101
|
Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels. Proc Natl Acad Sci U S A 2016; 113:E6686-E6695. [PMID: 27791037 DOI: 10.1073/pnas.1614017113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pain is a critical component hindering recovery and regaining of function after surgery, particularly in the elderly. Understanding the role of pain signaling after surgery may lead to novel interventions for common complications such as delirium and postoperative cognitive dysfunction. Using a model of tibial fracture with intramedullary pinning in male mice, associated with cognitive deficits, we characterized the effects on the primary somatosensory system. Here we show that tibial fracture with pinning triggers cold allodynia and up-regulates nerve injury and inflammatory markers in dorsal root ganglia (DRGs) and spinal cord up to 2 wk after intervention. At 72 h after surgery, there is an increase in activating transcription factor 3 (ATF3), the neuropeptides galanin and neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), as well as neuroinflammatory markers including ionized calcium-binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and the fractalkine receptor CX3CR1 in DRGs. Using an established model of complete transection of the sciatic nerve for comparison, we observed similar but more pronounced changes in these markers. However, protein levels of BDNF remained elevated for a longer period after fracture. In the hippocampus, BDNF protein levels were increased, yet there were no changes in Bdnf mRNA in the parent granule cell bodies. Further, c-Fos was down-regulated in the hippocampus, together with a reduction in neurogenesis in the subgranular zone. Taken together, our results suggest that attenuated BDNF release and signaling in the dentate gyrus may account for cognitive and mental deficits sometimes observed after surgery.
Collapse
|
102
|
Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, Kensler TW, Zendedel A, Beyer C, Kipp M, Wruck CJ, Fragoulis A, Clarner T. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia 2016; 64:2219-2230. [PMID: 27641725 DOI: 10.1002/glia.23058] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022]
Abstract
Oxidative stress critically contributes to the pathogenesis of a variety of neurodegenerative diseases such as multiple sclerosis. Astrocytes are the main regulators of oxidative homeostasis in the brain and dysregulation of these cells likely contributes to the accumulation of oxidative damage. The nuclear factor erythroid 2-related factor 2 (Nrf2) is the main transcriptional regulator of the anti-oxidant stress defense. In this study, we elucidate the effects of astrocytic Nrf2-activation on brain-intrinsic inflammation and lesion development. Cells deficient for the Nrf2 repressor kelch-like ECH-associated protein 1 (Keap1) are characterized by hyperactivation of Nrf2-signaling. Therefore, wild type mice and mice with a GFAP-specific Keap1-deletion were fed with 0.25% cuprizone for 1 or 3 weeks. Cuprizone intoxication induced pronounced oligodendrocyte loss, demyelination and reactive gliosis in wild type animals. In contrast, astrocyte-specific Nrf2-activation was sufficient to prevent oligodendrocyte loss and demyelination, to ameliorate brain intrinsic inflammation and to counteract axonal damage. Our results highlight the potential of the Nrf2/ARE system for the treatment of neuroinflammation in general and of multiple sclerosis in particular. © GLIA 2016;64:2219-2230.
Collapse
Affiliation(s)
- T Draheim
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - A Liessem
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - M Scheld
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - F Wilms
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - M Weißflog
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - B Denecke
- Interdisciplinary Centre for Clinical Research (IZKF) Aachen, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - T W Kensler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - A Zendedel
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Giulan University of Medical Sciences, Rasht, Iran
| | - C Beyer
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - M Kipp
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Wruck
- Department of Anatomy and Cell Biology, Faculty of Medicine, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - A Fragoulis
- Department of Anatomy and Cell Biology, Faculty of Medicine, Uniklinik RWTH Aachen, Aachen, 52074, Germany.,Department of Orthopaedic Surgery, Faculty of Medicine, Uniklinik RWTH Aachen, Aachen, 52074, Germany
| | - T Clarner
- Faculty of Medicine, Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, 52074, Germany.
| |
Collapse
|
103
|
Zhang H, Sun XR, Wang J, Zhang ZZ, Zhao HT, Li HH, Ji MH, Li KY, Yang JJ. Reactive Oxygen Species-mediated Loss of Phenotype of Parvalbumin Interneurons Contributes to Long-term Cognitive Impairments After Repeated Neonatal Ketamine Exposures. Neurotox Res 2016; 30:593-605. [DOI: 10.1007/s12640-016-9653-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/29/2023]
|
104
|
Lv B, Huo F, Zhu Z, Xu Z, Dang X, Chen T, Zhang T, Yang X. Crocin Upregulates CX3CR1 Expression by Suppressing NF-κB/YY1 Signaling and Inhibiting Lipopolysaccharide-Induced Microglial Activation. Neurochem Res 2016; 41:1949-57. [PMID: 27084772 DOI: 10.1007/s11064-016-1905-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Microglial activation has been shown to be deleterious to RGCs and may participate in the progression of glaucoma. Crocin, one of the major active ingredients in saffron, has been found to inhibit microglial activation. However, the mechanism remains unclear. The aim of this study was to investigate whether crocin can inhibit lipopolysaccharide (LPS)-induced microglial activation and to clarify the mechanisms involved. The influence of crocin on primary RGCs and LPS-stimulated BV2 microglial cells survival was determined by the MTT and lactate dehydrogenase assays, or by flow cytometry. BV2 cells were pretreated with various concentrations of crocin for 2 h followed by 1 μg/mL LPS stimulation. Microglial markers and pro-inflammatory mediators were assessed by real-time PCR, western blot and ELISA. Furthermore, CX3CR1 expression was detected and the underlying mechanism was examined. The concentrations of crocin ranged from 0.1 to 1 μM, and did not show any cytotoxicity in RGC and BV2 cells. After crocin pretreatment, the expression of microglial markers (CD11b and Iba-1) and pro-inflammatory mediators (iNOS, COX-2, IL-1β, and TNF-α) induced by LPS were significantly decreased in a dose-dependent manner. Additionally, CX3CR1 expression was remarkably increased by crocin via the suppression of NF-κB/Yin Yang 1 (YY1) signaling in BV2 cells. In conclusion, crocin effectively suppresses microglial activation and upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling.
Collapse
Affiliation(s)
- Bochang Lv
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, 710061, People's Republic of China
| | - Zhongqiao Zhu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Zhiguo Xu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Xiaojie Dang
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xinguang Yang
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China.
| |
Collapse
|