101
|
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014; 5:77. [PMID: 24795633 PMCID: PMC4007015 DOI: 10.3389/fphar.2014.00077] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/31/2014] [Indexed: 12/18/2022] Open
Abstract
Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs.
Collapse
Affiliation(s)
- Aditi M Jhaveri
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University Boston, MA, USA
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University Boston, MA, USA
| |
Collapse
|
102
|
Jaganathan H, Mitra S, Srinivasan S, Dave B, Godin B. Design and in vitro evaluation of layer by layer siRNA nanovectors targeting breast tumor initiating cells. PLoS One 2014; 9:e91986. [PMID: 24694753 PMCID: PMC3973666 DOI: 10.1371/journal.pone.0091986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/15/2014] [Indexed: 12/31/2022] Open
Abstract
Efficient therapeutics and early detection has helped to increase breast cancer survival rates over the years. However, the recurrence of breast cancer remains to be a problem and this may be due to the presence of a small population of cells, called tumor initiating cells (TICs). Breast TICs are resistant to drugs, difficult to detect, and exhibit high self-renewal capabilities. In this study, layer by layer (LBL) small interfering RNA (siRNA) nanovectors (SNVs) were designed to target breast TICs. SNVs were fabricated using alternating layers of poly-L-lysine and siRNA molecules on gold (Au) nanoparticle (NP) surfaces. The stability, cell uptake, and release profile for SNVs were examined. In addition, SNVs reduced TIC-related STAT3 expression levels, CD44+/CD24−/EpCAM+ surface marker levels and the number of mammospheres formed compared to the standard transfection agent. The data from this study show, for the first time, that SNVs in LBL assembly effectively delivers STAT3 siRNA and inhibit the growth of breast TICs in vitro.
Collapse
Affiliation(s)
- Hamsa Jaganathan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Sucharita Mitra
- Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Srimeenakshi Srinivasan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Bhuvanesh Dave
- Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
103
|
Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TKH, Tang T. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene 2014; 538:217-27. [DOI: 10.1016/j.gene.2013.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 11/27/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
|
104
|
Laganà A, Acunzo M, Romano G, Pulvirenti A, Veneziano D, Cascione L, Giugno R, Gasparini P, Shasha D, Ferro A, Croce CM. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res 2014; 42:5416-25. [PMID: 24627222 PMCID: PMC4027198 DOI: 10.1093/nar/gku202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNAi is a powerful tool for the regulation of gene expression. It is widely and successfully employed in functional studies and is now emerging as a promising therapeutic approach. Several RNAi-based clinical trials suggest encouraging results in the treatment of a variety of diseases, including cancer. Here we present miR-Synth, a computational resource for the design of synthetic microRNAs able to target multiple genes in multiple sites. The proposed strategy constitutes a valid alternative to the use of siRNA, allowing the employment of a fewer number of molecules for the inhibition of multiple targets. This may represent a great advantage in designing therapies for diseases caused by crucial cellular pathways altered by multiple dysregulated genes. The system has been successfully validated on two of the most prominent genes associated to lung cancer, c-MET and Epidermal Growth Factor Receptor (EGFR). (See http://microrna.osumc.edu/mir-synth).
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210 USA
| | - Mario Acunzo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210 USA
| | - Giulia Romano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210 USA
| | - Alfredo Pulvirenti
- Department of Clinical and Molecular Biomedicine, University of Catania, 95100 Italy
| | - Dario Veneziano
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210 USA Department of Clinical and Molecular Biomedicine, University of Catania, 95100 Italy
| | - Luciano Cascione
- IOR-Institute of Oncology Research, Bellinzona, 6500 Switzerland
| | - Rosalba Giugno
- Department of Clinical and Molecular Biomedicine, University of Catania, 95100 Italy
| | - Pierluigi Gasparini
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210 USA
| | - Dennis Shasha
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 USA
| | - Alfredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania, 95100 Italy
| | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210 USA
| |
Collapse
|
105
|
Shi B, Zhang H, Dai S, Du X, Bi J, Qiao SZ. Intracellular microenvironment responsive polymers: a multiple-stage transport platform for high-performance gene delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:871-877. [PMID: 24115742 DOI: 10.1002/smll.201302430] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 06/02/2023]
Abstract
A new strategy for promoting endoplasmic gene delivery and nucleus uptake is proposed by developing intracellular microenvironment responsive biocompatible polymers. This delivery system can efficiently load and self-assemble nucleic acids into nano-structured polyplexes at a neutral pH, release smaller imidazole-gene complexes from the polymer backbones at intracellular endosomal pH, transport nucleic acids into nucleus through intracellular environment responsive multiple-stage gene delivery, thus leading to a high cell transfection efficiency.
Collapse
Affiliation(s)
- Bingyang Shi
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA5005, Australia
| | | | | | | | | | | |
Collapse
|
106
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054 DOI: 10.1186/2052-8426-2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel ; Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel ; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
107
|
Peer D. Harnessing RNAi nanomedicine for precision therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:5. [PMID: 26056574 PMCID: PMC4452054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2023]
Abstract
Utilizing RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision medicine. Several clinical trials are on the way with some positive initial results. Yet, targeting of RNAi payloads such as small interfering RNAs (siRNAs), microRNA (miR) mimetic or anti-miR (antagomirs) into specific cell types remains a challenge. Major attempts are done for developing nano-sized carriers that could overcome systemic, local and cellular barriers. This progress report will focus on the recent advances in the RNAi world, detailing strategies of systemic passive tissue targeting and active cellular targeting, which is often considered as the holy grail of drug delivery.
Collapse
Affiliation(s)
- Dan Peer
- />Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv, 69978 Israel
- />Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv, 69978 Israel
- />Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
108
|
Francesko A, Fernandes MM, Perelshtein I, Benisvy-Aharonovich E, Gedanken A, Tzanov T. One-step sonochemical preparation of redox-responsive nanocapsules for glutathione mediated RNA release. J Mater Chem B 2014; 2:6020-6029. [DOI: 10.1039/c4tb00599f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple and reproducible sonochemical method is described to achieve redox-responsive nanocapsules based on intracellular glutathione levels for enhanced and sustained RNA delivery.
Collapse
Affiliation(s)
- Antonio Francesko
- Grup de Biotecnologia Molecular i Industrial
- Department of Chemical Engineering
- Universitat Polìtecnica de Catalunya
- , Spain
| | - Margarida M. Fernandes
- Grup de Biotecnologia Molecular i Industrial
- Department of Chemical Engineering
- Universitat Polìtecnica de Catalunya
- , Spain
| | - Ilana Perelshtein
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Israel
| | | | - Aharon Gedanken
- Department of Chemistry
- Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Israel
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial
- Department of Chemical Engineering
- Universitat Polìtecnica de Catalunya
- , Spain
| |
Collapse
|
109
|
Gonçalves C, Berchel M, Gosselin MP, Malard V, Cheradame H, Jaffrès PA, Guégan P, Pichon C, Midoux P. Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. Int J Pharm 2014; 460:264-72. [DOI: 10.1016/j.ijpharm.2013.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 02/05/2023]
|
110
|
Lin Q, Chen J, Zhang Z, Zheng G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond) 2014; 9:105-20. [DOI: 10.2217/nnm.13.192] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi therapeutics are believed to be the future of personalized medicine and have shown promise in early clinical trials. However, many physiological barriers exist in the systemic delivery of siRNAs to the cytoplasm of targeted cells to perform their function. To overcome these barriers, many siRNA delivery systems have been developed. Among these, lipid-based nanoparticles have great potential owing to their biocompatibility and low toxicity in comparison with inorganic nanoparticles and viral systems. This review discusses the hurdles of systemic siRNA delivery and highlights the recent progress made in lipid-based nanoparticles, which are categorized based on their key lipid components, including cationic lipid, lipoprotein, lipidoid, neutral lipid and anionic lipid-based nanoparticles. It is expected that these lipid nanoparticle-based siRNA delivery systems will have an enabling role for personalized cancer medicine, where siRNA delivery will join forces with genetic profiling of individual patients to achieve the best treatment outcome.
Collapse
Affiliation(s)
- Qiaoya Lin
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Tower 5-363, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Juan Chen
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| | - Zhihong Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan, China
| | - Gang Zheng
- Ontario Cancer Institute & Techna Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
111
|
Angart P, Vocelle D, Chan C, Walton SP. Design of siRNA Therapeutics from the Molecular Scale. Pharmaceuticals (Basel) 2013; 6:440-68. [PMID: 23976875 PMCID: PMC3749788 DOI: 10.3390/ph6040440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics.
Collapse
Affiliation(s)
- Phillip Angart
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2527, East Lansing, MI 48824, USA; (P.A.); (D.V.); (C.C.)
| | | | | | | |
Collapse
|
112
|
|
113
|
Tam YYC, Chen S, Cullis PR. Advances in Lipid Nanoparticles for siRNA Delivery. Pharmaceutics 2013; 5:498-507. [PMID: 24300520 PMCID: PMC3836621 DOI: 10.3390/pharmaceutics5030498] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023] Open
Abstract
Technological advances in both siRNA (small interfering RNA) and whole genome sequencing have demonstrated great potential in translating genetic information into siRNA-based drugs to halt the synthesis of most disease-causing proteins. Despite its powerful promises as a drug, siRNA requires a sophisticated delivery vehicle because of its rapid degradation in the circulation, inefficient accumulation in target tissues and inability to cross cell membranes to access the cytoplasm where it functions. Lipid nanoparticle (LNP) containing ionizable amino lipids is the leading delivery technology for siRNA, with five products in clinical trials and more in the pipeline. Here, we focus on the technological advances behind these potent systems for siRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C. V6T 1Z3, Canada.
| | | | | |
Collapse
|
114
|
Mehta A, Shervington A, Howl J, Jones S, Shervington L. Can RNAi-mediated hsp90α knockdown in combination with 17-AAG be a therapy for glioma? FEBS Open Bio 2013; 3:271-8. [PMID: 23905009 PMCID: PMC3722647 DOI: 10.1016/j.fob.2013.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023] Open
Abstract
Heat shock protein 90 promotes tumor progression and survival and has emerged as a vital therapeutic target. Previously we reported that the combinatorial treatment of 17AAG/sihsp90α significantly downregulated Hsp90α mRNA and protein levels in Glioblastoma Multiforme (GBM). Here we investigated the ability of cell penetrating peptide (Tat48–60 CPP)-mediated siRNA-induced hsp90α knockdown as a single agent and in combination with 17-allylamino-17-demethoxygeldanamycin (17-AAG) to induce tumor growth inhibition in GBM and whether it possessed therapeutic implications. GBM and non-tumorigenic cells exposed to siRNA and/or 17-AAG were subsequently assessed by qRT-PCR, immunofluorescence, FACS analysis, quantitative Akt, LDH leakage and cell viability assays. PAGE was performed for serum stability assessment. A combination of siRNA/17-AAG treatment significantly induced Hsp90α gene and protein knockdown by 95% and 98%, respectively, concomitant to 84% Akt kinase activity attenuation, induced cell cycle arrest and tumor-specific cytotoxicity by 88%. Efficient complex formation between CPP and siRNA exhibited improved serum stability of the siRNA with minimal intrinsic toxicity in vitro. The preliminary in vivo results showed that combination therapy induced hsp90α knockdown and attenuated Akt kinase activity in intracranial glioblastoma mouse models. The results imply that RNAi-mediated hsp90α knockdown increases 17-AAG treatment efficacy in GBM. In addition, the cytotoxic response observed was the consequence of downregulation of hsp90α gene expression, reduced Akt kinase activity and S-G2/M cell cycle arrest. These results are novel and highlight the ability of Tat to efficiently deliver siRNA in GBM and suggest that the dual inhibition of Hsp90 has therapeutic potentials. 17-AAG–siRNA dual treatment exhibits significant anti-cancer activity in GBM. Combination therapy induced Hsp90α gene/protein knockdown causing Akt inactivation. Hsp90α inhibition causes S-G2/M cell cycle arrest and GBM-specific cytotoxicity. Efficient siRNA/CPP interaction improves serum stability of siRNA. RNAi-mediated hsp90α knockdown increases GBM sensitivity to 17-AAG.
Collapse
Affiliation(s)
- Adi Mehta
- Brain Tumour North West (BTNW), Faculty of Science and Technology, University of Central Lancashire (UCLan), Preston PR1 2HE, UK
| | | | | | | | | |
Collapse
|
115
|
Ramon AL, Bertrand JR, de Martimprey H, Bernard G, Ponchel G, Malvy C, Vauthier C. siRNA associated with immunonanoparticles directed against cd99 antigen improves gene expression inhibitionin vivoin Ewing's sarcoma. J Mol Recognit 2013; 26:318-29. [DOI: 10.1002/jmr.2276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | - J. R. Bertrand
- CNRS UMR 8203 Vectorologie et thérapeutiques anticancéreuses; 114 rue Edouard Vaillant; 94805; Villejuif Cedex; France
| | | | | | | | - C. Malvy
- CNRS UMR 8203 Vectorologie et thérapeutiques anticancéreuses; 114 rue Edouard Vaillant; 94805; Villejuif Cedex; France
| | | |
Collapse
|
116
|
Emmanuel R, Weinstein S, Landesman-Milo D, Peer D. eIF3c: a potential therapeutic target for cancer. Cancer Lett 2013; 336:158-66. [PMID: 23623922 DOI: 10.1016/j.canlet.2013.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 12/29/2022]
Abstract
Cancer cells are rapidly evolving due to their unstable genome, which contributes to the development of new cancer clones with different gene expression profile (GEP). Manipulating the expression of the genes vital for the progression of the disease is essential to overcome its heterogeneity. However, targeting overexpressed genes, retrieved from GEP analysis, would be efficient for a specific kind of a malignancy. Alternatively, manipulating the expression of genes that are part of a fundamental mechanism in the cell would be effective against a wide range of malignancies. To test this hypothesis we characterized, using RNAi approaches, the therapeutic potential of the housekeeping eIF3c gene in five different cancer cell lines NCI-ADR/RES (NAR), HeLa, MCF7, HCT116 and B16F10. eIF3c is one of the core subunit of the eukaryote translation initiation factor (eIF) 3 complex, which has a crucial role in the translation initiation process. In this study, we demonstrated that eIF3c is vital to translation initiation in vivo, as its downregulation decreases the global protein synthesis and causes a polysome run-off. In addition, reducing the expression of eIF3c mediates G0/G1 or G2/M arrest in a tissue dependent manner, which leads to a reduction in cell proliferation and eventually to cell death. Moreover, we demonstrated the efficiency of the hyaluronan (HA)-coated lipid-based nanoparticles (LNPs) platform to deliver eIF3c-siRNAs to mouse melanoma cells. Taking together, our results emphasize the importance of seeking ubiquitously expressed housekeeping genes such as eIF3c rather than tumor associated overexpressed genes as therapeutic targets for the heterogeneous malignancies.
Collapse
Affiliation(s)
- Rafi Emmanuel
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
117
|
Elinav E, Peer D. Harnessing nanomedicine for mucosal theranostics--a silver bullet at last? ACS NANO 2013; 7:2883-2890. [PMID: 23570555 DOI: 10.1021/nn400885b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel disease (IBD) has been extensively studied in the last four decades both in animal models and humans. The treatment options remain disappointing, nonspecific, and associated with multiple systemic adverse effects. In this Perspective, we highlight issues related to emerging nanotechnologies designed particularly for treatment and disease management of IBD and discuss potential therapeutic target options with novel molecular imaging modalities.
Collapse
Affiliation(s)
- Eran Elinav
- Department of Immunology, Weizmann Institute of Sciences, Rehovot 76100, Israel.
| | | |
Collapse
|
118
|
|
119
|
Dendrimers for siRNA Delivery. Pharmaceuticals (Basel) 2013; 6:161-83. [PMID: 24275946 PMCID: PMC3816686 DOI: 10.3390/ph6020161] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 01/18/2023] Open
Abstract
Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers.
Collapse
|