent enzymes that catalyzed intermediate steps in the anaerobic conversion of lysine to fatty acids and ammonia were isolated from C. sticklandii and characterized. My research efforts since 1970 have dealt primarily with various aspects of selenium biochemistry. We have shown that selenium is an essential constituent of several enzymes in prokaryotes. Se is present in these either as a selenocysteine residue in the protein or alternatively, in a few molybdoenzymes, as a component of a bound cofactor. Recent studies with a human adenocarcinoma cell line led to the unexpected discovery that selenocysteine occurs in mammalian thioredoxin reductase. The selenium located in a redox center of this enzyme is essential for catalytic activity.
Collapse
Affiliation(s)
- Thressa Campbell Stadtman
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA.
| |
Collapse
|
130
|
Pilon-Smits EAH, Garifullina GF, Abdel-Ghany S, Kato SI, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M. Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. PLANT PHYSIOLOGY 2002; 130:1309-18. [PMID: 12427997 PMCID: PMC166651 DOI: 10.1104/pp.102.010280] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Revised: 06/28/2002] [Accepted: 07/04/2002] [Indexed: 05/18/2023]
Abstract
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5' phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.
Collapse
|
131
|
Suzuki KT, Ogra Y. Metabolic pathway for selenium in the body: speciation by HPLC-ICP MS with enriched Se. FOOD ADDITIVES AND CONTAMINANTS 2002; 19:974-83. [PMID: 12443560 DOI: 10.1080/02652030210153578] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Selenium (Se) is an ultramicro essential nutrient and both inorganic (selenite and selenate) and organic (selenocysteine and selenomethionine) forms of Se can be used as nutritional sources. Metabolic pathways for Se in the body were studied for selenite and selenate, with the use of enriched 82Se, by speciation with separation by gel filtration HPLC and detection by element-specific mass spectrometry with ionization with inductively coupled argon plasma (HPLC-ICP MS). The concentrations of 82Se in organs and body fluids and the distributions of their constituents depending on the dose and time after the intravenous administration of 82Se-selenite and -selenate to rats were determined. Selenite was taken up by red blood cells within several minutes, reduced to selenide by glutathione, and then transported to the plasma, bound selectively to albumin and transferred to the liver. Contrary to selenite, intact selenate was either taken up directly by the liver or excreted into the urine. The 82Se of selenite origin and that of selenate origin were detected in the forms of the two Se peak materials in the liver, A and B. The former one was methylated to the latter in vivo and in vitro. The latter one was identical with the major urinary metabolite and it was identified as Se-methyl-N-acetyl-selenohexosamine (selenosugar). The chemical species-specific metabolic pathway for Se was explained by the metabolic regulation through selenide as the assumed common intermediate for the inorganic and organic Se sources and as the checkpoint metabolite between utilization for the selenoprotein synthesis and methylation for the excretion of Se.
Collapse
Affiliation(s)
- K T Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan.
| | | |
Collapse
|
132
|
Kyriakopoulos A, Behne D. Selenium-containing proteins in mammals and other forms of life. Rev Physiol Biochem Pharmacol 2002; 145:1-46. [PMID: 12224526 DOI: 10.1007/bfb0116430] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Kyriakopoulos
- Hahn-Meitner-Institut Berlin, Department Molecular Trace Element Research in the Life Sciences, Glienicker Str. 100, 14109 Berlin, Germany
| | | |
Collapse
|
133
|
Mizutani T, Osaka T, Ito Y, Kanou M, Usui T, Sone Y, Totsuka T. pGp as the main product of bovine tRNA kinase. Mol Biol Rep 2002; 29:293-300. [PMID: 12463422 DOI: 10.1023/a:1020423705963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the Ser-tRNAs, Ser-tRNA(Sec), is converted to Sec-tRNA(Sec) by Sec synthase. This Ser-tRNA(Sec) is also converted to phosphoser-tRNA(Sec) by tRNA kinase. In this study, we analyzed of the products of phosphorylation with tRNA kinase. [3H]Ser-tRNA(Sec) purified on Sephacryl S-200 was phosphorylated with [gamma-32P]ATP by tRNA kinase. The product [32P][3H]phosphoser-tRNA was purified on Sephacryl S-200 and hydrolyzed with ribonuclease T2. The chromatogram of this hydrolyzate on DEAE-cellulose in 7 M urea buffer showed four peaks. The first peak of the pass-through fraction was seryl-adenosine liberated from the 3'-terminal of the tRNA. The second peak, eluted before the third peak containing inorganic phosphate, was phosphoseryl-adenosine. The major compound in the fourth peak was pGp. As a control experiment, non-acylated tRNA(Sec) was used as a substrate of phosphorylation and the product was analyzed. The chromatogram of the digest with ribonuclease T2 showed no peak of phosphoseryl-adenosine, but a peak of pGp was seen with the peak of inorganic phosphate. Thus, the major product in the presence of tRNA kinase was pGp, and a small but significant proportion of the radioactivity was found as phosphoserine in the presence of seryl residue on the 3'-CCA terminal of tRNA(Sec). These results indicated that tRNA kinase phosphorylates not only Ser-tRNA to phosphoser-tRNA but also Gp of the 5'-termini of tRNA to pGp. This study gives a new role to mammalian tRNA kinase.
Collapse
Affiliation(s)
- Takaharu Mizutani
- Department of Drug Metabolism and Disposition, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603 Japan.
| | | | | | | | | | | | | |
Collapse
|
134
|
Kryukov GV, Gladyshev VN. Mammalian selenoprotein gene signature: identification and functional analysis of selenoprotein genes using bioinformatics methods. Methods Enzymol 2002; 347:84-100. [PMID: 11898441 DOI: 10.1016/s0076-6879(02)47010-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gregory V Kryukov
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | |
Collapse
|
135
|
MESH Headings
- Animals
- Base Sequence
- Cattle
- Chromatography, Liquid
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- HL-60 Cells
- Humans
- In Vitro Techniques
- Liver/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteins/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/isolation & purification
- Selenocysteine/genetics
- Selenocysteine/metabolism
- Selenoproteins
Collapse
Affiliation(s)
- Bradley A Carlson
- Section on Molecular Biology of Selenium, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
136
|
Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN. Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 2002; 21:3681-93. [PMID: 12110581 PMCID: PMC126117 DOI: 10.1093/emboj/cdf372] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Known eukaryotic selenocysteine (Sec)-containing proteins are animal proteins, whereas selenoproteins have not been found in yeast and plants. Surprisingly, we detected selenoproteins in a member of the plant kingdom, Chlamydomonas reinhardtii, and directly identified two of them as phospholipid hydroperoxide glutathione peroxidase and selenoprotein W homologs. Moreover, a selenocysteyl-tRNA was isolated that recognized specifically the Sec codon UGA. Subsequent gene cloning and bioinformatics analyses identified eight additional selenoproteins, including methionine-S-sulfoxide reductase, a selenoprotein specific to Chlamydomonas: Chlamydomonas selenoprotein genes contained selenocysteine insertion sequence (SECIS) elements that were similar, but not identical, to those of animals. These SECIS elements could direct selenoprotein synthesis in mammalian cells, indicating a common origin of plant and animal Sec insertion systems. We found that selenium is required for optimal growth of Chlamydomonas: Finally, evolutionary analyses suggested that selenoproteins present in Chlamydomonas and animals evolved early, and were independently lost in land plants, yeast and some animals.
Collapse
Affiliation(s)
| | - Mahadev Rao
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 and
Section on the Molecular Biology of Selenium, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | | | - Huijun Zhi
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 and
Section on the Molecular Biology of Selenium, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | | | | | | | - Dolph L. Hatfield
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 and
Section on the Molecular Biology of Selenium, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Vadim N. Gladyshev
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588 and
Section on the Molecular Biology of Selenium, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|
137
|
Affiliation(s)
- Dolph L Hatfield
- Molecular Biology of Selenium Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
138
|
Jacquin-Becker C, Ahel I, Ambrogelly A, Ruan B, Söll D, Stathopoulos C. Cysteinyl-tRNA formation and prolyl-tRNA synthetase. FEBS Lett 2002; 514:34-6. [PMID: 11904177 DOI: 10.1016/s0014-5793(02)02331-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aminoacyl-tRNA (AA-tRNA) formation is a key step in protein biosynthesis. This reaction is catalyzed with remarkable accuracy by the AA-tRNA synthetases, a family of 20 evolutionarily conserved enzymes. The lack of cysteinyl-tRNA (Cys-tRNA) synthetase in some archaea gave rise to the discovery of the archaeal prolyl-tRNA (Pro-tRNA) synthetase, an enzyme capable of synthesizing Pro-tRNA and Cys-tRNA. Here we review our current knowledge of this fascinating process.
Collapse
Affiliation(s)
- Clarisse Jacquin-Becker
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
In two Escherichia coli genomes, laboratory strain K-12 and pathological strain O157:H7, tandem termination codons as a group are slightly over-represented as termination signals. Individually however, they span the range of representations, over, as expected, or under, in one or both of the strains. In vivo, tandem termination codons do not make more efficient signals. The second codon can act as a backstop where readthrough of the first has occurred, but not at the expected efficiency. UGAUGA remains an enigma, highly over-represented, but with the second UGA a relatively inefficient back up stop codon.
Collapse
Affiliation(s)
- Louise L Major
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
140
|
Mansell JB, Guévremont D, Poole ES, Tate WP. A dynamic competition between release factor 2 and the tRNA(Sec) decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H. EMBO J 2001; 20:7284-93. [PMID: 11743004 PMCID: PMC125778 DOI: 10.1093/emboj/20.24.7284] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Factors affecting competition between termination and elongation in vivo during translation of the fdhF selenocysteine recoding site (UGA) were studied with wild-type and modified fdhF sequences. Altering sequences surrounding the recoding site UGA without affecting RNA secondary structure indicated that the kinetics of stop signal decoding have a significant influence on selenocysteine incorporation efficiency. The UGA in the wild-type fdhF sequence remains 'visible' to the factor and forms a site-directed cross-link when mRNA stem-loop secondary structure is absent, but not when it is present. The timing of the secondary structure unfolding during translation may be a critical feature of competition between release factor 2 and tRNA(Sec) for decoding UGA. Increasing the cellular concentration of either of these decoding molecules for termination or selenocysteine incorporation showed that they were able to compete for UGA by a kinetic competition that is dynamic and dependent on the Escherichia coli growth rate. The tRNA(Sec)-mediated decoding can compete more effectively for the UGA recoding site at lower growth rates, consistent with anaerobic induction of fdhF expression.
Collapse
Affiliation(s)
| | | | | | - Warren P. Tate
- Department of Biochemistry and Centre for Gene Research, University of Otago, PO Box 56, Dunedin, New Zealand
Corresponding author e-mail:
| |
Collapse
|
141
|
Abstract
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.
Collapse
Affiliation(s)
- J Nordberg
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
142
|
Morey M, Serras F, Baguñà J, Hafen E, Corominas M. Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster. Dev Biol 2001; 238:145-56. [PMID: 11784000 DOI: 10.1006/dbio.2001.0389] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.
Collapse
Affiliation(s)
- M Morey
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain
| | | | | | | | | |
Collapse
|
143
|
Suzuki KT, Ogra Y. Metabolism of Selenium and its Interaction with Mercury: Mechanisms by a Speciation Study. PHOSPHORUS SULFUR 2001. [DOI: 10.1080/10426500108046631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
144
|
Kollmus H, Hauser H. Frameshifting assay to characterize RNA-protein interactions in eukaryotic cells. Methods Enzymol 2001; 318:363-74. [PMID: 10889999 DOI: 10.1016/s0076-6879(00)18063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- H Kollmus
- Department of Gene Regulation and Differentiation, GBR-German Research Center for Biotechnology, Braunschweig, Germany
| | | |
Collapse
|
145
|
Bertram G, Innes S, Minella O, Richardson JP, Stansfield I. Endless possibilities: translation termination and stop codon recognition. MICROBIOLOGY (READING, ENGLAND) 2001; 147:255-269. [PMID: 11158343 DOI: 10.1099/00221287-147-2-255] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gwyneth Bertram
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Shona Innes
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Odile Minella
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Jonathan P Richardson
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Ian Stansfield
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| |
Collapse
|
146
|
|
147
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
148
|
Engelberg-Kulka H, Liu Z, Li C, Reches M. An extended Escherichia coli "selenocysteine insertion sequence" (SECIS) as a multifunctional RNA structure. Biofactors 2001; 14:61-8. [PMID: 11568441 DOI: 10.1002/biof.5520140109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genetic code, once thought to be rigid, has been found to permit several alternatives in its reading. Interesting alternative relates to the function of the UGA codon. Usually, it acts as a stop codon, but it can also direct the incorporation of the amino acid selenocysteine into a polypeptide. UGA-directed selenocysteine incorporation requires a cis-acting mRNA element called the "selenocysteine insertion sequence" (SECIS) that can form a stem-loop RNA structure. Here we discuss our investigation on the E. coli SECIS. This includes the follows: 1) The nature of the minimal E. coli SECIS. We found that in E. coli only the upper-stem and loop of 17 nucleotides of the SECIS is necessary for selenocysteine incorporation on the condition that it is located in the proper distance from the UGA [34]; 2) The upper stem and loop structure carries a bulged U residue that is required for selenocysteine incorporation [34] because of its interaction with SelB; and 3) We described an extended fdhF SECIS that includes the information for an additional function: The prevention of UGA readthrough under conditions of selenium deficiency [35]. This information is contained in a short mRNA region consisting of a single C residue adjacent to the UGA on its downstream side, and an additional segment consisting of the six nucleotides immediately upstream from it. These two regions act independently and additively and probably through different mechanisms. The single C residue acts as itself; the upstream region acts at the level of the two amino acids, arginine and valine, for which it codes. These two codons at the 5' side of the UGA correspond to the ribosomal E and P sites. Finally, we present a model for the E. coli fdhF SECIS as a multifunctional RNA structure containing three functional elements. Depending on the availability of selenium the SECIS enables one of two alternatives for the translational machinery: Either selenocysteine incorporation into a polypeptide or termination of the polypeptide chain.
Collapse
Affiliation(s)
- H Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
149
|
Serras F, Morey M, Alsina B, Baguñà J, Corominas M. The Drosophila selenophosphate synthetase (selD) gene is required for development and cell proliferation. Biofactors 2001; 14:143-9. [PMID: 11568451 DOI: 10.1002/biof.5520140119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To study the function of selenoproteins in development and growth we have used a lethal mutation (selD(ptuf)) of the Drosophila homologous selenophosphate synthetase (selD) gene. This enzyme is involved in the selenoprotein biosynthesis. The selD(ptuf) loss-of-function mutation causes aberrant cell proliferation and differentiation patterns in the brain and imaginal discs, as deduced from genetic mosaics, patterns of gene expression and analysis of cell cycle markers. In addition to that, selenium metabolism is also necessary for the ras/MAPKinase signal tansduction pathway. Therefore, the use of Drosophila imaginal discs and brain and in particular the selD(ptuf) mutation, provide an excellent model to investigate the role of selenoproteins in the regulation of cell proliferation, growth and differentiation.
Collapse
Affiliation(s)
- F Serras
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
150
|
Li WJ, Feng H, Fan JH, Zhang RQ, Zhao NM, Liu JY. Molecular cloning and expression of a phospholipid hydroperoxide glutathione peroxidase homolog in Oryza sativa. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1493:225-30. [PMID: 10978528 DOI: 10.1016/s0167-4781(00)00152-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase (PHGPX) was isolated from rice using rapid amplification of cDNA ends. This cDNA, designated ricPHGPX, includes an open reading frame encoding a protein of 169 amino acids which shares about 60% and 50% amino acid sequence identity with plant and mammalian PHGPXs, respectively. The gene is expressed at a relative high level in flag leaves and the expression can be markedly induced by oxidative stress, suggesting that the product of the gene plays a key role in defense against oxidative damage in rice.
Collapse
Affiliation(s)
- W J Li
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | | | |
Collapse
|