101
|
Liu X, Yang X, Sun W, Wu Q, Song Y, Yuan L, Yang G. Systematic Evolution of Ligands by Exosome Enrichment: A Proof-of-Concept Study for Exosome-Based Targeting Peptide Screening. ACTA ACUST UNITED AC 2018; 3:e1800275. [PMID: 32627374 DOI: 10.1002/adbi.201800275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/04/2018] [Indexed: 11/10/2022]
Abstract
Selection of a peptide that binds preferentially to targeted cells or tissues is a prerequisite for targeted therapy. Although in vivo phage display is a high-throughput method, it is restricted in identifying target ligands specific for different vascular beds. In this study, the exosomes are repurposed for targeting peptide screening. Briefly, the signal peptide region of Lamp2b (a membrane protein on the exosomes) in the N-terminus is engineered to fuse with 10 aa long random peptides, while the C-terminus of Lamp2b is fused with the MS2 coating protein (MCP). Then, the whole Lamp2b-MCP open reading frame (ORF) is further engineered to harbor a 3'UTR sequence consisting of MS2. The resultant exosomes from engineered Lamp2b-MCP expressing cells display the 10 aa peptides on the outside while containing the genetic information inside. By proof-of-principle experiments, the exosomes with different peptides could preferentially distribute to different tissues besides the spleen and liver. Furthermore, detailed target sequences for different tissues are enriched by rounds of selection. In summary, the established novel targeted peptide screening strategy, namely, "exosome display," has broad applicability, especially for displaying and screening targeted peptides for the cells outside the capillary with condense barriers, like the neurons in the brain.
Collapse
Affiliation(s)
- Xiangwei Liu
- Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture Department of Implant Dentistry, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burn Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xinshi Road NO. 569th, Xi'an, 710038, China
| | - Qi Wu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingliang Song
- Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture Department of Implant Dentistry, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xinshi Road NO. 569th, Xi'an, 710038, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
102
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
103
|
Zhang L, Jing D, Wang L, Sun Y, Li JJ, Hill B, Yang F, Li Y, Lam KS. Unique Photochemo-Immuno-Nanoplatform against Orthotopic Xenograft Oral Cancer and Metastatic Syngeneic Breast Cancer. NANO LETTERS 2018; 18:7092-7103. [PMID: 30339018 PMCID: PMC6501589 DOI: 10.1021/acs.nanolett.8b03096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sophisticated self-assembly may endow materials with a variety of unique functions that are highly desirable for therapeutic nanoplatform. Herein, we report the coassembly of two structurally defined telodendrimers, each comprised of hydrophilic linear PEG and hydrophobic cholic acid cluster as a basic amphiphilic molecular subunit. One telodendrimer has four added indocyanine green derivatives, leading to excellent photothermal properties; the other telodendrimer has four sulfhydryl groups designed for efficient intersubunit cross-linking, contributing to superior stability during circulation. The coassembled nanoparticle (CPCI-NP) possesses superior photothermal conversion efficiency as well as efficient encapsulation and controlled release of cytotoxic molecules and immunomodulatory agents. CPCI-NP loaded with doxorubicin has proven to be a highly efficacious combination photothermal/chemotherapeutic nanoplatform against orthotopic OSC-3 oral cancer xenograft model. When loaded with imiquimod, a potent small molecule immunostimulant, CPCI-NP is found to be highly effective against 4T1 syngeneic murine breast cancer model, particularly when photothermal/immuno-therapy is given in combination with PD-1 checkpoint blockade antibody. Such triple therapy not only eradicates the light-irradiated primary tumors, but also activates systemic antitumor immunoactivity, causing tumor death at light-unexposed distant tumor sites. This coassembled multifunctional, versatile, and easily scalable photothermal immuno-nanoplatform shows great promise for clinical translation.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
| | - Di Jing
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
- Department of Oncology, Xiangya Hospital, Central South University, Hunan, 410008, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuan Sun
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
| | - Jian Jian Li
- Director of Translational Research, Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, California, 95817, USA
| | - Brianna Hill
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
| | - Fan Yang
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis NCI-designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, 95817, USA
| |
Collapse
|
104
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
105
|
Xue B, Kozlovskaya V, Sherwani MA, Ratnayaka S, Habib S, Anderson T, Manuvakhova M, Klampfer L, Yusuf N, Kharlampieva E. Peptide-Functionalized Hydrogel Cubes for Active Tumor Cell Targeting. Biomacromolecules 2018; 19:4084-4097. [PMID: 30169033 PMCID: PMC7398455 DOI: 10.1021/acs.biomac.8b01088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conjugation of bioactive targeting molecules to nano- or micrometer-sized drug carriers is a pivotal strategy to improve their therapeutic efficiency. Herein, we developed pH- and redox-sensitive hydrogel particles with a surface-conjugated cancer cell targeting ligand for specific tumor-targeting and controlled release of the anticancer drug doxorubicin. The poly(methacrylic acid) (PMAA) hydrogel cubes of 700 nm and 2 μm with a hepsin-targeting (IPLVVPL) surface peptide are produced through multilayer polymer assembly on sacrificial cubical mesoporous cores. Direct peptide conjugation to the disulfide-stabilized hydrogels through a thiol-amine reaction does not compromise the structural integrity, hydrophilicity, stability in serum, or pH/redox sensitivity but does affect internalization by cancer cells. The cell uptake kinetics and the ultimate extent of internalization are controlled by the cell type and hydrogel size. The peptide modification significantly promotes the uptake of the 700 nm hydrogels by hepsin-positive MCF-7 cells due to ligand-receptor recognition but has a negligible effect on the uptake of 2 μm PMAA hydrogels. The selectivity of 700 nm IPLVVPL-PMAA hydrogel cubes to hepsin-overexpressing tumor cells is further confirmed by a 3-10-fold higher particle internalization by hepsin-positive MCF-7 and SK-OV-3 compared to that of hepsin-negative PC-3 cells. This work provides a facile method to fabricate enhanced tumor-targeting carriers of submicrometer size and improves the general understanding of particle design parameters for targeted drug delivery.
Collapse
Affiliation(s)
- Bing Xue
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mohammad Asif Sherwani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sithira Ratnayaka
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shahriar Habib
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Theron Anderson
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Center of Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
106
|
Shaw SK, Liu W, Gómez Durán CFA, Schreiber CL, Betancourt Mendiola MDL, Zhai C, Roland FM, Padanilam SJ, Smith BD. Non-Covalently Pre-Assembled High-Performance Near-Infrared Fluorescent Molecular Probes for Cancer Imaging. Chemistry 2018; 24:13821-13829. [PMID: 30022552 PMCID: PMC6415912 DOI: 10.1002/chem.201801825] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/05/2018] [Indexed: 12/15/2022]
Abstract
New fluorescent molecular probes, which can selectively target specific cell surface receptors, are needed for microscopy, in vivo imaging, and image guided surgery. The preparation of multivalent probes using standard synthetic chemistry can be a laborious process due to low reaction yields caused by steric effects. In this study, fluorescent molecular probes were prepared by a programmed non-covalent pre-assembly process that used a near-infrared fluorescent squaraine dye to thread a macrocycle bearing a cyclic arginine-glycine-aspartate peptide antagonist (cRGDfK) as a cancer targeting unit. Cell microscopy studies using OVCAR-4 (ovarian cancer) and A549 (lung cancer) cells that express high levels of the integrin αvβ3 or αvβ5 receptors, respectively, revealed a multivalent cell targeting effect. That is, there was comparatively more cell uptake of a pre-assembled probe equipped with two copies of the cRGDfK antagonist than a pre-assembled probe with only one appended cRGDfK antagonist. The remarkably high photostability and low phototoxicity of these near-infrared probes allowed for acquisition of long-term fluorescence movies showing endosome trafficking in living cells. In vivo near-infrared fluorescence imaging experiments compared the biodistribution of a targeted and untargeted probe in a xenograft mouse tumor model. The average tumor-to-muscle ratio for the pre-assembled targeted probe was 3.6 which matches the tumor targeting performance reported for analogous cRGDfK-based probes that were prepared entirely by covalent synthesis. The capability to excite these pre-assembled near-infrared fluorescent probes with blue or deep-red excitation light makes it possible to determine if a target site is located superficially or buried in tissue, a probe performance feature that is likely to be very helpful for eventual applications such as fluorescence guided surgery.
Collapse
Affiliation(s)
- Scott K Shaw
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| | - Wenqi Liu
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| | | | - Cynthia L Schreiber
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| | | | - Canjia Zhai
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| | - Felicia M Roland
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| | - Simon J Padanilam
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| | - Bradley D Smith
- Department of Chemistry & Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN, 46545, USA
| |
Collapse
|
107
|
Arun AS, Tepper CG, Lam KS. Identification of integrin drug targets for 17 solid tumor types. Oncotarget 2018; 9:30146-30162. [PMID: 30046394 PMCID: PMC6059022 DOI: 10.18632/oncotarget.25731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Integrins are contributors to remodeling of the extracellular matrix and cell migration. Integrins participate in the assembly of the actin cytoskeleton, regulate growth factor signaling pathways, cell proliferation, and control cell motility. In solid tumors, integrins are involved in promoting metastasis to distant sites, and angiogenesis. Integrins are a key target in cancer therapy and imaging. Integrin antagonists have proven successful in halting invasion and migration of tumors. Overexpressed integrins are prime anti-cancer drug targets. To streamline the development of specific integrin cancer therapeutics, we curated data to predict which integrin heterodimers are pausible therapeutic targets against 17 different solid tumors. Computational analysis of The Cancer Genome Atlas (TCGA) gene expression data revealed a set of integrin targets that are differentially expressed in tumors. Filtered by FPKM (Fragments Per Kilobase of transcript per Million mapped reads) expression level, overexpressed subunits were paired into heterodimeric protein targets. By comparing the RNA-seq differential expression results with immunohistochemistry (IHC) data, overexpressed integrin subunits were validated. Biologics and small molecule drug compounds against these identified overexpressed subunits and heterodimeric receptors are potential therapeutics against these cancers. In addition, high-affinity and high-specificity ligands against these integrins can serve as efficient vehicles for delivery of cancer drugs, nanotherapeutics, or imaging probes against cancer.
Collapse
Affiliation(s)
- Adith S Arun
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, UC Davis NCI-Designated Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, UC Davis NCI-Designated Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, UC Davis NCI-Designated Comprehensive Cancer Center, Sacramento, CA 95817, USA
| |
Collapse
|
108
|
Bi X, Yin J, Hemu X, Rao C, Tam JP, Liu CF. Immobilization and Intracellular Delivery of Circular Proteins by Modifying a Genetically Incorporated Unnatural Amino Acid. Bioconjug Chem 2018; 29:2170-2175. [DOI: 10.1021/acs.bioconjchem.8b00244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaobao Bi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | | | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chang Rao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
109
|
Lee SG, Kim CH, Sung SW, Lee ES, Goh MS, Yoon HY, Kang MJ, Lee S, Choi YW. RIPL peptide-conjugated nanostructured lipid carriers for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Int J Nanomedicine 2018; 13:3263-3278. [PMID: 29910614 PMCID: PMC5987859 DOI: 10.2147/ijn.s166021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background To facilitate selective and enhanced drug delivery to hepsin (Hpn)-expressing cancer cells, RIPL peptide (IPLVVPLRRRRRRRRC, 16-mer)-conjugated nanostructured lipid carriers (RIPL-NLCs) were developed. Methods NLCs were prepared using a solvent emulsification-evaporation method and the RIPL peptide was conjugated to the maleimide-derivatized NLCs via the thiol-maleimide reaction. Employing a fluorescent probe (DiI), in vitro target-selective intracellular uptake behaviors were observed using fluorescence microscopy and flow cytometry. Separately, docetaxel (DTX) was encapsulated by pre-loading technique, then cytotoxicity and drug release were evaluated. In vivo antitumor efficacy was investigated in BALB/c nude mice with SKOV3 cell tumors after intratumoral injections of different DTX formulations at a dose equivalent to 10 mg/kg DTX. Results RIPL-NLCs showed positively charged nanodispersion, whereas NLCs were negatively charged. DTX was successfully encapsulated with an encapsulation efficiency and drug loading capacity of 95-98% and 44-46 µg/mg, respectively. DTX release was diffusion-controlled, revealing the best fit to the Higuchi equation. Cellular uptake of DiI-loaded RIPL-NLCs was 8.3- and 6.2-fold higher than that of DiI-loaded NLCs, in Hpn(+) SKOV3 and LNCaP cells, respectively. The translocation of RIPL-NLCs into SKOV3 cells was time-dependent with internalization within 1 h and distribution throughout the cytoplasm after 2 h. DTX-loaded RIPL-NLCs (DTX-RIPL-NLCs) revealed dose-dependent in vitro cytotoxicity, while drug-free formulations were non-cytotoxic. In SKOV3-bearing xenograft mouse model, DTX-RIPL-NLCs significantly inhibited tumor growth: the inhibition ratios of the DTX solution-treated and DTX-RIPL-NLC-treated groups were 61.4% and 91.2%, respectively, compared to those of the saline-treated group (control). Conclusion RIPL-NLCs are good candidates for Hpn-selective drug targeting with a high loading capacity of hydrophobic drug molecules.
Collapse
Affiliation(s)
- Sang Gon Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Si Woo Sung
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Eun Seok Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Min Su Goh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ho Yub Yoon
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Chungnam, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
110
|
Small molecule detection with aptamer based lateral flow assays: Applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci Rep 2018; 8:5628. [PMID: 29618771 PMCID: PMC5884802 DOI: 10.1038/s41598-018-23963-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
Aptamer-based lateral flow assays (LFAs) are an emerging field of aptamer applications due to numerous potential applications. When compared to antibodies, potential advantages like cost effectiveness or lower batch to batch variations are evident. The development of LFAs for small molecules, however, is still challenging due to several reasons, primarily linked to target size and accessible interaction sites. In small molecule analysis, however, aptamers in many cases are preferable since immunogenicity is not required and they may exhibit even higher target selectivity. We report the first cross-recognition of a small molecule (ampicillin) and a protein (C-reactive protein), predicted by in-silico analysis, then experimentally confirmed - using two different aptamers. These features can be exploited for developing an aptamer-based LFA for label-free ampicillin detection, functioning also for analysis in milk extract. Most importantly, the principal setup denotes a novel, transferable and versatile general approach for detection of small molecules using competitive LFAs, unlikely to be generally realized by aptamer-DNA-binding otherwise.
Collapse
|
111
|
Passioura T, Suga H. A RaPID way to discover nonstandard macrocyclic peptide modulators of drug targets. Chem Commun (Camb) 2018; 53:1931-1940. [PMID: 28091672 DOI: 10.1039/c6cc06951g] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the fundamental nature of RNA catalysis and the potential mechanism of a shift from the "RNA world" to proteinaceous life lead us to identify a set of ribozymes (flexizymes) capable of promiscuous tRNA acylation. Whilst theoretically and mechanistically interesting in their own right, flexizymes have turned out to have immense practical value for the simple synthesis of tRNAs acylated with unusual amino acids, which in turn can be used for the ribosomal synthesis of peptides containing non-canonical residues. Using this technique, it is possible to synthesise peptides containing a range of structural features (macrocyclic backbones, backbone N-methylation, d-stereochemistry, etc.) commonly observed in natural product secondary metabolites, a chemical class that has historically been a rich source of drug-like molecules. Moreover, when combined with biochemical display screening technologies, this synthetic approach can be used to generate (and screen for target affinity) extremely diverse (in excess of 1012 compound) chemical libraries, making it an extraordinary tool for drug discovery. The current review charts the history of flexizyme technology and its use for non-canonical peptide synthesis and screening.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan. and Japan Science and Technology Agency (JST), Core Research for Evolutionary Science and Technology (CREST), Saitama 332-0012, Japan
| |
Collapse
|
112
|
He B, Tjhung KF, Bennett NJ, Chou Y, Rau A, Huang J, Derda R. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing. Sci Rep 2018; 8:1214. [PMID: 29352178 PMCID: PMC5775325 DOI: 10.1038/s41598-018-19439-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.
Collapse
Affiliation(s)
- Bifang He
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Katrina F Tjhung
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
- The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Nicholas J Bennett
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ying Chou
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Andrea Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jian Huang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ratmir Derda
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
113
|
Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, Rettie SA, Kim DE, Silva DA, Ibrahim YM, Webb IK, Cort JR, Adkins JN, Varani G, Baker D. Comprehensive computational design of ordered peptide macrocycles. Science 2017; 358:1461-1466. [PMID: 29242347 PMCID: PMC5860875 DOI: 10.1126/science.aap7577] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022]
Abstract
Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with l-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of l- and d-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Gaurav Bhardwaj
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Vikram Khipple Mulligan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | - Timothy W. Craven
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Fátima Pardo-Avila
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen A. Rettie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David E. Kim
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ian K. Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - John R. Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
114
|
Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem Int Ed Engl 2017; 56:14888-14892. [DOI: 10.1002/anie.201708327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Lin Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shanfang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology; Northeastern University; Boston MA 02115 USA
- Institute of Chemical Biology and Nanomedicine; Hunan University; Changsha 410081 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shouzhou Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| |
Collapse
|
115
|
Li Y, Sun S, Fan L, Hu S, Huang Y, Zhang K, Nie Z, Yao S. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Sujuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Lin Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shanfang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology; Northeastern University; Boston MA 02115 USA
- Institute of Chemical Biology and Nanomedicine; Hunan University; Changsha 410081 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Shouzhou Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| |
Collapse
|
116
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
117
|
Li HM, Dong ZP, Wang QY, Liu LX, Li BX, Ma XN, Lin MS, Lu T, Wang Y. De Novo Computational Design for Development of a Peptide Ligand Oriented to VEGFR-3 with High Affinity and Long Circulation. Mol Pharm 2017; 14:2236-2244. [DOI: 10.1021/acs.molpharmaceut.7b00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hong M. Li
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi P. Dong
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Y. Wang
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Li X. Liu
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Bing X. Li
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao N. Ma
- Cellular and Molecular Biology Center of China Pharmaceutical University, Nanjing 211198, China
| | - Ming S. Lin
- TA Instruments-Waters LLC, Shanghai 200233, China
| | - Tao Lu
- State
Key Laboratory of Natural Medicines, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wang
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
118
|
Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0329-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
119
|
Abstract
Molecular imaging allows for the visualization of changes at the cellular level in diseases such as cancer. A successful molecular imaging agent must rely on disease-selective targets and ligands that specifically interact with those targets. Unfortunately, the translation of novel target-specific ligands into the clinic has been frustratingly slow with limitations including the complex design and screening approaches for ligand identification, as well as their subsequent optimization into useful imaging agents. This review focuses on combinatorial library approaches towards addressing these two challenges, with particular focus on phage display and one-bead one-compound (OBOC) libraries. Both of these peptide-based techniques have proven successful in identifying new ligands for cancer-specific targets and some of the success stories will be highlighted. New developments in screening methodology and sequencing technology have pushed the bounds of phage display and OBOC even further, allowing for even faster and more robust discovery of novel ligands. The combination of multiple high-throughput technologies will not only allow for more accurate identification, but also faster affinity maturation, while overall streamlining the process of translating novel ligands into clinical imaging agents.
Collapse
|
120
|
|
121
|
|