Pfeufer NY, Hofmann-Peiker K, Mühle M, Warnke PH, Weigel MC, Kleine M. Bioactive coating of titanium surfaces with recombinant human β-defensin-2 (rHuβD2) may prevent bacterial colonization in orthopaedic surgery.
J Bone Joint Surg Am 2011;
93:840-6. [PMID:
21543673 DOI:
10.2106/jbjs.i.01738]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND
A promising strategy to prevent infections around orthopaedic titanium implants is to use naturally occurring cationic antimicrobial peptides (CAMPs) such as the human β-defensin-2 as antibacterial coatings. Human antimicrobial peptides represent a part of the innate immune system and have a broad antimicrobial spectrum against bacteria, fungi, and viruses.
METHODS
In the present study, titanium surfaces were functionalized by four different self-assembled monolayers (SAMs) forming methoxy silanes: (1) hexadecyltrimethoxysilane, (2) dimethoxymethyloctylsilane, (3) allyltrimethylsilane, and (4) 3-aminopropyltrimethoxysilane. In addition, calf skin type-I collagen was cross-linked to the SAM surface 3-aminopropyltrimethoxysilane by means of two different treatments: (1) N-hydroxysuccinimide and (2) glutaraldehyde. The functionalized titanium surfaces were coated with recombinant human β-defensin-2 (rHuβD2), an antimicrobial peptide, and were tested for antibacterial activity against Escherichia coli. The release of rHuβD2 was quantified by means of enzyme-linked immunosorbent assay (ELISA).
RESULTS
The coating of functionalized titanium surfaces with rHuβD2 was successful. Recombinant HuβD2 was eluted from the titanium surfaces continuously, yielding antimicrobial activity up to several hours. Antimicrobial activity with a killing rate of 100% was observed for all functionalized titanium surfaces after two hours of incubation. The dimethoxymethyloctylsilane-functionalized titanium surface delivered 0.65 μg of rHuβD2 after six hours with a 60% bacterial killing rate. The silane-functionalized surfaces exhibited a faster release of antimicrobially active rHuβD2 compared with collagen modifications.
CONCLUSIONS
Natural antibiotics such as rHuβD2 integrated into the metal surface of titanium implants may be a promising tool to prevent and control infections around orthopaedic implants.
Collapse