101
|
Abstract
The ATPase family AAA-domain containing protein 3A (ATAD3A), a nuclear-encoded mitochondrial enzyme, is involved in diverse cellular processes, including mitochondrial dynamics, cell death and cholesterol metabolism. Overexpression and/or mutation of the ATAD3A gene have been observed in different types of cancer, associated with cancer development and progression. The dysregulated ATAD3A acts as a broker of a mitochondria-endoplasmic reticulum connection in cancer cells, and inhibition of this enzyme leads to tumor repression and enhanced sensitivity to chemotherapy and radiation. As such, ATAD3A is a promising drug target in cancer treatment.
Collapse
|
102
|
Coban-Akdemir Z, White JJ, Song X, Jhangiani SN, Fatih JM, Gambin T, Bayram Y, Chinn IK, Karaca E, Punetha J, Poli C, Boerwinkle E, Shaw CA, Orange JS, Gibbs RA, Lappalainen T, Lupski JR, Carvalho CM, Carvalho CMB. Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits by Potential Gain-of-Function Alleles. Am J Hum Genet 2018; 103:171-187. [PMID: 30032986 DOI: 10.1016/j.ajhg.2018.06.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, which was further used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be overlooked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and efficient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
103
|
Marcogliese PC, Shashi V, Spillmann RC, Stong N, Rosenfeld JA, Koenig MK, Martínez-Agosto JA, Herzog M, Chen AH, Dickson PI, Lin HJ, Vera MU, Salamon N, Graham JM, Ortiz D, Infante E, Steyaert W, Dermaut B, Poppe B, Chung HL, Zuo Z, Lee PT, Kanca O, Xia F, Yang Y, Smith EC, Jasien J, Kansagra S, Spiridigliozzi G, El-Dairi M, Lark R, Riley K, Koeberl DD, Golden-Grant K, Yamamoto S, Wangler MF, Mirzaa G, Hemelsoet D, Lee B, Nelson SF, Goldstein DB, Bellen HJ, Pena LDM. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet 2018; 103:245-260. [PMID: 30057031 PMCID: PMC6081494 DOI: 10.1016/j.ajhg.2018.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.
Collapse
Affiliation(s)
- Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary Kay Koenig
- Division of Child & Adolescent Neurology, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julián A Martínez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Child and Adolescent Psychiatry, Resnick Neuropsychiatric Hospital, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Herzog
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Agnes H Chen
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Henry J Lin
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Moin U Vera
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John M Graham
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damara Ortiz
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Elena Infante
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wouter Steyaert
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bart Dermaut
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bruce Poppe
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward C Smith
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gail Spiridigliozzi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Lark
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kacie Riley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katie Golden-Grant
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Loren D M Pena
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
104
|
Gregor A, Sadleir LG, Asadollahi R, Azzarello-Burri S, Battaglia A, Ousager LB, Boonsawat P, Bruel AL, Buchert R, Calpena E, Cogné B, Dallapiccola B, Distelmaier F, Elmslie F, Faivre L, Haack TB, Harrison V, Henderson A, Hunt D, Isidor B, Joset P, Kumada S, Lachmeijer AM, Lees M, Lynch SA, Martinez F, Matsumoto N, McDougall C, Mefford HC, Miyake N, Myers CT, Moutton S, Nesbitt A, Novelli A, Orellana C, Rauch A, Rosello M, Saida K, Santani AB, Sarkar A, Scheffer IE, Shinawi M, Steindl K, Symonds JD, Zackai EH, Reis A, Sticht H, Zweier C, Sticht H, Zweier C. De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental Disorder. Am J Hum Genet 2018; 103:305-316. [PMID: 30057029 DOI: 10.1016/j.ajhg.2018.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
105
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
106
|
|
107
|
Liu N, Schoch K, Luo X, Pena LDM, Bhavana VH, Kukolich MK, Stringer S, Powis Z, Radtke K, Mroske C, Deak KL, McDonald MT, McConkie-Rosell A, Markert ML, Kranz PG, Stong N, Need AC, Bick D, Amaral MD, Worthey EA, Levy S, Undiagnosed Diseases Network (UDN), Wangler MF, Bellen HJ, Shashi V, Yamamoto S. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Hum Mol Genet 2018; 27:2454-2465. [PMID: 29726930 PMCID: PMC6030957 DOI: 10.1093/hmg/ddy146] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/07/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022] Open
Abstract
The 17 genes of the T-box family are transcriptional regulators that are involved in all stages of embryonic development, including craniofacial, brain, heart, skeleton and immune system. Malformation syndromes have been linked to many of the T-box genes. For example, haploinsufficiency of TBX1 is responsible for many structural malformations in DiGeorge syndrome caused by a chromosome 22q11.2 deletion. We report four individuals with an overlapping spectrum of craniofacial dysmorphisms, cardiac anomalies, skeletal malformations, immune deficiency, endocrine abnormalities and developmental impairments, reminiscent of DiGeorge syndrome, who are heterozygotes for TBX2 variants. The p.R20Q variant is shared by three affected family members in an autosomal dominant manner; the fourth unrelated individual has a de novo p.R305H mutation. Bioinformatics analyses indicate that these variants are rare and predict them to be damaging. In vitro transcriptional assays in cultured cells show that both variants result in reduced transcriptional repressor activity of TBX2. We also show that the variants result in reduced protein levels of TBX2. Heterologous over-expression studies in Drosophila demonstrate that both p.R20Q and p.R305H function as partial loss-of-function alleles. Hence, these and other data suggest that TBX2 is a novel candidate gene for a new multisystem malformation disorder.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Xi Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Loren D M Pena
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | | | - Mary K Kukolich
- Department of Genetics, Cook Children’s Hospital, Fort Worth, TX, USA
| | - Sarah Stringer
- Department of Genetics, Cook Children’s Hospital, Fort Worth, TX, USA
| | - Zöe Powis
- Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Kelly Radtke
- Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | | | - Kristen L Deak
- Department of Pathology, Duke University, Durham, NC, USA
| | - Marie T McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - M Louise Markert
- Division of Allergy and Immunology, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Peter G Kranz
- Division of Neuroradiology, Department of Radiology, Duke Health, Durham, NC, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Anna C Need
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Houston, TX, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, NC, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
108
|
Oriel C, Lasko P. Recent Developments in Using Drosophila as a Model for Human Genetic Disease. Int J Mol Sci 2018; 19:E2041. [PMID: 30011838 PMCID: PMC6073706 DOI: 10.3390/ijms19072041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Many insights into human disease have been built on experimental results in Drosophila, and research in fruit flies is often justified on the basis of its predictive value for questions related to human health. Additionally, there is now a growing recognition of the value of Drosophila for the study of rare human genetic diseases, either as a means of validating the causative nature of a candidate genetic variant found in patients, or as a means of obtaining functional information about a novel disease-linked gene when there is little known about it. For these reasons, funders in the US, Europe, and Canada have launched targeted programs to link human geneticists working on discovering new rare disease loci with researchers who work on the counterpart genes in Drosophila and other model organisms. Several of these initiatives are described here, as are a number of output publications that validate this new approach.
Collapse
Affiliation(s)
- Christine Oriel
- Maternal Infant Child Youth and Research Network, V2-230, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir-William-Osler, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
109
|
Peralta S, Goffart S, Williams SL, Diaz F, Garcia S, Nissanka N, Area-Gomez E, Pohjoismäki J, Moraes CT. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J Cell Sci 2018; 131:jcs217075. [PMID: 29898916 PMCID: PMC6051345 DOI: 10.1242/jcs.217075] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Mutations in the mitochondrial inner membrane ATPase ATAD3A result in neurological syndromes in humans. In mice, the ubiquitous disruption of Atad3 (also known as Atad3a) was embryonic lethal, but a skeletal muscle-specific conditional knockout (KO) was viable. At birth, ATAD3 muscle KO mice had normal weight, but from 2 months onwards they showed progressive motor-impaired coordination and weakness. Loss of ATAD3 caused early and severe mitochondrial structural abnormalities, mitochondrial proliferation and muscle atrophy. There was dramatic reduction in mitochondrial cristae junctions and overall cristae morphology. The lack of mitochondrial cristae was accompanied by a reduction in high molecular weight mitochondrial contact site and cristae organizing system (MICOS) complexes, and to a lesser extent in OPA1. Moreover, muscles lacking ATAD3 showed altered cholesterol metabolism, accumulation of mitochondrial DNA (mtDNA) replication intermediates, progressive mtDNA depletion and deletions. Unexpectedly, decreases in the levels of some OXPHOS components occurred after cristae destabilization, indicating that ATAD3 is not crucial for mitochondrial translation, as previously suggested. Our results show a critical early role of ATAD3 in regulating mitochondrial inner membrane structure, leading to secondary defects in mtDNA replication and complex V and cholesterol levels in postmitotic tissue.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Susana Peralta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Sion L Williams
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadee Nissanka
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaakko Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
110
|
Singhal N, Jaiswal M. Pathways to neurodegeneration: lessons learnt from unbiased genetic screens in Drosophila. J Genet 2018; 97:773-781. [PMID: 30027908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurodegenerative diseases are a complex set of disorders that are known to be caused by environmental as well as genetic factors. In the recent past, mutations in a large number of genes have been identified that are linked to several neurodegenerative diseases. The pathogenic mechanisms in most of these disorders are unknown. Recently, studies of genes that are linked to neurodegeneration in Drosophila, the fruit flies, have contributed significantly to our understanding of mechanisms of neuroprotection and degeneration. In this review, we focus on forward genetic screens in Drosophila that helped in identification of novel genes and pathogenic mechanisms linked to neurodegeneration. We also discuss identification of four novel pathways that contribute to neurodegeneration upon mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neha Singhal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 107, India.
| | | |
Collapse
|
111
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
112
|
Phenotypic expansion illuminates multilocus pathogenic variation. Genet Med 2018; 20:1528-1537. [PMID: 29790871 PMCID: PMC6450542 DOI: 10.1038/gim.2018.33] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose: Multilocus variation, pathogenic variants in two or more disease
genes, can potentially explain the underlying genetic basis for apparent
phenotypic expansion in cases for which the observed clinical features
extend beyond those reported in association with a “known”
disease gene. Methods: Analyses focused on 106 patients, 19 for which apparent phenotypic
expansion was previously attributed to variation at known disease genes. We
performed a retrospective computational re-analysis of whole exome
sequencing data using stringent Variant Call File filtering criteria to
determine whether molecular diagnoses involving additional disease loci
might explain the observed expanded phenotypes. Results: Multilocus variation was identified in 31.6% (6/19) of families with
phenotypic expansion and 2.3% (2/87) without phenotypic expansion.
Intrafamilial clinical variability within 2 families was explained by
multilocus variation identified in the more severely affected sibling. Conclusions: Our findings underscore the role of multiple rare variants at
different loci in the etiology of genetically and clinically heterogeneous
cohorts. Intrafamilial phenotypic and genotypic variability allowed a
dissection of genotype-phenotype relationships in 2 families. Our data
emphasize the critical role of the clinician in diagnostic genomic analyses
and demonstrate that apparent phenotypic expansion may represent blended
phenotypes resulting from pathogenic variation at more than one locus.
Collapse
|
113
|
Wangler MF, Assia Batzir N, Robak LA, Koenig MK, Bacino CA, Scaglia F, Bellen HJ. The expanding neurological phenotype of DNM1L-related disorders. Brain 2018; 141:e28. [PMID: 29529134 PMCID: PMC11505533 DOI: 10.1093/brain/awy024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX 77030, USA
- Texas Children's Hospital, Houston TX 77030, USA
| | - Nurit Assia Batzir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Texas Children's Hospital, Houston TX 77030, USA
| | - Mary K Koenig
- Department of Pediatric Neurology, University of Texas Medical School at Houston, Houston TX 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Texas Children's Hospital, Houston TX 77030, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Texas Children's Hospital, Houston TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX 77030, USA
| |
Collapse
|
114
|
Bagli E, Zikou AK, Agnantis N, Kitsos G. Mitochondrial Membrane Dynamics and Inherited Optic Neuropathies. ACTA ACUST UNITED AC 2018; 31:511-525. [PMID: 28652416 DOI: 10.21873/invivo.11090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Inherited optic neuropathies are a genetically diverse group of disorders mainly characterized by visual loss and optic atrophy. Since the first recognition of Leber's hereditary optic neuropathy, several genetic defects altering primary mitochondrial respiration have been proposed to contribute to the development of syndromic and non-syndromic optic neuropathies. Moreover, the genomics and imaging revolution in the past decade has increased diagnostic efficiency and accuracy, allowing recognition of a link between mitochondrial dynamics machinery and a broad range of inherited neurodegenerative diseases involving the optic nerve. Mutations of novel genes modifying mainly the balance between mitochondrial fusion and fission have been shown to lead to overlapping clinical phenotypes ranging from isolated optic atrophy to severe, sometimes lethal multisystem disorders, and are reviewed herein. Given the particular vulnerability of retinal ganglion cells to mitochondrial dysfunction, the accessibility of the eye as a part of the central nervous system and improvements in technical imaging concerning assessment of the retinal nerve fiber layer, optic nerve evaluation becomes critical - even in asymptomatic patients - for correct diagnosis, understanding and early treatment of these complex and enigmatic clinical entities.
Collapse
Affiliation(s)
- Eleni Bagli
- Institute of Molecular Biology and Biotechnology-FORTH, Division of Biomedical Research, Ioannina, Greece.,Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | - Anastasia K Zikou
- Department of Clinical Radiology, University of Ioannina, Ioannina, Greece
| | - Niki Agnantis
- Department of Pathology, University of Ioannina, Ioannina, Greece
| | - Georgios Kitsos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
115
|
Gueneau L, Fish RJ, Shamseldin HE, Voisin N, Tran Mau-Them F, Preiksaitiene E, Monroe GR, Lai A, Putoux A, Allias F, Ambusaidi Q, Ambrozaityte L, Cimbalistienė L, Delafontaine J, Guex N, Hashem M, Kurdi W, Jamuar SS, Ying LJ, Bonnard C, Pippucci T, Pradervand S, Roechert B, van Hasselt PM, Wiederkehr M, Wright CF, Xenarios I, van Haaften G, Shaw-Smith C, Schindewolf EM, Neerman-Arbez M, Sanlaville D, Lesca G, Guibaud L, Reversade B, Chelly J, Kučinskas V, Alkuraya FS, Reymond A, Reymond A. KIAA1109 Variants Are Associated with a Severe Disorder of Brain Development and Arthrogryposis. Am J Hum Genet 2018; 102:116-132. [PMID: 29290337 PMCID: PMC5777449 DOI: 10.1016/j.ajhg.2017.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kučinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands’ features.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
116
|
White JJ, Mazzeu JF, Coban-Akdemir Z, Bayram Y, Bahrambeigi V, Hoischen A, van Bon BWM, Gezdirici A, Gulec EY, Ramond F, Touraine R, Thevenon J, Shinawi M, Beaver E, Heeley J, Hoover-Fong J, Durmaz CD, Karabulut HG, Marzioglu-Ozdemir E, Cayir A, Duz MB, Seven M, Price S, Ferreira BM, Vianna-Morgante AM, Ellard S, Parrish A, Stals K, Flores-Daboub J, Jhangiani SN, Gibbs RA, Brunner HG, Sutton VR, Lupski JR, Carvalho CMB. WNT Signaling Perturbations Underlie the Genetic Heterogeneity of Robinow Syndrome. Am J Hum Genet 2018; 102:27-43. [PMID: 29276006 DOI: 10.1016/j.ajhg.2017.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Locus heterogeneity characterizes a variety of skeletal dysplasias often due to interacting or overlapping signaling pathways. Robinow syndrome is a skeletal disorder historically refractory to molecular diagnosis, potentially stemming from substantial genetic heterogeneity. All current known pathogenic variants reside in genes within the noncanonical Wnt signaling pathway including ROR2, WNT5A, and more recently, DVL1 and DVL3. However, ∼70% of autosomal-dominant Robinow syndrome cases remain molecularly unsolved. To investigate this missing heritability, we recruited 21 families with at least one family member clinically diagnosed with Robinow or Robinow-like phenotypes and performed genetic and genomic studies. In total, four families with variants in FZD2 were identified as well as three individuals from two families with biallelic variants in NXN that co-segregate with the phenotype. Importantly, both FZD2 and NXN are relevant protein partners in the WNT5A interactome, supporting their role in skeletal development. In addition to confirming that clustered -1 frameshifting variants in DVL1 and DVL3 are the main contributors to dominant Robinow syndrome, we also found likely pathogenic variants in candidate genes GPC4 and RAC3, both linked to the Wnt signaling pathway. These data support an initial hypothesis that Robinow syndrome results from perturbation of the Wnt/PCP pathway, suggest specific relevant domains of the proteins involved, and reveal key contributors in this signaling cascade during human embryonic development. Contrary to the view that non-allelic genetic heterogeneity hampers gene discovery, this study demonstrates the utility of rare disease genomic studies to parse gene function in human developmental pathways.
Collapse
Affiliation(s)
- Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Juliana F Mazzeu
- University of Brasilia, Brasilia 70910, Brazil; Robinow Syndrome Foundation, Anoka, MN 55303, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Vahid Bahrambeigi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bregje W M van Bon
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Francis Ramond
- Service de Génétique, CHU-Hôpital Nord, 42000 Saint-Etienne, France
| | - Renaud Touraine
- Service de Génétique, CHU-Hôpital Nord, 42000 Saint-Etienne, France
| | - Julien Thevenon
- Inserm UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, 21000 Dijon, France; FHU-TRANSLAD, Université de Bourgogne, 21000 CHU Dijon, France; Centre de génétique, Hôpital Couple-Enfant, CHU de Grenoble-Alpes, 38700 La Tronche, France
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erin Beaver
- Mercy Clinic-Kids Genetics, Mercy Children's Hospital St. Louis, St. Louis, MO 63141, USA
| | - Jennifer Heeley
- Mercy Clinic-Kids Genetics, Mercy Children's Hospital St. Louis, St. Louis, MO 63141, USA
| | - Julie Hoover-Fong
- Greenberg Center for Skeletal Dysplasias, McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ceren D Durmaz
- Department of Medical Genetics, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Halil Gurhan Karabulut
- Department of Medical Genetics, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Ebru Marzioglu-Ozdemir
- Department of Medical Genetics, Erzurum Regional and Training Hospital, 25070 Erzurum, Turkey
| | - Atilla Cayir
- Erzurum Training and Research Hospital, Department of Pediatric Endocrinology, 25070 Erzurum, Turkey
| | - Mehmet B Duz
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, 34452 Istanbul, Turkey
| | - Mehmet Seven
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, 34452 Istanbul, Turkey
| | - Susan Price
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK
| | | | - Angela M Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Sao Paulo - SP 05508-090, Brazil
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Andrew Parrish
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Josue Flores-Daboub
- Department of Pediatric Genetics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Clinical Genetics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, the Netherlands
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA.
| |
Collapse
|
117
|
Stals KL, Wakeling M, Baptista J, Caswell R, Parrish A, Rankin J, Tysoe C, Jones G, Gunning AC, Lango Allen H, Bradley L, Brady AF, Carley H, Carmichael J, Castle B, Cilliers D, Cox H, Deshpande C, Dixit A, Eason J, Elmslie F, Fry AE, Fryer A, Holder M, Homfray T, Kivuva E, McKay V, Newbury‐Ecob R, Parker M, Savarirayan R, Searle C, Shannon N, Shears D, Smithson S, Thomas E, Turnpenny PD, Varghese V, Vasudevan P, Wakeling E, Baple EL, Ellard S. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. Prenat Diagn 2018; 38:33-43. [PMID: 29096039 PMCID: PMC5836855 DOI: 10.1002/pd.5175] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.
Collapse
|
118
|
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23:1048-1080. [PMID: 29386878 PMCID: PMC5757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
119
|
Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem 2017; 294:5386-5395. [PMID: 29233888 DOI: 10.1074/jbc.r117.809194] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited disorders of oxidative phosphorylation cause the clinically and genetically heterogeneous diseases known as mitochondrial energy generation disorders, or mitochondrial diseases. Over the last three decades, mutations causing these disorders have been identified in almost 290 genes, but many patients still remain without a molecular diagnosis. Moreover, while our knowledge of the genetic causes is continually expanding, our understanding into how these defects lead to cellular dysfunction and organ pathology is still incomplete. Here, we review recent developments in disease gene discovery, functional characterization, and shared pathogenic parameters influencing disease pathology that offer promising avenues toward the development of effective therapies.
Collapse
Affiliation(s)
- Ann E Frazier
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| | - David R Thorburn
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Alison G Compton
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| |
Collapse
|
120
|
Harel T, Lupski JR. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet 2017; 93:439-449. [PMID: 28950406 DOI: 10.1111/cge.13146] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Genomic disorders result from copy-number variants (CNVs) or submicroscopic rearrangements of the genome rather than from single nucleotide variants (SNVs). Diverse technologies, including array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) microarrays, and more recently, whole genome sequencing and whole-exome sequencing, have enabled robust genome-wide unbiased detection of CNVs in affected individuals and in reportedly healthy controls. Sequencing of breakpoint junctions has allowed for elucidation of upstream mechanisms leading to genomic instability and resultant structural variation, whereas studies of the association between CNVs and specific diseases or susceptibility to morbid traits have enhanced our understanding of the downstream effects. In this review, we discuss the hallmarks of genomic disorders as they were defined during the first decade of the field, including genomic instability and the mechanism for rearrangement defined as nonallelic homologous recombination (NAHR); recurrent vs nonrecurrent rearrangements; and gene dosage sensitivity. Moreover, we highlight the exciting advances of the second decade of this field, including a deeper understanding of genomic instability and the mechanisms underlying complex rearrangements, mechanisms for constitutional and somatic chromosomal rearrangements, structural intra-species polymorphisms and susceptibility to NAHR, the role of CNVs in the context of genome-wide copy number and single nucleotide variation, and the contribution of noncoding CNVs to human disease.
Collapse
Affiliation(s)
- T Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
121
|
Jin G, Xu C, Zhang X, Long J, Rezaeian AH, Liu C, Furth ME, Kridel S, Pasche B, Bian XW, Lin HK. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat Immunol 2017; 19:29-40. [PMID: 29242539 DOI: 10.1038/s41590-017-0002-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/04/2017] [Indexed: 01/13/2023]
Abstract
Although deletion of certain autophagy-related genes has been associated with defects in hematopoiesis, it remains unclear whether hyperactivated mitophagy affects the maintenance and differentiation of hematopoietic stem cells (HSCs) and committed progenitor cells. Here we report that targeted deletion of the gene encoding the AAA+-ATPase Atad3a hyperactivated mitophagy in mouse hematopoietic cells. Affected mice showed reduced survival, severely decreased bone-marrow cellularity, erythroid anemia and B cell lymphopenia. Those phenotypes were associated with skewed differentiation of stem and progenitor cells and an enlarged HSC pool. Mechanistically, Atad3a interacted with the mitochondrial channel components Tom40 and Tim23 and served as a bridging factor to facilitate appropriate transportation and processing of the mitophagy protein Pink1. Loss of Atad3a caused accumulation of Pink1 and activated mitophagy. Notably, deletion of Pink1 in Atad3a-deficient mice significantly 'rescued' the mitophagy defect, which resulted in restoration of the progenitor and HSC pools. Our data indicate that Atad3a suppresses Pink1-dependent mitophagy and thereby serves a key role in hematopoietic homeostasis.
Collapse
Affiliation(s)
- Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Oncology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Long
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Abdol Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunfang Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark E Furth
- Wake Forest Innovations, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Steven Kridel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Boris Pasche
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
122
|
Gambin T, Akdemir ZC, Yuan B, Gu S, Chiang T, Carvalho CMB, Shaw C, Jhangiani S, Boone PM, Eldomery MK, Karaca E, Bayram Y, Stray-Pedersen A, Muzny D, Charng WL, Bahrambeigi V, Belmont JW, Boerwinkle E, Beaudet AL, Gibbs RA, Lupski JR. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort. Nucleic Acids Res 2017; 45:1633-1648. [PMID: 27980096 PMCID: PMC5389578 DOI: 10.1093/nar/gkw1237] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses.
Collapse
Affiliation(s)
- Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665 Warsaw, Poland
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division for Pediatric and Adolescent Medicine, Oslo University Hospital, N-0424 Oslo, Norway
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vahid Bahrambeigi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
123
|
Chao HT, Liu L, Bellen HJ. Building dialogues between clinical and biomedical research through cross-species collaborations. Semin Cell Dev Biol 2017; 70:49-57. [PMID: 28579453 PMCID: PMC5623622 DOI: 10.1016/j.semcdb.2017.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease.
Collapse
Affiliation(s)
- Hsiao-Tuan Chao
- Department of Pediatrics, Section of Child Neurology, Baylor College of Medicine, Houston, TX 77030, United States; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States.
| | - Lucy Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - Hugo J Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, United States; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, United States; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
124
|
Sommerville EW, Alston CL, Pyle A, He L, Falkous G, Naismith K, Chinnery PF, McFarland R, Taylor RW. De novo CTBP1 variant is associated with decreased mitochondrial respiratory chain activities. NEUROLOGY-GENETICS 2017; 3:e187. [PMID: 28955726 PMCID: PMC5610040 DOI: 10.1212/nxg.0000000000000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Objective: To determine the genetic etiology of a young woman presenting an early-onset, progressive neurodegenerative disorder with evidence of decreased mitochondrial complex I and IV activities in skeletal muscle suggestive of a mitochondrial disorder. Methods: A case report including diagnostic workup, whole-exome sequencing of the affected patient, filtering, and prioritization of candidate variants assuming a suspected autosomal recessive mitochondrial disorder and segregation studies. Results: After excluding candidate variants for an autosomal recessive mitochondrial disorder, re-evaluation of rare and novel heterozygous variants identified a recently reported, recurrent pathogenic heterozygous CTBP1 missense change (c.991C>T, p.Arg331Trp), which was confirmed to have arisen de novo. Conclusions: We report the fifth known patient harboring a recurrent pathogenic de novo c.991C>T p.(Arg331Trp) CTBP1 variant, who was initially suspected to have an autosomal recessive mitochondrial disorder. Inheritance of suspected early-onset mitochondrial disease could wrongly be assumed to be autosomal recessive. Hence, this warrants continued re-evaluation of rare and novel heterozygous variants in patients with apparently unsolved suspected mitochondrial disease investigated using next-generation sequencing.
Collapse
Affiliation(s)
- Ewen W Sommerville
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Langping He
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Karen Naismith
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Patrick F Chinnery
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research (E.W.S., C.L.A., L.H., G.F., R.M., R.W.T.), Institute of Neuroscience, Newcastle University, United Kingdom; Department of Molecular and Human Genetics (E.W.S.), Baylor College of Medicine, Houston, TX; Wellcome Centre for Mitochondrial Research (A.P.), Institute of Genetic Medicine, Newcastle University; Armistead Child Development Centre (K.N.), Kings Cross Hospital, Dundee, Scotland; Department of Clinical Neurosciences (P.F.C.), School of Clinical Medicine, University of Cambridge; and MRC Mitochondrial Biology Unit (P.F.C.), University of Cambridge, United Kingdom
| |
Collapse
|
125
|
Baudier J. ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in mammalian cells. Biol Rev Camb Philos Soc 2017; 93:827-844. [PMID: 28941010 DOI: 10.1111/brv.12373] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
In yeast, a sequence of physical and genetic interactions termed the endoplasmic reticulum (ER)-mitochondria organizing network (ERMIONE) controls mitochondria-ER interactions and mitochondrial biogenesis. Several functions that characterize ERMIONE complexes are conserved in mammalian cells, suggesting that a similar tethering complex must exist in metazoans. Recent studies have identified a new family of nuclear-encoded ATPases associated with diverse cellular activities (AAA+-ATPase) mitochondrial membrane proteins specific to multicellular eukaryotes, called the ATPase family AAA domain-containing protein 3 (ATAD3) proteins (ATAD3A and ATAD3B). These proteins are crucial for normal mitochondrial-ER interactions and lie at the heart of processes underlying mitochondrial biogenesis. ATAD3A orthologues have been studied in flies, worms, and mammals, highlighting the widespread importance of this gene during embryonic development and in adulthood. ATAD3A is a downstream effector of target of rapamycin (TOR) signalling in Drosophila and exhibits typical features of proteins from the ERMIONE-like complex in metazoans. In humans, mutations in the ATAD3A gene represent a new link between altered mitochondrial-ER interaction and recognizable neurological syndromes. The primate-specific ATAD3B protein is a biomarker of pluripotent embryonic stem cells. Through negative regulation of ATAD3A function, ATAD3B supports mitochondrial stemness properties.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284, Marseille Cedex 07, France.,Institut de Biologie du Développement de Marseille-UMR CNRS 7288, 13288, Marseille Cedex 9, France
| |
Collapse
|
126
|
Wangler MF, Yamamoto S, Chao HT, Posey JE, Westerfield M, Postlethwait J, Hieter P, Boycott KM, Campeau PM, Bellen HJ. Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Genetics 2017; 207:9-27. [PMID: 28874452 PMCID: PMC5586389 DOI: 10.1534/genetics.117.203067] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
Efforts to identify the genetic underpinnings of rare undiagnosed diseases increasingly involve the use of next-generation sequencing and comparative genomic hybridization methods. These efforts are limited by a lack of knowledge regarding gene function, and an inability to predict the impact of genetic variation on the encoded protein function. Diagnostic challenges posed by undiagnosed diseases have solutions in model organism research, which provides a wealth of detailed biological information. Model organism geneticists are by necessity experts in particular genes, gene families, specific organs, and biological functions. Here, we review the current state of research into undiagnosed diseases, highlighting large efforts in North America and internationally, including the Undiagnosed Diseases Network (UDN) (Supplemental Material, File S1) and UDN International (UDNI), the Centers for Mendelian Genomics (CMG), and the Canadian Rare Diseases Models and Mechanisms Network (RDMM). We discuss how merging human genetics with model organism research guides experimental studies to solve these medical mysteries, gain new insights into disease pathogenesis, and uncover new therapeutic strategies.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Hsiao-Tuan Chao
- Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Pediatrics, Section of Child Neurology, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4C, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ontario K1H 8L1, Canada
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Quebec H3T 1C5, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine (BCM), Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine (BCM), Houston, Texas 77030
| |
Collapse
|
127
|
De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 2017; 20:172-180. [PMID: 28771244 PMCID: PMC5846809 DOI: 10.1038/gim.2017.83] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/24/2017] [Indexed: 02/04/2023] Open
Abstract
Purpose Hemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP. Methods We genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of “CNV-positive” trios. Results We detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders. Conclusion We found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.
Collapse
|
128
|
Desai R, Frazier AE, Durigon R, Patel H, Jones AW, Dalla Rosa I, Lake NJ, Compton AG, Mountford HS, Tucker EJ, Mitchell ALR, Jackson D, Sesay A, Di Re M, van den Heuvel LP, Burke D, Francis D, Lunke S, McGillivray G, Mandelstam S, Mochel F, Keren B, Jardel C, Turner AM, Ian Andrews P, Smeitink J, Spelbrink JN, Heales SJ, Kohda M, Ohtake A, Murayama K, Okazaki Y, Lombès A, Holt IJ, Thorburn DR, Spinazzola A. ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain 2017; 140:1595-1610. [PMID: 28549128 PMCID: PMC5445257 DOI: 10.1093/brain/awx094] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/09/2017] [Indexed: 12/03/2022] Open
Abstract
Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Radha Desai
- MRC Laboratory, Mill Hill, London NW71AA, UK
| | - Ann E Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Romina Durigon
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aleck W Jones
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Ilaria Dalla Rosa
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Nicole J Lake
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Alison G Compton
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Hayley S Mountford
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Elena J Tucker
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Alice L R Mitchell
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Deborah Jackson
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Abdul Sesay
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miriam Di Re
- Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, UK
| | - Lambert P van den Heuvel
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derek Burke
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.,Department of Pathology, University of Melbourne, Melbourne 3052, Australia
| | - George McGillivray
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Simone Mandelstam
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.,The Florey Institute of Neuroscience and Mental Health Melbourne, Australia.,Departments of Radiology and Paediatrics, University of Melbourne, Melbourne, Australia
| | - Fanny Mochel
- AP-HP, Department of Genetics, GHU Pitié-Salpêtrière, Paris, F-75651 France.,Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France
| | - Boris Keren
- Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France.,AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France
| | - Claude Jardel
- AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France.,Inserm U1016; CNRS UMR 8104; Université Paris-Descartes-Paris 5; Institut Cochin, 75014 Paris, France
| | - Anne M Turner
- Department of Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia
| | - P Ian Andrews
- School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia.,Department of Paediatric Neurology, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jan Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes N Spelbrink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon J Heales
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Anne Lombès
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ian J Holt
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David R Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Antonella Spinazzola
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
129
|
Markowitz D, Lin D, Salas S, Kohn N, Schulder M. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions. Stereotact Funct Neurosurg 2017; 95:197-204. [PMID: 28614824 DOI: 10.1159/000475673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/05/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. OBJECTIVES The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. METHODS The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. RESULTS The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). CONCLUSIONS Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy.
Collapse
Affiliation(s)
- Daniel Markowitz
- Department of Neurosurgery, Northwell Health, Manhasset, NY, USA
| | | | | | | | | |
Collapse
|
130
|
Chow CY, Reiter LT. Etiology of Human Genetic Disease on the Fly. Trends Genet 2017; 33:391-398. [DOI: 10.1016/j.tig.2017.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023]
|
131
|
Cooper HM, Yang Y, Ylikallio E, Khairullin R, Woldegebriel R, Lin KL, Euro L, Palin E, Wolf A, Trokovic R, Isohanni P, Kaakkola S, Auranen M, Lönnqvist T, Wanrooij S, Tyynismaa H. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia. Hum Mol Genet 2017; 26:1432-1443. [PMID: 28158749 PMCID: PMC5393146 DOI: 10.1093/hmg/ddx042] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023] Open
Abstract
De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.
Collapse
Affiliation(s)
- Helen M Cooper
- Åbo Akademi University, Faculty of Natural Sciences and Technology, Turku, Finland
| | - Yang Yang
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Emil Ylikallio
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rafil Khairullin
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Rosa Woldegebriel
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Kai-Lan Lin
- Åbo Akademi University, Faculty of Natural Sciences and Technology, Turku, Finland
| | - Liliya Euro
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Eino Palin
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum Muenchen-German Research Center for Environmental Health, Neuherberg, Germany
| | - Ras Trokovic
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Child Neurology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Seppo Kaakkola
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuula Lönnqvist
- Department of Child Neurology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
132
|
Abstract
Mitochondrial disease is a challenging area of genetics because two distinct genomes can contribute to disease pathogenesis. It is also challenging clinically because of the myriad of different symptoms and, until recently, a lack of a genetic diagnosis in many patients. The last five years has brought remarkable progress in this area. We provide a brief overview of mitochondrial origin, function, and biology, which are key to understanding the genetic basis of mitochondrial disease. However, the primary purpose of this review is to describe the recent advances related to the diagnosis, genetic basis, and prevention of mitochondrial disease, highlighting the newly described disease genes and the evolving methodologies aimed at preventing mitochondrial DNA disease transmission.
Collapse
Affiliation(s)
- Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom;
| |
Collapse
|
133
|
Eldomery MK, Coban-Akdemir Z, Harel T, Rosenfeld JA, Gambin T, Stray-Pedersen A, Küry S, Mercier S, Lessel D, Denecke J, Wiszniewski W, Penney S, Liu P, Bi W, Lalani SR, Schaaf CP, Wangler MF, Bacino CA, Lewis RA, Potocki L, Graham BH, Belmont JW, Scaglia F, Orange JS, Jhangiani SN, Chiang T, Doddapaneni H, Hu J, Muzny DM, Xia F, Beaudet AL, Boerwinkle E, Eng CM, Plon SE, Sutton VR, Gibbs RA, Posey JE, Yang Y, Lupski JR. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med 2017; 9:26. [PMID: 28327206 PMCID: PMC5361813 DOI: 10.1186/s13073-017-0412-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts.
Collapse
Affiliation(s)
- Mohammad K. Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Present Address: Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 W. 11th Street, Indianapolis, IN 46202 USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Women and Children’s Division, Oslo University Hospital, 0424 Oslo, Norway
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, CEDEX 1 France
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, CEDEX 1 France
- Atlantic Gene Therapies, UMR1089, Nantes, France
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wojciech Wiszniewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Samantha Penney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - John W. Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Jordan S. Orange
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital Center for Human Immuno-Biology, Houston, TX USA
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Theodore Chiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Christine M. Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sharon E. Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 7703 USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor-Hopkins Center for Mendelian Genomics, Baltimore, MD USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Baylor Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
- Texas Children’s Hospital, Houston, TX 77030 USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030-3498 USA
| |
Collapse
|