101
|
Shemesh CS, Yu RZ, Gaus HJ, Seth PP, Swayze EE, Bennett FC, Geary RS, Henry SP, Wang Y. Pharmacokinetic and Pharmacodynamic Investigations of ION-353382, a Model Antisense Oligonucleotide: Using Alpha-2-Macroglobulin and Murinoglobulin Double-Knockout Mice. Nucleic Acid Ther 2016; 26:223-35. [PMID: 27031383 DOI: 10.1089/nat.2016.0607] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate the pharmacokinetics (PKs) and pharmacodynamics (PDs) for ION-353382, an antisense oligonucleotide (ASO) targeting scavenger receptor class B type I (SRB1) mRNA, using alpha-2-macroglobulin (A2M), murinoglobulin double-knockout (DKO), and wild-type mice. Wild-type and DKO homozygous mice were administered a single subcutaneous injection of ION-353382 at 0, 5, 15, 30, and 60 mg/kg. Mice were sacrificed at 72 h with plasma and organs harvested. Both liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) were used to determine ASO exposure with real-time PCR for SRB1 expression. Immunohistochemistry was evaluated to explore hepatic uptake of ASOs. The total plasma protein binding and profiling was assessed. Finally, two-dimensional gel electrophoresis identified protein expression differences. PK exposures were comparable between wild-type and DKO mice in plasma, liver, and kidney, yet a near twofold reduction in EC50 was revealed for DKO mice based on an inhibitory effect liver exposure response model. Total plasma protein binding and profiling revealed no major dissimilarities between both groups. Plasma proteome fingerprinting confirmed protein expression variations related to A2M. Histological examination revealed enhanced ASO distribution into hepatocytes and less nonparenchymal uptake for DKO mice compared to wild-type mice. Knocking out A2M showed improved PD activities without an effect on total plasma and tissue exposure kinetics. Binding to A2M could mediate ASOs to nonproductive compartments, and thus, decreased binding of ASOs to A2M could potentially improve ASO pharmacology.
Collapse
Affiliation(s)
- Colby S Shemesh
- 1 Department of Pharmacokinetics and Clinical Pharmacology, Ionis Pharmaceuticals , Carlsbad, California
| | - Rosie Z Yu
- 1 Department of Pharmacokinetics and Clinical Pharmacology, Ionis Pharmaceuticals , Carlsbad, California
| | - Hans J Gaus
- 2 Department of Structural Biology, Ionis Pharmaceuticals , Carlsbad, California
| | - Punit P Seth
- 3 Department of Medicinal Chemistry, Ionis Pharmaceuticals , Carlsbad, California
| | - Eric E Swayze
- 3 Department of Medicinal Chemistry, Ionis Pharmaceuticals , Carlsbad, California
| | - Frank C Bennett
- 4 Department of Research Biology, Ionis Pharmaceuticals , Carlsbad, California
| | - Richard S Geary
- 5 Department of Clinical Development, Ionis Pharmaceuticals , Carlsbad, California
| | - Scott P Henry
- 6 Department of Toxicology, Ionis Pharmaceuticals , Carlsbad, California
| | - Yanfeng Wang
- 1 Department of Pharmacokinetics and Clinical Pharmacology, Ionis Pharmaceuticals , Carlsbad, California
| |
Collapse
|
102
|
Jackson A, Jani S, Sala CD, Soler-Bistué AJC, Zorreguieta A, Tolmasky ME. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biol Methods Protoc 2016; 1. [PMID: 27857983 PMCID: PMC5108630 DOI: 10.1093/biomethods/bpw001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
External guide sequences (EGSs) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNAs) – modified ribonucleotides that contain a bridge at the 2ʹ,4ʹ-position of the ribose. LNA and the second-generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6ʹ)-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5ʹ- and 3ʹ-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell-penetrating peptide, the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.
Collapse
Affiliation(s)
- Alexis Jackson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Carol Davies Sala
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Alfonso J C Soler-Bistué
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
103
|
Affiliation(s)
- Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
104
|
Bao TL, Veedu RN, Fletcher S, Wilton SD. Antisense oligonucleotide development for the treatment of muscular dystrophies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
105
|
Kang L, Huo Y, Ji Q, Fan S, Yan P, Zhang C, Ma H, Hao P, Sun H, Zheng Z, Xu X, Wang R. Noninvasive visualization of microRNA-155 in multiple kinds of tumors using a radiolabeled anti-miRNA oligonucleotide. Nucl Med Biol 2015; 43:171-8. [PMID: 26872442 DOI: 10.1016/j.nucmedbio.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/29/2015] [Accepted: 11/29/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE We investigated whether a (99m)Tc radiolabeled anti-miRNA-155 oligonucleotide (AMO-155) could visualize the expression of miR-155 in multiple kinds of tumors in vivo. METHODS AMO-155 was chemically synthesized and modified with 2'-O-methyl (2'-OMe) and phosphorothioate (PS). It was radiolabeled with (99m)Tc via the conjugation with NHS-MAG3 at 5' end. The characterization of radiolabeling and serum stability was evaluated using high performance liquid chromatography (HPLC) and agarose gel electrophoresis. The expression of C/EBPβ, one of the miR-155 target proteins, was assessed using Western blot. The cellular uptake and delivery of AMO-155 was further evaluated in tumor cells. (99m)Tc-AMO-155 was tested in vivo in multiple tumor models, including miR-155 over-expressed and low-expressed tumor models. Finally, biodistribution of (99m)Tc-AMO-155 was evaluated. RESULTS (99m)Tc-AMO-155 was prepared with high yield and radiochemical purity. It showed high stability in fresh human serum for 10h. (99m)Tc-AMO-155 displayed comparable capacity as unlabeled AMO-155 to increase the expression of C/EBPβ protein in MCF-7 cells. (99m)Tc-AMO-155 showed an increased radioactive uptake in MCF-7 cells after 8h of incubation, whereas no change of (99m)Tc-pertechnetate uptake was observed. Carboxyfluorescein (FAM) labeled AMO-155 had higher fluorescent delivery than Control in HeLa and HepG2 cells by confocal microscopy. In miR-155 over-expressed tumor models, (99m)Tc-AMO-155 showed significantly higher tumor accumulation than (99m)Tc-Control. Furthermore, (99m)Tc-AMO-155 was capable of discriminating between MCF-7 and MDA-MB-231 tumors based on their expression of miR-155. CONCLUSIONS Our study successfully prepared and proved (99m)Tc-AMO-155 as a prospective imaging agent for the noninvasive visualization of miR-155 expression in vivo.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yan Huo
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Quanbo Ji
- Department of Orthopedics, PLA General Hospital, Beijing 100853, China
| | - Shiyong Fan
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Huan Ma
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Pan Hao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Hongwei Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhibing Zheng
- Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
106
|
Castanotto D, Lin M, Kowolik C, Wang L, Ren XQ, Soifer HS, Koch T, Hansen BR, Oerum H, Armstrong B, Wang Z, Bauer P, Rossi J, Stein CA. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells. Nucleic Acids Res 2015; 43:9350-61. [PMID: 26433227 PMCID: PMC4627093 DOI: 10.1093/nar/gkv964] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 09/04/2015] [Indexed: 11/18/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing.
Collapse
Affiliation(s)
- Daniela Castanotto
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte CA 91010, USA
| | - Min Lin
- Department of Cancer Immunotherapeutics and Tumor Immunology, City of Hope, 1500 East Duarte Road, Duarte CA 91010, USA
| | - Claudia Kowolik
- Department of Molecular Medicine, City of Hope, 1500 East Duarte Road, Duarte CA 91010, USA
| | - LiAnn Wang
- Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA
| | - Xiao-Qin Ren
- Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA
| | - Harris S Soifer
- bioTheranostics, 9640 Towne Center Dr., Suite 100, San Diego, CA 92121, USA
| | - Troels Koch
- Roche, Fremtidsvej 3, Horsholm, DK 2970, Denmark
| | | | - Henrik Oerum
- Roche, Fremtidsvej 3, Horsholm, DK 2970, Denmark
| | - Brian Armstrong
- Department of Neuroscience, City of Hope, 1500 East Duarte Road, Duarte CA 91010, USA
| | - Zhigang Wang
- Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA
| | - Paul Bauer
- Pfizer Research Technology Center, 620 Memorial Drive, Cambridge, MA 02139, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, City of Hope, 1500 East Duarte Road, Duarte CA 91010, USA
| | - C A Stein
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte CA 91010, USA
| |
Collapse
|
107
|
Lundin KE, Gissberg O, Smith CE. Oligonucleotide Therapies: The Past and the Present. Hum Gene Ther 2015; 26:475-85. [PMID: 26160334 PMCID: PMC4554547 DOI: 10.1089/hum.2015.070] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 12/19/2022] Open
Abstract
In this review we address the development of oligonucleotide (ON) medicines from a historical perspective by listing the landmark discoveries in this field. The various biological processes that have been targeted and the corresponding ON interventions found in the literature are discussed together with brief updates on some of the more recent developments. Most ON therapies act through antisense mechanisms and are directed against various RNA species, as exemplified by gapmers, steric block ONs, antagomirs, small interfering RNAs (siRNAs), micro-RNA mimics, and splice switching ONs. However, ONs binding to Toll-like receptors and those forming aptamers have completely different modes of action. Similar to other novel medicines, the path to success has been lined with numerous failures, where different therapeutic ONs did not stand the test of time. Since the first ON drug was approved for clinical use in 1998, the therapeutic landscape has changed considerably, but many challenges remain until the expectations for this new form of medicine are met. However, there is room for cautious optimism.
Collapse
Affiliation(s)
- Karin E. Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C.I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|