101
|
Caldwell KL, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthritis Cartilage 2015; 23:351-62. [PMID: 25450846 PMCID: PMC4339504 DOI: 10.1016/j.joca.2014.11.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/02/2014] [Accepted: 11/01/2014] [Indexed: 02/02/2023]
Abstract
Clinical efforts to repair damaged articular cartilage (AC) currently face major obstacles due to limited intrinsic repair capacity of the tissue and unsuccessful biological interventions. This highlights a need for better therapeutic strategies. This review summarizes the recent advances in the field of cell-based AC repair. In both animals and humans, AC defects that penetrate into the subchondral bone marrow are mainly filled with fibrocartilaginous tissue through the differentiation of bone marrow mesenchymal stem cells (MSCs), followed by degeneration of repaired cartilage and osteoarthritis (OA). Cell therapy and tissue engineering techniques using culture-expanded chondrocytes, bone marrow MSCs, or pluripotent stem cells with chondroinductive growth factors may generate cartilaginous tissue in AC defects but do not form hyaline cartilage-based articular surface because repair cells often lose chondrogenic activity or result in chondrocyte hypertrophy. The new evidence that AC and synovium develop from the same pool of precursors with similar gene profiles and that synovium-derived chondrocytes have stable chondrogenic activity has promoted use of synovium as a new cell source for AC repair. The recent finding that NFAT1 and NFAT2 transcription factors (TFs) inhibit chondrocyte hypertrophy and maintain metabolic balance in AC is a significant advance in the field of AC repair. The use of synovial MSCs and discovery of upstream transcriptional regulators that help maintain the AC phenotype have opened new avenues to improve the outcome of AC regeneration.
Collapse
Affiliation(s)
| | - Jinxi Wang
- Corresponding Author: Jinxi Wang, Address: University of Kansas Medical Center, Department of Orthopedic Surgery, 3901 Rainbow Blvd., Mail Stop 3017, Kansas City, KS 66160, USA, Phone: +1 913-588-0870, Fax: +1 913-945-7773,
| |
Collapse
|
102
|
Andrographolide enhances proliferation and prevents dedifferentiation of rabbit articular chondrocytes: an in vitro study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:984850. [PMID: 25802548 PMCID: PMC4353662 DOI: 10.1155/2015/984850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022]
Abstract
As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO) was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P < 0.05). DNA content and glycosaminoglycan (GAG) /DNA were, respectively, improved in ANDRO groups comparing to the control (P < 0.05). ANDRO could promote expression of aggrecan, collagen II, and Sox9 genes while downregulating expression of collagen I gene (P < 0.05). Furthermore, hypertrophy that may result in chondrocyte ossification could not be detected in all groups (P > 0.05). The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.
Collapse
|
103
|
Millimeter Wave Treatment Inhibits Apoptosis of Chondrocytes via Regulation Dynamic Equilibrium of Intracellular Free Ca (2+). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:464161. [PMID: 25705239 PMCID: PMC4325209 DOI: 10.1155/2015/464161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms of TNF-α-induced apoptosis of chondrocyte and the role of Ca(2+) mediating the effects of MW on TNF-α-induced apoptosis of chondrocytes remained unclear. In this study, we investigated the molecular mechanism underlying inhibiting TNF-α-induced chondrocytes apoptosis of MW. MTT assay, DAPI, and flow cytometry demonstrated that MW significantly increased cell activity and inhibited chromatin condensation accompanying the loss of plasma membrane asymmetry and the collapse of mitochondrial membrane potential. Our results also indicated that MW reduced the elevation of [Ca(2+)] i in chondrocytes by LSCM. Moreover, MW suppressed the protein levels of calpain, Bax, cytochrome c, and caspase-3, while the expressions of Bcl-2, collagen II, and aggrecan were increased. Our evidences indicated that MW treatment inhibited the apoptosis of chondrocytes through depression of [Ca(2+)] i . It also inhibited calpain activation, which mediated Bax cleavage and cytochrome c release and initiated the apoptotic execution phase. In addition, MW treatment increased the expression of collagen II and aggrecan of chondrocytes.
Collapse
|
104
|
3D dynamic culture of rabbit articular chondrocytes encapsulated in alginate gel beads using spinner flasks for cartilage tissue regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:539789. [PMID: 25506593 PMCID: PMC4260432 DOI: 10.1155/2014/539789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 11/17/2022]
Abstract
Cell-based therapy using chondrocytes for cartilage repair suffers from chondrocyte dedifferentiation. In the present study, the effects of an integrated three-dimensional and dynamic culture on rabbit articular chondrocytes were investigated. Cells (passages 1 and 4) were encapsulated in alginate gel beads and cultured in spinner flasks in chondrogenic and chondrocyte growth media. Subcutaneous implantation of the cell-laden beads was performed to evaluate the ectopic chondrogenesis. It was found that cells remained viable after 35 days in the three-dimensional dynamic culture. Passage 1 cells demonstrated a proliferative growth in both media. Passage 4 cells showed a gradual reduction in DNA content in growth medium, which was attenuated in chondrogenic medium. Deposition of glycosaminoglycans (GAG) was found in all cultures. While passage 1 cells generally produced higher amounts of GAG than passage 4 cells, GAG/DNA became similar on day 35 for both cells in growth media. Interestingly, GAG/DNA in growth medium was greater than that in chondrogenic medium for both cells. Based on GAG quantification and gene expression analysis, encapsulated passage 1 cells cultured in growth medium displayed the best ectopic chondrogenesis. Taken together, the three-dimensional and dynamic culture for chondrocytes holds great potential in cartilage regeneration.
Collapse
|
105
|
Tseng A, Pomerantseva I, Cronce MJ, Kimura AM, Neville CM, Randolph MA, Vacanti JP, Sundback CA. Extensively Expanded Auricular Chondrocytes Form Neocartilage In Vivo. Cartilage 2014; 5:241-51. [PMID: 26069703 PMCID: PMC4335768 DOI: 10.1177/1947603514546740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Our goal was to engineer cartilage in vivo using auricular chondrocytes that underwent clinically relevant expansion and using methodologies that could be easily translated into health care practice. DESIGN Sheep and human chondrocytes were isolated from auricular cartilage biopsies and expanded in vitro. To reverse dedifferentiation, expanded cells were either mixed with cryopreserved P0 chondrocytes at the time of seeding onto porous collagen scaffolds or proliferated with basic fibroblast growth factor (bFGF). After 2-week in vitro incubation, seeded scaffolds were implanted subcutaneously in nude mice for 6 weeks. The neocartilage quality was evaluated histologically; DNA and glycosaminoglycans were quantified. Cell proliferation rates and collagen gene expression profiles were assessed. RESULTS Clinically sufficient over 500-fold chondrocyte expansion was achieved at passage 3 (P3); cell dedifferentiation was confirmed by the simultaneous COL1A1/3A1 gene upregulation and COL2A1 downregulation. The chondrogenic phenotype of sheep but not human P3 cells was rescued by addition of cryopreserved P0 chondrocytes. With bFGF supplementation, chondrocytes achieved clinically sufficient expansion at P2; COL2A1 expression was not rescued but COL1A1/3A1genes were downregulated. Although bFGF failed to rescue COL2A1 expression during chondrocyte expansion in vitro, elastic neocartilage with obvious collagen II expression was observed on porous collagen scaffolds after implantation in mice for 6 weeks. CONCLUSIONS Both animal and human auricular chondrocytes expanded with low-concentration bFGF supplementation formed high-quality elastic neocartilage on porous collagen scaffolds in vivo.
Collapse
Affiliation(s)
- Alan Tseng
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Irina Pomerantseva
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Michael J. Cronce
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Anya M. Kimura
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Craig M. Neville
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mark A. Randolph
- Harvard Medical School, Boston, MA, USA,Plastic Surgery Research Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph P. Vacanti
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Cathryn A. Sundback
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
106
|
Jagielski M, Wolf J, Marzahn U, Völker A, Lemke M, Meier C, Ertel W, Godkin O, Arens S, Schulze-Tanzil G. The influence of IL-10 and TNFα on chondrogenesis of human mesenchymal stromal cells in three-dimensional cultures. Int J Mol Sci 2014; 15:15821-44. [PMID: 25207597 PMCID: PMC4200793 DOI: 10.3390/ijms150915821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022] Open
Abstract
Chondrogenic differentiated mesenchymal stromal cells (MSCs) are a promising cell source for articular cartilage repair. This study was undertaken to determine the effectiveness of two three-dimensional (3D) culture systems for chondrogenic MSC differentiation in comparison to primary chondrocytes and to assess the effect of Interleukin (IL)-10 and Tumor Necrosis Factor (TNF)α on chondrogenesis by MSCs in 3D high-density (H-D) culture. MSCs were isolated from femur spongiosa, characterized using a set of typical markers and introduced in scaffold-free H-D cultures or non-woven polyglycolic acid (PGA) scaffolds for chondrogenic differentiation. H-D cultures were stimulated with recombinant IL-10, TNFα, TNFα + IL-10 or remained untreated. Gene and protein expression of type II collagen, aggrecan, sox9 and TNFα were examined. MSCs expressed typical cell surface markers and revealed multipotency. Chondrogenic differentiated cells expressed cartilage-specific markers in both culture systems but to a lower extent when compared with articular chondrocytes. Chondrogenesis was more pronounced in PGA compared with H-D culture. IL-10 and/or TNFα did not impair the chondrogenic differentiation of MSCs. Moreover, in most of the investigated samples, despite not reaching significance level, IL-10 had a stimulatory effect on the type II collagen, aggrecan and TNFα expression when compared with the respective controls.
Collapse
Affiliation(s)
- Michal Jagielski
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Johannes Wolf
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Ulrike Marzahn
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Anna Völker
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Marion Lemke
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Carola Meier
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Wolfgang Ertel
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Owen Godkin
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Stephan Arens
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| | - Gundula Schulze-Tanzil
- Department for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Garystrasse 5, Germany.
| |
Collapse
|
107
|
MR cartilage imaging in assessment of the regenerative power of autologous peripheral blood stem cell injection in knee osteoarthritis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2014. [DOI: 10.1016/j.ejrnm.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
108
|
Effect of JEZTC, a synthetic compound, on proliferation and phenotype maintenance of rabbit articular chondrocytes in vitro. In Vitro Cell Dev Biol Anim 2014; 50:982-91. [DOI: 10.1007/s11626-014-9795-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
|
109
|
Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:641-54. [PMID: 24834484 DOI: 10.1089/ten.teb.2014.0034] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage exhibits an inherently low rate of regeneration. Consequently, damage to articular cartilage often requires surgical intervention. However, existing treatments generally result in the formation of fibrocartilage tissue, which is inferior to native articular cartilage. As a result, cartilage engineering strategies seek to repair or replace damaged cartilage with an engineered tissue that restores full functionality to the impaired joint. These strategies often involve the use of chondrocytes, yet in vitro expansion and culture can lead to undesirable changes in chondrocyte phenotype. This review focuses on the use of articular chondrocytes and mesenchymal stem cells (MSCs) in either monoculture or coculture for the enhancement of chondrogenesis. Coculture strategies increasingly outperform their monoculture counterparts with regard to chondrogenesis and present unique opportunities to attain chondrocyte phenotype stability in vitro. Methods to prevent chondrocyte dedifferentiation and promote chondrocyte redifferentiation as well as to promote the chondrogenic differentiation of MSCs while preventing MSC hypertrophy are discussed.
Collapse
Affiliation(s)
- Kelsea M Hubka
- Department of Bioengineering, Rice University , Houston, Texas
| | | | | | | | | |
Collapse
|
110
|
Five-year results of arthroscopic techniques for the treatment of acetabular chondral lesions in femoroacetabular impingement. INTERNATIONAL ORTHOPAEDICS 2014; 38:2057-64. [DOI: 10.1007/s00264-014-2403-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/30/2014] [Indexed: 01/29/2023]
|
111
|
Wang ZH, Li XL, He XJ, Wu BJ, Xu M, Chang HM, Zhang XH, Xing Z, Jing XH, Kong DM, Kou XH, Yang YY. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model. ACTA ACUST UNITED AC 2014; 47:279-86. [PMID: 24652327 PMCID: PMC4075291 DOI: 10.1590/1414-431x20133539] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific
transcription factor that plays essential roles in chondrocyte differentiation and
cartilage formation. The aim of this study was to investigate the feasibility of
genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical
cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from
human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were
untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The
cells were assessed for morphology and chondrogenic differentiation. The isolated
cells with a fibroblast-like morphology in monolayer culture were positive for the
MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers
CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9
overexpression induced accumulation of sulfated proteoglycans, without altering the
cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9
markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs
compared with empty vector-transfected counterparts. Reverse transcription-polymerase
chain reaction analysis further confirmed the elevation of aggrecan and type II
collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9
overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential
implications in cartilage tissue engineering.
Collapse
Affiliation(s)
- Z H Wang
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X L Li
- Department of Dermatology, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X J He
- Department of Orthopedics, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - B J Wu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - M Xu
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - H M Chang
- Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - X H Zhang
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Z Xing
- Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - X H Jing
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - D M Kong
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - X H Kou
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Y Y Yang
- Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
112
|
Cho SA, Cha SR, Park SM, Kim KH, Lee HG, Kim EY, Lee D, Khang G. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:625-40. [PMID: 24588773 DOI: 10.1080/09205063.2014.888304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells. Biodegradable synthetic polymer poly(lactic-co-glycolic acid) (PLGA) was approved by Food and Drug Administration. Hesperidin has antifungal, antiviral, antioxidant, anti-inflammatory, and anticarcinogenic properties. Hesperidin loaded (0, 3, 5, and 10 wt.%) PLGA scaffolds were prepared and in vitro and in vivo properties were characterized. Scaffolds were seeded with CCs isolated from rabbit, which were kept in culture to harvest for histological analysis. Hesperidin/PLGA scaffolds were also implanted in nude mice for 7 and 28 days. Assays of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfo-phenyl)-2H-tetrazolium, monosodium salt (WST), and scanning electron microscope were carried out to evaluate attachment and proliferation of CCs in hesperidin/PLGA scaffolds. Glycosaminoglycan assay was performed to confirm the effects of hesperidin on extracellular matrix formation. Reverse-transcriptase polymerase chain reaction was carried out to confirm the expression of the specific genes for CCs. In these results, we demonstrated that cell attachment and proliferation on hesperidin/PLGA scaffolds were more excellent compared with on PLGA scaffold. Specially, 5 wt.% hesperidin/PLGA scaffold represented the best results among other scaffolds. Thus, 5 wt.% hesperidin/PLGA scaffold will be applicable to tissue engineering cartilage.
Collapse
Affiliation(s)
- Sun Ah Cho
- a Department of BIN Fusion Technology, Department of Polymer Nano Science & Technology and Polymer Fusion Research Center , Chonbuk National University , 567, Beackje-daero, Deokjin, Jeonju 561-756 , Korea
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Kou L, Lu XW, Wu MK, Wang H, Zhang YJ, Sato S, Shen JF. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes. Biochem Biophys Res Commun 2014; 444:543-8. [PMID: 24486314 DOI: 10.1016/j.bbrc.2014.01.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/20/2014] [Indexed: 02/05/2023]
Abstract
Dedifferentiated fat (DFAT) cells derived from mature adipocytes have been considered to be a homogeneous group of multipotent cells, which present to be an alternative source of adult stem cells for regenerative medicine. However, many aspects of the cellular nature about DFAT cells remained unclarified. This study aimed to elucidate the basic characteristics of DFAT cells underlying their functions and differentiation potentials. By modified ceiling culture technique, DFAT cells were converted from human mature adipocytes from the human buccal fat pads. Flow cytometry analysis revealed that those derived cells were a homogeneous population of CD13(+) CD29(+) CD105(+) CD44(+) CD31(-) CD34(-) CD309(-) α-SMA(-) cells. DFAT cells in this study demonstrated tissue-specific differentiation properties with strong adipogenic but much weaker osteogenic capacity. Neither did they express endothelial markers under angiogenic induction.
Collapse
Affiliation(s)
- Liang Kou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Wen Lu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min-Ke Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Jiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Soh Sato
- School of Life Dentistry at Niigata, Nippon Dental University, Niigata 951-8580, Japan
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; School of Life Dentistry at Niigata, Nippon Dental University, Niigata 951-8580, Japan.
| |
Collapse
|
114
|
Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res 2013; 355:89-102. [PMID: 24178804 DOI: 10.1007/s00441-013-1732-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/05/2013] [Indexed: 02/05/2023]
Abstract
Human adipose-derived stromal cells (hASCs) possess the potential for chondrogenic differentiation. Recent studies imply that this differentiation process may be enhanced by culturing the cells in low oxygen tension in combination with three-dimensional (3D) scaffolds. We report the evaluation of the chondrogenic potential of hASC pellets in 5 and 21% O2 and as cell-scaffold constructs using a collagen I/III scaffold with chemical induction using TGF-β3. hASCs from four human donors were cultured both in a micromass pellet system and in 3D collagen I/III scaffolds in either 5 or 21% O2. Chondrogenesis was evaluated by quantitative gene expression analysis of aggrecan, SOX9, collagen I, II and X and histological evaluation with H&E and toluidine blue staining. Induced pellets cultured in 5% O2 showed increased peripheral cellularity and matrix deposition compared with 21% O2. Induced pellets cultured in 5% O2 had increased control-adjusted gene expression of aggrecan, SOX9 and collagen I and decreased collagen X compared with 21% O2 cultures. Induced pellets had higher gene expression of aggrecan, SOX9, collagen I, II and X and increased ratios of collagen II/I and collagen II/X compared with controls. As for pellets, scaffold cultures showed cellularity and matrix deposition organized in a zonal manner as a function of the oxygen tension, with a cartilage-like morphology and matrix deposition peripherally in the 5% O2 group and a more centrally located matrix in the 21% O2 group. There were no differences in histology and gene expressions between pellet and scaffold cultures. Five percent O2 in combination with chondrogenic culture medium stimulated chondrogenic differentiation of hASCs in vitro. We observed similar patterns of differentiation and matrix disposition in pellet and scaffold cultures.
Collapse
|
115
|
Müller C, Marzahn U, Kohl B, Sayed KE, Lohan A, Meier C, Ertel W, Schulze-Tanzil G. Hybrid pig versus Göttingen minipig-derived cartilage and chondrocytes show pig line-dependent differences. Exp Biol Med (Maywood) 2013; 238:1210-22. [DOI: 10.1177/1535370213502630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Minipigs are widely used as a large animal model for cartilage repair. However, many in vitro studies are based on porcine chondrocytes derived from abundantly available premature hybrid pigs. It remains unclear whether pig line-dependent differences exist which could limit the comparability between in vitro and in vivo results using either hybrid or miniature pig articular chondrocytes. Porcine knee joint femoral cartilage was isolated from 3- to 5-month-old hybrid pigs and Göttingen minipigs. Cartilage from both pig lines was analysed for thickness, zonality, cell content, size and proteoglycan deposition. Cultured articular chondrocytes from both pig lines were investigated for gene and/or protein expression of cartilage-specific proteins such as type II collagen, aggrecan, the chondrogenic transcription factor Sox9, non-specific type I collagen and the cell-matrix receptor β1-integrin. Cartilage was significantly thinner in the miniature pig compared to the hybrid pig, but the differences between the medial and lateral femur condyles did not reach a significant level. Knee joint cartilage zone formation started only in the minipig, whereas cellularity and cell diameters were comparable in both pig lines. Blood vessels could be detected in the hybrid pig but not the minipig cartilage. Sulphated proteoglycan deposition was more pronounced in cartilage zones II–IV of both pig lines. Minipig chondrocytes expressed type II and I collagen, Sox9 and β1-integrin at a higher level than hybrid pig chondrocytes. These distinct line-dependent differences should be considered when using hybrid pig-derived chondrocytes for tissue engineering and Göttingen minipigs as a large animal model.
Collapse
Affiliation(s)
- Claudia Müller
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Ulrike Marzahn
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Benjamin Kohl
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Karym El Sayed
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Anke Lohan
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Carola Meier
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Wolfgang Ertel
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| | - Gundula Schulze-Tanzil
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Berlin 14195, Germany
| |
Collapse
|
116
|
Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, Malda J, Klein TJ. Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. J Biomed Mater Res A 2013; 102:2544-53. [DOI: 10.1002/jbm.a.34924] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Peter A. Levett
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Ave Kelvin Grove QLD 4059 Australia
- Department of Orthopaedics; University Medical Center; P.O. Box 85500 3508 GA Utrecht The Netherlands
| | - Ferry P. W. Melchels
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Ave Kelvin Grove QLD 4059 Australia
- Department of Orthopaedics; University Medical Center; P.O. Box 85500 3508 GA Utrecht The Netherlands
| | - Karsten Schrobback
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Ave Kelvin Grove QLD 4059 Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Ave Kelvin Grove QLD 4059 Australia
- George W Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Jos Malda
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Ave Kelvin Grove QLD 4059 Australia
- Department of Orthopaedics; University Medical Center; P.O. Box 85500 3508 GA Utrecht The Netherlands
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation; Queensland University of Technology; 60 Musk Ave Kelvin Grove QLD 4059 Australia
| |
Collapse
|
117
|
Yuan T, Zhang L, Li K, Fan H, Fan Y, Liang J, Zhang X. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2013; 102:337-44. [PMID: 24000202 DOI: 10.1002/jbm.b.33011] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/29/2013] [Accepted: 07/27/2013] [Indexed: 01/15/2023]
Abstract
A collagen type I hydrogel was constructed and used as the scaffold for cartilage tissue engineering. Neonatal rabbit chondrocytes were seeded into the hydrogel, and the constructs were cultured in vitro for 7, 14, and 28 days. The immunomodulatory effect of the hydrogel on seeded chondrocytes was carefully investigated. The expressions of major histocompatibility complex classes I and II of seeded chondrocytes increased with the time, which indicated that the immunogenicity also increased with the time. Meanwhile, the properly designed collagen type I hydrogel could prompt the chondrogenesis of engineered cartilage. The extracellular matrix (ECM) synthesis ability of seeded chondrocytes and the accumulated ECM in the constructs continuously increased with the culture time. Both the isolation and protection, which come from formed ECM and hydrogel scaffold, can effectively control the adverse immunogenicity of seeded chondrocytes and even help to lessen the immunogenicity of the whole engineered cartilage. As the result, the levels of mixed lymphocyte chondrocyte reactions of seed cells and the constructs decreased gradually. The stimulation on allogeneic lymphocytes of the whole constructs was obviously lower than that of the retrieved cells from the constructs. Therefore, properly designed collagen type I hydrogel can give certain immunogenicity-reducing effects on engineered cartilage based on chondrocytes, and it may be a potential immunomodulatory biomaterial in tissue engineering.
Collapse
Affiliation(s)
- Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Fini M, Pagani S, Giavaresi G, De Mattei M, Ongaro A, Varani K, Vincenzi F, Massari L, Cadossi M. Functional Tissue Engineering in Articular Cartilage Repair: Is There a Role for Electromagnetic Biophysical Stimulation? TISSUE ENGINEERING PART B-REVIEWS 2013; 19:353-67. [DOI: 10.1089/ten.teb.2012.0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Milena Fini
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Preclinical and Surgical Studies, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
- Laboratory of Biocompatibility, Technological Innovations, and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Leo Massari
- Department of Biomedical Sciences and Advanced Therapies, St. Anna Hospital, Ferrara, Italy
| | - Matteo Cadossi
- II Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
119
|
Xue X, Zheng Q, Wu H, Zou L, Li P. Different responses to mechanical injury in neonatal and adult ovine articular cartilage. Biomed Eng Online 2013; 12:53. [PMID: 23773399 PMCID: PMC3691644 DOI: 10.1186/1475-925x-12-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2013] [Indexed: 12/25/2022] Open
Abstract
Background Articular cartilage injury remains a major challenge in orthopedic surgery. This study aimed to identify differences in gene expression and molecular responses between neonatal and adult articular cartilage during the healing of an injury. Methods An established in vitro model was used to compare the transcriptional response to cartilage injury in neonatal and adult sheep by microarray analysis of gene expression. Total RNA was isolated from tissue samples, linearly amplified, and 15,208 ovine probes were applied to cDNA microarray. Validation for selected genes was obtained by real-time quantitative polymerase chain reaction (RT-qPCR). Results We found 1,075 (11.6%) differentially expressed probe sets in adult injured cartilage relative to normal cartilage. A total of 1,016 (11.0%) probe sets were differentially expressed in neonatal injured cartilage relative to normal cartilage. A total of 1,492 (16.1%) probe sets were differentially expressed in adult normal cartilage relative to neonatal normal cartilage. A total of 1,411 (15.3%) probe sets were differentially expressed in adult injured cartilage relative to neonatal injured cartilage. Significant functional clusters included genes associated with wound healing, articular protection, inflammation, and energy metabolism. Selected genes (PPARG, LDH, TOM, HIF1A, SMAD7, and NF-κB) were also found and validated by RT-qPCR. Conclusions There are significant differences in gene expression between neonatal and adult ovine articular cartilage following acute injury. They are partly due to intrinsic differences in the process of development, and partly to different biological responses to mechanical trauma between neonatal and adult articular cartilage.
Collapse
Affiliation(s)
- Xuhong Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | |
Collapse
|
120
|
Scaphoid excision and 4-corner fusion using retrograde headless compression screws. Tech Hand Up Extrem Surg 2013; 16:204-9. [PMID: 23160552 DOI: 10.1097/bth.0b013e3182688c6a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Scapholunate advanced collapse is a predictable form of wrist arthritis resulting from longstanding scapholunate instability. Four-corner fusion and scaphoid excision is a reliable procedure used to treat scapholunate advanced collapse wrist that improves pain and preserves range of motion. Multiple methods of achieving fixation have been described for the procedure including K-wires, staples, and headless compression screws. In previously described techniques, the compression screws are inserted in an antegrade manner, breaching the articular surface of the lunate. Even small areas of chondral damage may undermine the long-term durability of the radiocarpal joint. Given the 4-corner fusion relies on the integrity of the radiolunate articulation for success, it would seem advantageous to preserve the articular cartilage of the lunate. The technique described here involves retrograde insertion of headless compression screws to achieve a 4-corner fusion. Although it is still early, we anticipate that this procedure will result in similar fusion rates to other forms of fixation.
Collapse
|
121
|
Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. PLoS One 2013; 8:e62715. [PMID: 23638138 PMCID: PMC3637164 DOI: 10.1371/journal.pone.0062715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/24/2013] [Indexed: 12/29/2022] Open
Abstract
Acid ceramidase is required to maintain the metabolic balance of several important bioactive lipids, including ceramide, sphingosine and sphingosine-1-phosphate. Here we show that addition of recombinant acid ceramidase (rAC) to primary chondrocyte culture media maintained low levels of ceramide and led to elevated sphingosine by 48 hours. Surprisingly, after three weeks of expansion the chondrogenic phenotype of these cells also was markedly improved, as assessed by a combination of histochemical staining (Alcian Blue and Safranin-O), western blotting (e.g., Sox9, aggrecan, collagen 2A1), and/or qPCR. The same effects were evident in rat, equine and human cells, and were observed in monolayer and 3-D cultures. rAC also reduced the number of apoptotic cells in some culture conditions, contributing to overall improved cell quality. In addition to these effects on primary chondrocytes, when rAC was added to freshly harvested rat, equine or feline bone marrow cultures an ∼2-fold enrichment of mesenchymal stem cells (MSCs) was observed by one week. rAC also improved the chondrogenic differentiation of MSCs, as revealed by histochemical and immunostaining. These latter effects were synergistic with TGF-beta1. Based on these results we propose that rAC could be used to improve the outcome of cell-based cartilage repair by maintaining the quality of the expanded cells, and also might be useful in vivo to induce endogenous cartilage repair in combination with other techniques. The results also suggest that short-term changes in sphingolipid metabolism may lead to longer-term effects on the chondrogenic phenotype.
Collapse
|
122
|
Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Tiyaboonchai W. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng Online 2013; 12:28. [PMID: 23566031 PMCID: PMC3680310 DOI: 10.1186/1475-925x-12-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022] Open
Abstract
Background In our previous study, we successfully developed 3-D scaffolds prepared from silk fibroin (SF), silk fibroin/collagen (SF/C) and silk fibroin/gelatin (SF/G) using a freeze drying technique. The blended construct showed superior mechanical properties to silk fibroin construct. In addition, collagen and gelatin, contain RGD sequences that could facilitate cell attachment and proliferation. Therefore, in this study, the ability of silk fibroin and blended constructs to promote cell adhesion, proliferation and production of extracellular matrix (EMC) were compared. Methods Articular chondrocytes were isolated from rat and cultured on the prepared constructs. Then, the cell viability in SF, SF/C and SF/G scaffolds was determined by MTT assay. Cell morphology and distribution were investigated by scanning electron microscopy (SEM) and histological analysis. Moreover, the secretion of extracellular matrix (ECM) by the chondrocytes in 3-D scaffolds was assessed by immunohistochemistry. Results Results from MTT assay indicated that the blended SF/C and SF/G scaffolds provided a more favorable environment for chondrocytes attachment and proliferation than that of SF scaffold. In addition, scanning electron micrographs and histological images illustrated higher cell density and distribution in the SF/C and SF/G scaffolds than that in the SF scaffold. Importantly, immunohistochemistry strongly confirmed a greater production of type II collagen and aggrecan, important markers of chondrocytic phenotype, in SF blended scaffolds than that in the SF scaffold. Conclusion Addition of collagen and gelatin to SF solution not only improved the mechanical properties of the scaffolds but also provided an effective biomaterial constructs for chondrocyte growth and chondrocytic phenotype maintenance. Therefore, SF/C and SF/G showed a great potential as a desirable biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Pratthana Chomchalao
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | | | | | | |
Collapse
|
123
|
Hong E, Reddi AH. Dedifferentiation and Redifferentiation of Articular Chondrocytes from Surface and Middle Zones: Changes in MicroRNAs-221/-222, -140, and -143/145 Expression. Tissue Eng Part A 2013. [DOI: 10.1089/ten.tea.2012.0055] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eunmee Hong
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California
| | - A. Hari Reddi
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
124
|
van de Loo FAJ, Veenbergen S, van den Brand B, Bennink MB, Blaney-Davidson E, Arntz OJ, van Beuningen HM, van der Kraan PM, van den Berg WB. Enhanced suppressor of cytokine signaling 3 in arthritic cartilage dysregulates human chondrocyte function. ACTA ACUST UNITED AC 2013; 64:3313-23. [PMID: 22576756 DOI: 10.1002/art.34529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To determine the expression of suppressor of cytokine signaling 3 (SOCS-3) in human articular chondrocytes and its functional consequences. METHODS Chondrocytes were isolated from the cartilage of patients with osteoarthritis (OA), patients with rheumatoid arthritis (RA), and trauma patients and from the healthy cartilage of patients with a femoral neck fracture. The human chondrocyte cell line G6 and primary bovine chondrocytes were used in validation experiments. SOCS-3 messenger RNA (mRNA) expression was measured by quantitative polymerase chain reaction, and SOCS-3 protein levels were determined by Western blotting and immunohistochemical analysis. To ascertain the role of SOCS-3 in the chondrocyte response to interleukin-1β (IL-1β) or lipopolysaccharide (LPS), the expression of SOCS3 was either reduced by small interfering RNA or enhanced by viral transduction. RESULTS The expression of SOCS-3 mRNA (but not that of SOCS-1 mRNA) was significantly enhanced in chondrocytes obtained from OA cartilage (mean ± SD ΔC(t) 3.4 ± 1.0) and RA cartilage (ΔC(t) 3.4 ± 1.4) compared with cartilage obtained from patients with femoral neck fracture (ΔC(t) 5.3 ± 1.2). The expression of SOCS3 correlated significantly with that of other genes known to be expressed in arthritic chondrocytes, such as MMP13 (r = 0.743), ADAMTS4 (r = 0.779), and ADAMTS5 (r = 0.647), and an inverse relationship was observed with COL2A1 (r = -0.561). Up-regulation of SOCS-3 by IL-1 in G6 chondrocytes and its spontaneous expression in OA chondrocytes were reduced by mithramycin, a specific inhibitor of transcription factor Sp-1. Overexpression of SOCS-3 in bovine chondrocytes reduced IL-1- and LPS-induced nitric oxide production and insulin-like growth factor 1-induced proteoglycan synthesis. Interestingly, a similar impairment of function was observed in OA chondrocytes, which was partially restored by SOCS-3 gene knockdown. CONCLUSION This study demonstrated that both SOCS-3 mRNA and SOCS-3 protein are expressed in human arthritic chondrocytes and affect cellular responses involved in cartilage pathology.
Collapse
|
125
|
Cha BH, Lee JS, Kim SW, Cha HJ, Lee SH. The modulation of the oxidative stress response in chondrocytes by Wip1 and its effect on senescence and dedifferentiation during in vitro expansion. Biomaterials 2013; 34:2380-8. [PMID: 23306038 DOI: 10.1016/j.biomaterials.2012.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/13/2012] [Indexed: 01/31/2023]
Abstract
Obtaining a sufficient number of cells ex vivo for tissue regeneration, which are appropriate for cartilage repair, requires improved techniques for the continuous expansion of chondrocytes in a manner that does not change their innate characteristics. Rapid senescence or dedifferentiation during in vitro expansion results in loss of chondrocyte phenotype and the formation of fibrous cartilage replacement tissue, rather than hyaluronic cartilage, after transplantation. As demonstrated in the current study, wild-type p53-inducible phosphatase (Wip1), a well-established stress modulator, was highly expressed in early-passage chondrocytes, but declined rapidly during in vitro expansion. Stable Wip1-expressing chondrocytes generated by microporation were less susceptible to the onset of senescence and dedifferentiation, and were more resistant to oxidative stress. The increased resistance of Wip1 chondrocytes to oxidative stress was due to modulation of p38 mitogen-activated protein kinase (MAPK) activity. Importantly, chondrocytes expressing Wip1 maintained their innate chondrogenic properties for a longer period of time, resulting in improvements in cartilage regeneration after transplantation. Chondrocytes from Wip1 knockout (Wip1(-/-)) mice were defective in cartilage regeneration compared with those from wild-type mice. Thus, Wip1 expression represents a potentially useful mechanism by which a chondrocyte phenotype can be retained during in vitro expansion through modulation of cellular stress responses.
Collapse
Affiliation(s)
- Byung-Hyun Cha
- Department of Biomedical Sciences, CHA University, Republic of Korea
| | | | | | | | | |
Collapse
|
126
|
Derks M, Sturm T, Haverich A, Hilfiker A. Isolation and Chondrogenic Differentiation of Porcine Perichondrial Progenitor Cells for the Purpose of Cartilage Tissue Engineering. Cells Tissues Organs 2013; 198:179-89. [DOI: 10.1159/000354897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
|
127
|
Dai L, Zhang X, Hu X, Zhou C, Ao Y. Silencing of microRNA-101 prevents IL-1β-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther 2012; 14:R268. [PMID: 23227940 PMCID: PMC3674628 DOI: 10.1186/ar4114] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022] Open
Abstract
Introduction Extracellular matrix (ECM) degradation leads to malfunction of the cartilage in osteoarthritis (OA). Inflammatory cytokine interleukin-1 beta (IL-1β) functions in ECM degradation and prevents ECM synthesis by down-regulating the key transcription factor, Sox9, and consequently inhibiting ECM gene expression. Evidence reveals that microRNAs (miRNA) have been associated with OA, but little is known of their function in chondrocyte ECM degradation. This study aimed to identify possible miRNAs that mediate IL-1β-induced down-regulation of Sox9 as well as its known down-stream genes, collagen type II and aggrecan. Methods The miRNAs were predicted based on three classical databases. The expression levels of the predicted miRNAs were assessed in IL-1β stimulated chondrocytes by real-time PCR. A luciferase reporter was used to test the binding of the miRNAs to the 3' untranslated regions (3'UTR) of Sox9. The predicted miRNAs were transfected into chondrocytes to validate their relationship with Sox9. Functional analysis of the miRNAs on chondrocytes ECM degradation was performed at both the mRNA and protein levels after miRNA transfection and IL-1β treatment. Results Six miRNAs were predicted to target Sox9, and their expression in IL-1β-stimulated chondrocytes was revealed by real-time PCR. The luciferase reporter assay indicated that only miR-101 could bind to the 3'UTR of Sox9. The expression of Sox9 was likewise negatively regulated by miR-101 in rat chondrocytes. Functional analysis showed that miR-101 could aggravate chondrocyte ECM degradation, whereas miR-101 inhibition could reverse IL-1β-induced ECM degradation. Conclusion miR-101 participates in IL-1β-induced chondrocyte ECM degradation. Down-regulating miR-101 expression can prevent the IL-1β-induced ECM degradation in chondrocytes. miR-101 probably functions by directly targeting Sox9 mRNA.
Collapse
|
128
|
Li D, Yuan T, Zhang X, Xiao Y, Wang R, Fan Y, Zhang X. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthritis Cartilage 2012; 20:1647-56. [PMID: 22917745 DOI: 10.1016/j.joca.2012.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/06/2012] [Accepted: 08/08/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether icariin, which is a widely used pharmacological constituent in traditional Chinese herbal medicine, can be a potential promoting compound for cartilage tissue engineering. DESIGN Icariin was added into cell-hydrogel constructs derived from neonatal rabbit chondrocytes and collagen type I. The chondrogenic gene expressions and the synthesis of cartilage matrix of the seeded cells were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Biochemical assay. The effects of icariin-added cell-hydrogel constructs on the restoration of supercritical-sized osteochondral defects of adult rabbit were investigated by histological observation. The cell-hydrogel constructs without Icariin were set for controls. RESULTS Icariin obviously up-regulate the expressions included aggrecan, sox9, and collagen type II of seeded chondrocytes from 99.7% to 248%. It increases the synthesis of glycosaminoglycan and collagen type II about fourfold to fivefolds from week 1 to week 4, and accelerates the formation of chondroid tissue in the cell-hydrogel constructs. Even, it improves the restoration efficiency of supercritical-sized osteochondral defects in adult rabbit model, and enhances the integration of new-formed cartilage with subchondral bone. CONCLUSIONS Icariin can be a potential promoting compound for cartilage tissue engineering, and it can be a substitute for the use of some growth factors. The long history and extensive cases of safe use in China, Japan and Korea make it more attractive.
Collapse
Affiliation(s)
- D Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
129
|
Flajollet S, Tian TV, Huot L, Tomavo N, Flourens A, Holder-Espinasse M, Le Jeune M, Dumont P, Hot D, Mallein-Gerin F, Duterque-Coquillaud M. Increased adipogenesis in cultured embryonic chondrocytes and in adult bone marrow of dominant negative Erg transgenic mice. PLoS One 2012; 7:e48656. [PMID: 23155398 PMCID: PMC3498236 DOI: 10.1371/journal.pone.0048656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/27/2012] [Indexed: 12/05/2022] Open
Abstract
In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation. The Ets transcription factor family may be involved in skeletal development. One family member, the Erg gene, is mainly expressed during cartilage formation. To further investigate the potential role of Erg in the maintenance of the chondrocyte phenotype, we isolated and cultured chondrocytes from the rib cartilage of embryos of transgenic mice that express a dominant negative form of Erg (DN-Erg) during cartilage formation. DN-Erg expression in chondrocytes cultured for up to 20 days did not affect the early dedifferentiation usually observed in cultured chondrocytes. However, lipid droplets accumulated in DN-Erg chondrocytes, suggesting adipocyte emergence. Transcriptomic analysis using a DNA microarray, validated by quantitative RT-PCR, revealed strong differential gene expression, with a decrease in chondrogenesis-related markers and an increase in adipogenesis-related gene expression in cultured DN-Erg chondrocytes. These results indicate that Erg is involved in either maintaining the chondrogenic phenotype in vitro or in cell fate orientation. Along with the in vitro studies, we compared adipocyte presence in wild-type and transgenic mice skeletons. Histological investigations revealed an increase in the number of adipocytes in the bone marrow of adult DN-Erg mice even though no adipocytes were detected in embryonic cartilage or bone. These findings suggest that the Ets transcription factor family may contribute to the homeostatic balance in skeleton cell plasticity.
Collapse
Affiliation(s)
- Sébastien Flajollet
- CNRS UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille/IFR142, Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Schulze-Tanzil G, Kohl B, El Sayed K, Arens S, Ertel W, Stölzel K, John T. Anaphylatoxin receptors and complement regulatory proteins in human articular and non-articular chondrocytes: interrelation with cytokines. Cell Tissue Res 2012; 350:465-75. [PMID: 23053049 DOI: 10.1007/s00441-012-1497-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
Tissue trauma induces an inflammatory response associated with a cytokine release that may engage complement pathways. Cytokine-mediated complement expression may contribute to cartilage degradation. Hence, we analysed the complement expression profile in primary articular and non-articular chondrocytes and its interrelation with cytokines. The expression of the anaphylatoxin receptors (C3aR and C5aR) and the complement regulatory proteins (CPRs) CD35, CD46, CD55 and CD59 was studied in cultured articular, auricular and nasoseptal chondrocytes using RTD-PCR and immunofluorescence labelling. The complement profile of peripheral blood mononuclear cells (PBMCs) was opposed to the expression in articular chondrocytes. The time-dependent regulation (6 and 24 h) of these complement factors was assessed in articular chondrocytes in response to the cytokines TNFα, IL-10 or TNFα combined with IL-10 (each 10 ng/mL). C3aR, C5aR, CD46, CD55 and CD59 but almost no CD35 mRNA was expressed in any of chondrocyte types studied. The anaphylatoxin receptor expression was lower and that of the CRPs was higher in chondrocytes when compared with PBMCs. The majority of the studied complement factors were expressed at a significantly lower level in non-articular chondrocytes compared with the articular chondrocytes. TNFα significantly increased the C3aR expression in chondrocytes after 6 and 24 h. TNFα + IL-10 significantly downregulated C5aR and IL-10 significantly inhibited the CD46 and CD55 gene expression after 24 h. C5aR and CD55 could be localised in cartilage in situ. Anaphylatoxin receptors and CRPs are regulated differentially by TNFα and IL-10. Whether cytokine-induced complement activation occurs in response to cartilage trauma has to be further identified.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
131
|
Yu L, Han M, Yan M, Lee J, Muneoka K. BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center. Dev Biol 2012; 372:263-73. [PMID: 23041115 DOI: 10.1016/j.ydbio.2012.09.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/22/2012] [Accepted: 09/27/2012] [Indexed: 01/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are required for bone development, the repair of damage skeletal tissue, and the regeneration of the mouse digit tip. Previously we showed that BMP treatment can induce a regeneration response in mouse digits amputated at a proximal level of the terminal phalangeal element (P3) (Yu et al., 2010). In this study, we show that the regeneration-inductive ability of BMP2 extends to amputations at the level of the second phalangeal element (P2) of neonatal digits, and the hindlimb of adult limbs. In these models the induced regenerative response is restricted in a segment-specific manner, thus amputated skeletal elements regenerate distally patterned skeletal structures but does not form joints or more distal skeletal elements. Studies on P2 amputations indicate that BMP2-induced regeneration is associated with a localized proliferative response and the transient expression of established digit blastema marker genes. This is followed by the formation of a new endochondral ossification center at the distal end of the bone stump. The endochondral ossification center contains proliferating chondrocytes that establish a distal proliferative zone and differentiate proximally into hypertrophic chondrocytes. Skeletal regeneration occurs from proximal to distal with the appearance of osteoblasts that differentiate in continuity with the amputated stump. Using the polarity of the endochondral ossification centers induced by BMP2 at two different amputation levels, we show that BMP2 activates a level-dependent regenerative response indicative of a positional information network. In summary, our studies provide evidence that BMP2 induces the regeneration of mammalian limb structures by stimulating a new endochondral ossification center that utilizes an existing network of positional information to regulate patterning during skeletal regeneration.
Collapse
Affiliation(s)
- Ling Yu
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | |
Collapse
|
132
|
Singh P, Schwarzbauer JE. Fibronectin and stem cell differentiation - lessons from chondrogenesis. J Cell Sci 2012; 125:3703-12. [PMID: 22976308 DOI: 10.1242/jcs.095786] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an intricate network of proteins that surrounds cells and has a central role in establishing an environment that is conducive to tissue-specific cell functions. In the case of stem cells, this environment is the stem cell niche, where ECM signals participate in cell fate decisions. In this Commentary, we describe how changes in ECM composition and mechanical properties can affect cell shape and stem cell differentiation. Using chondrogenic differentiation as a model, we examine the changes in the ECM that occur before and during mesenchymal stem cell differentiation. In particular, we focus on the main ECM protein fibronectin, its temporal expression pattern during chondrogenic differentiation, its potential effects on functions of differentiating chondrocytes, and how its interactions with other ECM components might affect cartilage development. Finally, we discuss data that support the possibility that the fibronectin matrix has an instructive role in directing cells through the condensation, proliferation and/or differentiation stages of cartilage formation.
Collapse
Affiliation(s)
- Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
133
|
Rosenzweig DH, Solar-Cafaggi S, Quinn TM. Functionalization of dynamic culture surfaces with a cartilage extracellular matrix extract enhances chondrocyte phenotype against dedifferentiation. Acta Biomater 2012; 8:3333-41. [PMID: 22659179 DOI: 10.1016/j.actbio.2012.05.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 12/16/2022]
Abstract
Culture on silicone rubber surfaces has been shown to partially overcome the chondrocyte dedifferentiation characteristic of standard culture on rigid polystyrene. These methods typically involve functionalization of culture surfaces with proteins. Collagen type I is often used, but more cartilage-specific proteins may be more appropriate for chondrocytes. To explore this hypothesis, a twofold experimental design was applied. First, chondrocytes were cultured in rigid Petri dishes coated with silicone rubber ("static silicone" or SS culture) functionalized with either cartilage extracellular matrix (ECM) extract or collagen type I. Second, chondrocytes were cultured on monotonically expanded high extension silicone rubber dishes ("continuous expansion" or CE culture) functionalized with ECM extract and compared to cells grown in SS culture. There were no differential effects of surface functionalization with the ECM extract vs. collagen type I on chondrocyte morphology, viability, proliferation or apoptosis in SS culture. However, chondrocyte growth on the ECM extract was associated with significantly reduced collagen types I and X gene expression and significantly increased glycosaminoglycan (GAG) secretion. After 3 passages (P3) on ECM-coated SS culture, chondrocyte phenotype and GAG secretion was enhanced compared to cells passaged on collagen type I. Pellet cultures from P3 SS culture displayed enhanced collagen type II content when ECM extract was used for functionalization rather than collagen type I. In CE culture with ECM functionalization, chondrocyte dedifferentiation was significantly inhibited vs. SS cultures, as evidenced by both gene expression and pellet cultures. Functionalization of extendable culture surfaces with cartilage ECM extract therefore supports enhanced preservation of chondrocyte phenotype.
Collapse
|
134
|
Rosenzweig DH, Matmati M, Khayat G, Chaudhry S, Hinz B, Quinn TM. Culture of primary bovine chondrocytes on a continuously expanding surface inhibits dedifferentiation. Tissue Eng Part A 2012; 18:2466-76. [PMID: 22738340 DOI: 10.1089/ten.tea.2012.0215] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Expansion of autologous chondrocytes in vitro is used to generate adequate populations for cell-based therapies. However, standard (SD) culture methods cause loss of chondrocyte phenotype and dedifferentiation to fibroblast-like cells. Here, we use a novel surface expansion culture system in an effort to inhibit chondrocyte dedifferentiation. A highly elastic silicone rubber culture surface was continuously stretched over a 13-day period to 600% of its initial surface area. This maintained cells at a high density while limiting contact inhibition and reducing the need for passaging. Gene expression analysis, biochemical assays, and immunofluorescence microscopy of follow-on pellet cultures were used to characterize the results of continuous expansion (CE) culture versus SD cultures on rigid polystyrene. CE culture yielded cells with a more chondrocyte-like morphology and higher RNA-level expression of the chondrogenic markers collagen type II, aggrecan, and cartilage oligomeric matrix protein. Furthermore, the expression of collagen type I RNA and α-smooth muscle actin protein were significantly reduced, indicating suppression of fibroblastic features. Pellet cultures from CE chondrocytes contained more sulphated glycosaminoglycan and collagen type II than pellets from SD culture. Additional control cultures on static (unexpanded) silicone (SS culture) indicated that benefits of CE culture were partially due to features of the culture surface itself and partially due to the reduced passaging which that surface enabled through CE. Chondrocytes grown in CE culture may, therefore, be a superior source for cell-based therapies.
Collapse
Affiliation(s)
- Derek H Rosenzweig
- Soft Tissue Biophysics Laboratory, Department of Chemical Engineering, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
135
|
Enhanced cartilage formation by inhibiting cathepsin K expression in chondrocytes expanded in vitro. Biomaterials 2012; 33:7394-404. [PMID: 22818652 DOI: 10.1016/j.biomaterials.2012.06.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/23/2012] [Indexed: 02/08/2023]
Abstract
Although engineered cartilage has great potential in cartilage regeneration and reconstruction, dedifferentiation of chondrocytes during in vitro expansion remains a technical bottleneck in the clinical application. To overcome the problem, a gene modification approach was developed to knock-down the key gene involving dedifferentiation of human chondrocytes. A microarray assay revealed 84 up-regulated genes and 56 down-regulated genes in passage 4 (dedifferentiated) human chondrocytes compared to passage 1 cells. Among them, cathepsin K (CTSK) was the key gene (with 28 folds of increased gene expression), which was further confirmed by RT-PCR and Western-Blot. Furthermore, over-expression of CTSK led to reduced matrix production in cultured human chondrocytes in vitro and poor formation of engineered cartilage in vivo. In contrast, CTSK knock-down could better maintain the chondrogenic phenotype of in vitro expanded cells with increased gene and protein expression of collagen II and aggrecan when compared to control cells. More importantly, after 6 passages, the knock-down cells formed much better engineered cartilage than the control cells after in vivo implantation with 30% Pluronic F127 for 8 weeks as the experimental group formed much bigger sized cartilages with significantly increased weight and glycosaminoglycan content (p < 0.05) than the control group. Histologically, the knock-down cells formed a more homogenous cartilage structure with enhanced production of collagen II and proteoglycans. Overall, these results suggest that CTSK knock-down may provide a feasible way to expand functional human chondrocytes in vitro for engineering good quality human cartilage and thus may have its great potential in the clinical translation of engineered cartilage in the future, given the fact that biosafe RNA interference techniques are already available.
Collapse
|
136
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
137
|
Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S. Inhibition of hyaluronan synthesis reduced inflammatory response in mouse synovial fibroblasts subjected to collagen-induced arthritis. Arch Biochem Biophys 2012; 518:42-52. [PMID: 22197458 DOI: 10.1016/j.abb.2011.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 02/07/2023]
Abstract
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation/drug effects
- Gene Knockdown Techniques
- Glucuronosyltransferase/deficiency
- Glucuronosyltransferase/genetics
- Hyaluronan Receptors/genetics
- Hyaluronan Synthases
- Hyaluronic Acid/biosynthesis
- Hyaluronic Acid/chemistry
- Hyaluronic Acid/metabolism
- Hyaluronoglucosaminidase/pharmacology
- Hyaluronoglucosaminidase/therapeutic use
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Male
- Mice
- Molecular Weight
- NF-kappa B/metabolism
- Oligosaccharides/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Synovial Membrane/cytology
- Synovial Membrane/drug effects
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Toll-Like Receptor 4/genetics
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Rhee J, Ryu JH, Kim JH, Chun CH, Chun JS. α-Catenin inhibits β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity and collagen type II expression in articular chondrocytes through formation of Gli3R.α-catenin.β-catenin ternary complex. J Biol Chem 2012; 287:11751-60. [PMID: 22298781 DOI: 10.1074/jbc.m111.281014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chondrocytes, a unique cell type in cartilage tissue, are responsible for the regulation of anabolic and catabolic homeostasis in cartilage-specific extracellular matrix synthesis. Activation of Wnt/β-catenin signaling induces dedifferentiation of articular chondrocytes, resulting in suppression of type II collagen expression. We have shown previously that α-catenin inhibits β-catenin-Tcf/Lef (T-cell factor/lymphoid-enhancing factor) transcriptional activity in articular chondrocytes with a concomitant recovery of type II collagen expression. In the current study, we elucidated the mechanism underlying this inhibition of β-catenin-Tcf/Lef transcriptional activity by α-catenin, showing that it requires direct interaction between α-catenin and β-catenin. We further showed that it involves recruitment of Gli3R, the short transcription-repressing form of the transcription factor Gli3, to β-catenin by α-catenin. The resulting inhibition of β-catenin transcriptional activity leads to increased expression of type II collagen. Gli3R and α-catenin actions are co-dependent: both are necessary for the observed inhibitory effects on β-catenin transcriptional activity. Reducing Gli3R expression levels through activation of Indian Hedgehog (Ihh) signaling also is sufficient to activate β-catenin transcriptional activity, suggesting that the ternary complex, Gli3R·α-catenin·β-catenin, mediates Ihh-dependent activation of Wnt/β-catenin signaling in articular chondrocytes. Collectively, this study shows that α-catenin functions as a nuclear factor that recruits the transcriptional repressor Gli3R to β-catenin to inhibit β-catenin transcriptional activity and dedifferentiation of articular chondrocytes. Finally, osteoarthritic cartilage showed elevated levels of β-catenin and decreased levels of α-catenin and Gli3R, suggesting that decreased levels of α-catenin and Gli3R levels contribute to increased β-catenin transcriptional activity during osteoarthritic cartilage destruction.
Collapse
Affiliation(s)
- Jinseol Rhee
- Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
139
|
Schneider T, Kohl B, Sauter T, Becker T, Kratz K, Schossig M, Hiebl B, Jung F, Lendlein A, Ertel W, Schulze-Tanzil G. Viability, Adhesion and Differentiated Phenotype of Articular Chondrocytes on Degradable Polymers and Electro-Spun Structures Thereof. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.201100057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
140
|
Danisovic L, Varga I, Zamborsky R, Böhmer D. The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med (Maywood) 2011; 237:10-7. [PMID: 22156044 DOI: 10.1258/ebm.2011.011229] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Damage or loss of articular cartilage as a consequence of congenital anomaly, degenerative joint disease or injury leads to progressive debilitation, which has a negative impact on the quality of life of affected individuals in all age groups. Classical surgical techniques for hyaline cartilage reparation are frequently insufficient and in many cases it is not possible to obtain the expected results. For this reason, researchers and surgeons are forced to find a method to induce complete cartilage repair. Recently, the advent of tissue engineering has provided alternative possibilities for the treatment of these patients by application of cell-based therapy (e.g. chondrocytes and adult stem cells) combined with synthetic substitutes of the extracellular matrix and bioactive factors to prepare functional replacement of hyaline cartilage. This communication is aimed at a brief review of the current status of cartilage tissue engineering and recent advances in the field.
Collapse
Affiliation(s)
- L'ubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
141
|
El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, Kohl B, Haisch A, Schulze-Tanzil G. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2011; 7:61-72. [PMID: 22081560 DOI: 10.1002/term.496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/23/2011] [Accepted: 07/12/2011] [Indexed: 11/06/2022]
Abstract
The availability of autologous articular chondrocytes remains a limiting issue in matrix assisted autologous chondrocyte transplantation. Non-articular heterotopic chondrocytes could be an alternative autologous cell source. The aims of this study were to establish heterotopic chondrocyte cocultures to analyze cell-cell compatibilities and to characterize the chondrogenic potential of nasoseptal chondrocytes compared to articular chondrocytes. Primary porcine and human nasoseptal and articular chondrocytes were investigated for extracellular cartilage matrix (ECM) expression in a monolayer culture. 3D polyglycolic acid- (PGA) associated porcine heterotopic mono- and cocultures were assessed for cell vitality, types II, I, and total collagen-, and proteoglycan content. The type II collagen, lubricin, and Sox9 gene expressions were significantly higher in articular compared with nasoseptal monolayer chondrocytes, while type IX collagen expression was lower in articular chondrocytes. Only β1-integrin gene expression was significantly inferior in humans but not in porcine nasoseptal compared with articular chondrocytes, indicating species-dependent differences. Heterotopic chondrocytes in PGA cultures revealed high vitality with proteoglycan-rich hyaline-like ECM production. Similar amounts of type II collagen deposition and type II/I collagen ratios were found in heterotopic chondrocytes cultured on PGA compared to articular chondrocytes. Quantitative analyses revealed a time-dependent increase in total collagen and proteoglycan content, whereby the differences between heterotopic and articular chondrocyte cultures were not significant. Nasoseptal and auricular chondrocytes monocultured in PGA or cocultured with articular chondrocytes revealed a comparable high chondrogenic potential in a tissue engineering setting, which created the opportunity to test them in vivo for articular cartilage repair.
Collapse
Affiliation(s)
- K El Sayed
- Department for Orthopaedic, Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, Garystraße 5, 14195, Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Musumeci G, Loreto C, Carnazza ML, Coppolino F, Cardile V, Leonardi R. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur J Histochem 2011; 55:e31. [PMID: 22073377 PMCID: PMC3203476 DOI: 10.4081/ejh.2011.e31] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/31/2011] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.
Collapse
Affiliation(s)
- G Musumeci
- Department of Bio-Medical Sciences, Human Anatomy section, University of Catania, Italy.
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
STUDY DESIGN Surgically denucleated porcine intervertebral discs (IVD) were injected with BIOSTAT BIOLOGX Fibrin Sealant (FS), and the in vivo effects were assessed over time by histological, biochemical, and mechanical criteria. OBJECTIVE The objectives were to test whether the intradiscal injection of FS stimulates disc healing. SUMMARY OF BACKGROUND DATA Disc avascularity prevents the deposition of a provisional fibrin scaffold that typically facilitates soft tissue repair. Poor disc wound healing leads to disc damage accumulation and chronic inflammation characterized by overproduction of proinflammatory cytokines and proteolytic enzymes. METHODS Four lumbar IVDs from each of 31 Yucatan minipigs were randomized to untreated controls; degenerative injury (nucleotomy); and nucleotomy plus FS injection. Animals were killed at 1, 2, 3, 6, and 12 weeks postsurgery. IVDs were harvested to quantify (1) architecture using morphological and histological grading; (2) proteoglycan composition using DMMB assay; (3) cytokine content using ELISA; and (4) mechanical properties using quantitative pressure/volume testing. RESULTS There was progressive invasion of annular tissue into the nucleus of nucleotomy discs and concomitant reduction in proteoglycan content. By contrast, FS supplementation inhibited nuclear fibrosis and facilitated proteoglycan content recovery over time. FS discs synthesized significantly less TNF-α than degenerate discs (66% vs. 226%, P < 0.05) and had upregulation of IL-4 (310% vs. 166%) and TGF-β (400% vs. 117%) at 2 to 3 weeks posttreatment. At the third week postsurgery, the denucleated discs were less stiff than controls (pressure modulus 779.9 psi vs. 2754.8 psi; P < 0.05) and failed at lower pressures (250.5 psi vs. 492.5 psi; P < 0.05). The stiffness and leakage pressure of the FS-treated discs recovered to control values after 6 and 12 weeks, respectively. CONCLUSION FS facilitated structural, compositional, and mechanical repair of the surgically damaged IVD. These FS-derived benefits are likely due to its conductive scaffold properties and metabolically active constituents such as thrombin, factor XIII, and aprotinin acetate.
Collapse
|
144
|
Influence of porcine intervertebral disc matrix on stem cell differentiation. J Funct Biomater 2011; 2:155-72. [PMID: 24956302 PMCID: PMC4030937 DOI: 10.3390/jfb2030155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/04/2011] [Indexed: 02/01/2023] Open
Abstract
For back disorders, cell therapy is one approach for a real regeneration of a degenerated nucleus pulposus. Human mesenchymal stem cells (hMSC) could be differentiated into nucleus pulposus (NP)-like cells and used for cell therapy. Therefore it is necessary to find a suitable biocompatible matrix, which supports differentiation. It could be shown that a differentiation of hMSC in a microbial transglutaminase cross-linked gelatin matrix is possible, but resulted in a more chondrocyte-like cell type. The addition of porcine NP extract to the gelatin matrix caused a differentiation closer to the desired NP cell phenotype. This concludes that a hydrogel containing NP extract without any other supplements could be suitable for differentiation of hMSCs into NP cells. The NP extract itself can be cross-linked by transglutaminase to build a hydrogel free of NP atypical substrates. As shown by side-specific biotinylation, the NP extract contains molecules with free glutamine and lysine residues available for the transglutaminase.
Collapse
|
145
|
Wimpenny I, Ashammakhi N, Yang Y. Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering. J Tissue Eng Regen Med 2011; 6:536-49. [PMID: 21800437 DOI: 10.1002/term.459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 06/11/2011] [Indexed: 11/08/2022]
Abstract
Articular cartilage has a heterogeneous structure, comprising elongated cells at the articulating surface and rounded cells elsewhere. This feature poses a complex challenge when fabricating 3D tissue engineering scaffolds able to mimic the native extracellular matrix (ECM) of cartilage for tissue repair and regeneration. Nanofibre scaffolds can provide an ECM-like structure, but are mechanically weak and typically have subcellular pore geometries. In this study, the use of poly(L,D-lactide) (PLDLA) nanofibre coatings on PLDLA microfibres or films (nanofibre composites) to influence bovine chondrocyte behaviour was investigated. It was demonstrated that electrospun nanofibres facilitated the adhesion of chondrocytes and helped to maintain smaller projected cell areas and a rounded cell phenotype, when compared to PLDLA films or microfibres. Random nanofibre composites were associated with the smallest and most rounded cells and aligned nanofibre composites also demonstrated a similar tendency. Quantitative PCR revealed that nanofibres promoted the expression of chondrogenic markers, such as collagen type IIaI and aggrecan, while maintaining low levels of collagen IaI. It was also found, by water contact angle measurement, that nanofibres were significantly more hydrophobic than cast films. The lower wettability of polymeric nanofibres favoured the maintenance of rounded chondrocyte morphology. To our knowledge this is the first study to confirm the positive influence on preserving chondrogenic phenotype and gene expression at the interface of true nano-microfibrous composites by using individual microfibres coated with aligned nanofibres. Such composites can potentially be fabricated into mechanically durable 3D scaffolds with better cell infiltration throughout the scaffolds.
Collapse
Affiliation(s)
- I Wimpenny
- Institute of Science and Technology in Medicine, Keele University, UK
| | | | | |
Collapse
|
146
|
The effect of stress and tissue fluid microenvironment on allogeneic chondrocytes in vivo and the immunological properties of engineered cartilage. Biomaterials 2011; 32:6017-24. [PMID: 21676457 DOI: 10.1016/j.biomaterials.2011.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/18/2011] [Indexed: 11/22/2022]
Abstract
Engineered implants derived from neonatal rabbit chondrocytes and collagen type I hydrogel, were loaded in dialyzer pockets and implanted in muscle and articular cavity of rabbits to simulate different stress and tissue fluid micro-environments. After 4 and 12 weeks, the expressions of main histocompatibility complex (MHC) molecules as well as the mixed lymphocyte chondrocytes reactions (MLChR) levels of the seeded cells were detected. The results indicated that with stress and synovial fluid microenvironment, the formation of chondroid tissue was prominently promoted in articular cavity. It gave the seeded chondrocytes lower and gradually decreasing levels of allogeneic lymphocytes activation, however, with the higher cell mortality, the MHC molecules expression, especially MHC-I were up-regulated obviously in early stage. These results are very different to those seen in muscle and prove that stress and tissue fluid micro-environments can greatly impact the differentiation and immunological properties of the engineered cartilage. From the perspective of avoiding severe rejection, to promote the formation of the matrix as fast and select scaffold with higher "isolation" ability may be meaningful. Furthermore, the suitably treated dialyzer pockets model can be used for the study of the differentiation and immunological properties of the tissue engineered cartilage.
Collapse
|
147
|
In vitro and in vivo neo-cartilage formation by heterotopic chondrocytes seeded on PGA scaffolds. Histochem Cell Biol 2011; 136:57-69. [DOI: 10.1007/s00418-011-0822-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2011] [Indexed: 01/28/2023]
|
148
|
Yuan T, Li K, Guo L, Fan H, Zhang X. Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. J Biomed Mater Res A 2011; 98:332-41. [DOI: 10.1002/jbm.a.33121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 01/27/2011] [Accepted: 03/28/2011] [Indexed: 01/14/2023]
|
149
|
Yuan T, Zhang L, Feng L, Fan H, Zhang X. Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol Prog 2011; 26:1749-58. [PMID: 20865774 DOI: 10.1002/btpr.484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Allogeneic mesenchymal stem cells (MSCs) are regarded as promising seed cells for engineering cartilage. However, few researches have covered the immune properties of seeded MSCs. Collagen has been considered as good scaffold, whether it has inherent chondrogenic inducibility for MSCs is still in debate. In this study, engineering grafts are constructed by neonatal rabbit MSCs and collagen Type I hydrogel. After periods of culture, the appearance of chondroid tissue in the grafts and the cartilage matrix-specific genes expressions of seeded cells prove the inducibility of collagen hydrogel, even if the growth factors are absence. With the differentiation, immunological properties of MSCs are changing. The expressions of main histocompatibility complex (MHC) molecules increase and the ability to inhibit the proliferation of activated lymphocytes may be declined. But to a large extent, it keeps the low stimulating to allogeneic lymphocytes and the small absolute value of MHCs. The changes are adverse for avoiding inflammation and rejection. Therefore, suitable scaffold and engineering strategies should be selected. For the grafts based on Collagen I hydrogel and MSCs, a longer culture period might not be necessary. To maintain the immune regulation, a higher initial MSCs density in engineering grafts may be more meaningful.
Collapse
Affiliation(s)
- Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
150
|
The unique expression profile of human TIPE2 suggests new functions beyond its role in immune regulation. Mol Immunol 2011; 48:1209-15. [DOI: 10.1016/j.molimm.2011.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 12/23/2022]
|