101
|
Tarasov VA, Matishov DG, Shin EF, Boyko NV, Timoshkina NN, Makhotkin MA, Lomonosov AM, Kirpiy AA, Kit OI, Maximov AY. Coordinated aberrant expression of miRNAs in colon cancer. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
102
|
Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol 2014; 2:61. [PMID: 25364765 PMCID: PMC4207049 DOI: 10.3389/fcell.2014.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases and cancers are the leading causes of morbidity and mortality in the world. MicroRNAs (miRNAs) are short non-coding RNAs that primarily repress target mRNAs. Here, miR-24, miR-125b, miR-195, and miR-214 were selected as representative cardio-miRs that are upregulated in human heart failure. To bridge the gap between miRNA studies in cardiology and oncology, the targets and functions of these miRNAs in cardiovascular diseases and cancers will be reviewed. ACVR1B, BCL2, BIM, eNOS, FGFR3, JPH2, MEN1, MYC, p16, and ST7L are miR-24 targets that have been experimentally validated in human cells. ARID3B, BAK1, BCL2, BMPR1B, ERBB2, FGFR2, IL6R, MUC1, SITR7, Smoothened, STAT3, TET2, and TP53 are representative miR-125b targets. ACVR2A, BCL2, CCND1, E2F3, GLUT3, MYB, RAF1, VEGF, WEE1, and WNT7A are representative miR-195 targets. BCL2L2, ß-catenin, BIM, CADM1, EZH2, FGFR1, NRAS, PTEN, TP53, and TWIST1 are representative miR-214 targets. miR-125b is a good cardio-miR that protects cardiomyocytes; miR-195 is a bad cardio-miR that elicits cardiomyopathy and heart failure; miR-24 and miR-214 are bi-functional cardio-miRs. By contrast, miR-24, miR-125b, miR-195, and miR-214 function as oncogenic or tumor suppressor miRNAs in a cancer (sub)type-dependent manner. Circulating miR-24 is elevated in diabetes, breast cancer and lung cancer. Circulating miR-195 is elevated in acute myocardial infarction, breast cancer, prostate cancer and colorectal adenoma. Circulating miR-125b and miR-214 are elevated in some cancers. Cardio-miRs and onco-miRs bear some similarities in functions and circulation profiles. miRNAs regulate WNT, FGF, Hedgehog and other signaling cascades that are involved in orchestration of embryogenesis and homeostasis as well as pathogenesis of human diseases. Because circulating miRNA profiles are modulated by genetic and environmental factors and are dysregulated by genetic and epigenetic alterations in somatic cells, circulating miRNA association studies (CMASs) within several thousands of cases each for common non-cancerous diseases and major cancers are necessary for miRNA-based diagnostics.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center Tokyo, Japan
| |
Collapse
|
103
|
WANG XINGSHAN, QIAN WENWEI, WU ZHIHONG, BIAN YANYAN, WENG XISHENG. Preliminary screening of differentially expressed circulating microRNAs in patients with steroid-induced osteonecrosis of the femoral head. Mol Med Rep 2014; 10:3118-24. [DOI: 10.3892/mmr.2014.2660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 08/07/2014] [Indexed: 11/06/2022] Open
|
104
|
Zheng G, Du L, Yang X, Zhang X, Wang L, Yang Y, Li J, Wang C. Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma. Br J Cancer 2014; 111:1985-92. [PMID: 25233400 PMCID: PMC4229633 DOI: 10.1038/bjc.2014.489] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/14/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
Background: Currently, none of the available colorectal adenocarcinoma (CAC) testing has been established as a well-accepted diagnosis tool, particularly for the early stage of CAC. The recent discovery of serum microRNA (miRNA) profile has provided a new auxiliary approach for tumour diagnosis. Our study is involved in the global analysis of serum miRNAs during the normal–colorectal adenoma (CA)–CAC sequence. Methods: Serum samples were collected from 307 CAC patients, 164 CA patients and 226 healthy controls. Differentially expressed serum miRNAs were screened with Miseq sequencing followed by the reverse transcription PCR (RT–qPCR) validation. The miRNA panel was developed with a logistic regression model and validated using an independent cohort. The miRNA levels in CAC patients of different clinical stages and CA patients of different grades were compared. Receiver operating characteristic curves were constructed to evaluate the diagnostic accuracy of the panel. Results: The Miseq sequencing results revealed 15 differentially expressed miRNAs in the intersection of CAC vs CA and CA vs healthy controls according to our criteria. After the selection and validation process via RT–qPCR, we identified a four-miRNA panel (miR-19a-3p, miR-223-3p, miR-92a-3p and miR-422a) with a high diagnostic accuracy of CAC. Even in the low-carcinoembryonic antigen level group, the diagnostic accuracy of this miRNA panel was still acceptable (AUC=0.810). Surprisingly, our results indicated that the miRNA panel could differentiate stage I/II CAC from controls. In addition, this panel could also differentiate CA from CAC (AUC=0.886) and healthy controls (AUC=0.765). Conclusions: We established a serum four-miRNA panel with considerable clinical value in the early-stage diagnosis of CAC.
Collapse
Affiliation(s)
- G Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - L Du
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - X Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - X Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - L Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Y Yang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - J Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - C Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
105
|
Orang AV, Barzegari A. MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy. Asian Pac J Cancer Prev 2014; 15:6989-99. [DOI: 10.7314/apjcp.2014.15.17.6989] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
106
|
Yang Y, Li M, Chang S, Wang L, Song T, Gao L, Hu L, Li Z, Liu L, Yao J, Huang C. MicroRNA-195 acts as a tumor suppressor by directly targeting Wnt3a in HepG2 hepatocellular carcinoma cells. Mol Med Rep 2014; 10:2643-8. [PMID: 25174704 DOI: 10.3892/mmr.2014.2526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/01/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non‑coding, endogenous RNAs that are important in tumor cell biological processes as they regulate gene expression. miR-195 has been demonstrated to be a tumor repressor in numerous types of human cancer. However, the mechanism by which miR‑195 suppresses tumor development remains to be elucidated. The aim of this study was to investigate the effect of miR-195 on the biological functions of HepG2 hepatocellular carcinoma (HCC) cells and identify the association between miR-195 and Wnt3a in HCC. miR-195 mRNA expression levels in HCC tissues and cell lines were measured by reverse transcription polymerase chain reaction analysis. miR-195 function was measured with cell proliferation, cell cycle and apoptosis assays following transfection with miR‑195 and anti‑miR‑195 sequences, and the respective controls. Luciferase reporter assay was used to determine whether Wnt3a was a target of miR-195. In addition, Wnt3a expression levels were determined in HCC cells using western blot analysis. The miR-195 expression levels were found to be reduced in HCC tissues and cell lines. miR-195 overexpression resulted in a reduction in cell proliferation. In addition, the overexpression of miR-195 in HCC cells induced G1 phase cell cycle arrest and promoted apoptosis. Furthermore, Wnt3a was demonstrated to be directly targeted by miR-195. These findings suggest that miR-195 is key in regulating cell proliferation, cell cycle and apoptosis through targeting Wnt3a. In addition, overexpression of miR-195 may be a potential therapeutic strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Yang Yang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Menghe Li
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Su'e Chang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Lumin Wang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Tusheng Song
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ling Gao
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Lili Hu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Zongfang Li
- Engineering Research Center of Biotherapy and Translational Medicine of Shaanxi Province, Xi'an, Shaanxi 710061, P.R. China
| | - Liying Liu
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jiayi Yao
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Chen Huang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
107
|
MIMURA SHIMA, IWAMA HISAKAZU, KATO KIYOHITO, NOMURA KEI, KOBAYASHI MITSUYOSHI, YONEYAMA HIROHITO, MIYOSHI HISAAKI, TANI JOJI, MORISHITA ASAHIRO, HIMOTO TAKASHI, DEGUCHI AKIHIRO, NOMURA TAKAKO, SAKAMOTO TEPPEI, FUJITA KOJI, MAEDA EMIKO, IZUISHI KUNIHIKO, OKANO KEIICHI, SUZUKI YASUYUKI, MASAKI TSUTOMU. Profile of microRNAs associated with aging in rat liver. Int J Mol Med 2014; 34:1065-72. [DOI: 10.3892/ijmm.2014.1892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 07/30/2014] [Indexed: 11/05/2022] Open
|
108
|
Serum microRNA-195 is down-regulated in breast cancer: a potential marker for the diagnosis of breast cancer. Mol Biol Rep 2014; 41:5913-22. [DOI: 10.1007/s11033-014-3466-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/14/2014] [Indexed: 02/06/2023]
|
109
|
Abstract
SIGNIFICANCE microRNAs (miRNA) have been characterized as master regulators of the genome. As such, miRNAs are responsible for regulating almost every cellular pathway, including the DNA damage response (DDR) after ionizing radiation (IR). IR is a therapeutic tool that is used for the treatment of several types of cancer, yet the mechanism behind radiation response is not fully understood. RECENT ADVANCES It has been demonstrated that IR can alter miRNA expression profiles, varying greatly from one cell type to the next. It is possible that this variation contributes to the range of tumor cell responsiveness that is observed after radiotherapy, especially considering the extensive role for miRNAs in regulating the DDR. In addition, individual miRNAs or miRNA families have been shown to play a multifaceted role in the DDR, regulating multiple members in a single pathway. CRITICAL ISSUES In this review, we will discuss the effects of radiation on miRNA expression as well as explore the function of miRNAs in regulating the cellular response to radiation-induced damage. We will discuss the importance of miRNA regulation at each stage of the DDR, including signal transduction, DNA damage sensing, cell cycle checkpoint activation, DNA double-strand break repair, and apoptosis. We will focus on emphasizing the importance of a single miRNA targeting several mediators within a pathway. FUTURE DIRECTIONS miRNAs will continue to emerge as critical regulators of the DDR. Understanding the role of miRNAs in the response to IR will provide insights for improving the current standard therapy.
Collapse
|
110
|
Lei H, Tang J, Li H, Zhang H, Lu C, Chen H, Li W, Xia Y, Tang W. MiR-195 affects cell migration and cell proliferation by down-regulating DIEXF in Hirschsprung's disease. BMC Gastroenterol 2014; 14:123. [PMID: 25007945 PMCID: PMC4099404 DOI: 10.1186/1471-230x-14-123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/26/2014] [Indexed: 12/27/2022] Open
Abstract
Background Hirschsprung’s disease (HSCR) is the most common congenital gut motility disorder. We aimed to investigate the roles of miR-195 in the pathogenesis of HSCR. Methods In this study, we measured the expression levels of miRNA, mRNA, and protein in colon tissues from 78 patients with HSCR and 66 controls without HSCR. Transwell, Cell Counting Kit-8 (CCK-8) and flow cytometry assay were employed to detect the function role of miR-195 in vitro. Results Our results showed that expression levels of miR-195 from patients with HSCR were significantly higher than control group; along with aberrant lower expression levels of digestive-organ expansion factor (DIEXF) were tested. Increased level of miR-195 could suppress the level of DIEXF in cell, which induced the impairment of cell migration and proliferation. Conclusions Aberrant expression of miR-195 may involved in the pathogenesis of HSCR by down-regulated the level of DIEXF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
111
|
MicroRNA-630 is a prognostic marker for patients with colorectal cancer. Tumour Biol 2014; 35:9787-92. [PMID: 24981248 DOI: 10.1007/s13277-014-2223-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are noncoding RNAs that regulate multiple cellular processes during cancer progression. Among various microRNAs, miR-630 has recently been identified to be implicated in many critical processes in human malignancies. We investigated the expression pattern and prognostic value of miR-630 in human colorectal cancer by utilizing cancer and adjacent normal specimens from 206 patients. Quantitative real-time PCR assay was used to detect the expression of miR-630, and appropriate statistical analysis was used to evaluate the association of miR-630 with overall survival. It was found that miR-630 expression was significantly increased in colorectal cancer specimens compared with that in adjacent normal specimens. It was also proved that miR-630 expression in colorectal cancer was associated with tumor invasion, lymph node metastasis, distant metastasis, and tumor-node-metastasis (TNM) stage. The Kaplan-Meier survival analysis proved that increased miR-630 expression was associated with poor overall survival of patients with colorectal cancer. Multivariate analysis proved that miR-630 was an independent prognostic marker after adjusted for known prognostic factors. These results confirmed the overexpression of miR-630 in human colorectal cancer and its association with tumor progression. It also suggested that miR-630 expression might serve as a prognostic biomarker for patients with colorectal cancer.
Collapse
|
112
|
Liz J, Portela A, Soler M, Gómez A, Ling H, Michlewski G, Calin GA, Guil S, Esteller M. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol Cell 2014; 55:138-47. [PMID: 24910097 DOI: 10.1016/j.molcel.2014.05.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/17/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
Noncoding RNAs (ncRNAs) control cellular programs by affecting protein-coding genes, but evidence increasingly points to their involvement in a network of ncRNA-ncRNA interactions. Here, we show that a long ncRNA, Uc.283+A, controls pri-miRNA processing. Regulation requires complementarity between the lower stem region of the pri-miR-195 transcript and an ultraconserved sequence in Uc.283+A, which prevents pri-miRNA cleavage by Drosha. Mutation of the site in either RNA molecule uncouples regulation in vivo and in vitro. We propose a model in which lower-stem strand invasion by Uc.283+A impairs microprocessor recognition and efficient pri-miRNA cropping. In addition to identifying a case of RNA-directed regulation of miRNA biogenesis, our study reveals regulatory networks involving different ncRNA classes of importance in cancer.
Collapse
Affiliation(s)
- Julia Liz
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, 08908 Barcelona, Catalonia, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, 08908 Barcelona, Catalonia, Spain
| | - Marta Soler
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, 08908 Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, 08908 Barcelona, Catalonia, Spain
| | - Hui Ling
- Experimental Therapeutics & Cancer Genetics, MD Anderson Cancer Center, Texas State University, Houston, TX 77030, USA
| | - Gracjan Michlewski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - George A Calin
- Experimental Therapeutics & Cancer Genetics, MD Anderson Cancer Center, Texas State University, Houston, TX 77030, USA
| | - Sònia Guil
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, 08908 Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, 08908 Barcelona, Catalonia, Spain; School of Medicine, Department of Physiological Sciences II, University of Barcelona, 08036 Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain.
| |
Collapse
|
113
|
Abstract
Colorectal cancer is a common type of gastrointestinal cancer with high incidence. It is generally considered that colorectal cancer develops through a multistep process that results from the progressive accumulation of mutations and epigenetic changes. The genes in colorectal cancer are more frequently affected by altered epigenetics than by mutations. In this review, we will discuss epigenetic changes of colorectal cancer, aiming to provide new ideas for the prevention, diagnosis, treatment and prognosis of this malignancy.
Collapse
|
114
|
Wang L, Qian L, Li X, Yan J. MicroRNA-195 inhibits colorectal cancer cell proliferation, colony-formation and invasion through targeting CARMA3. Mol Med Rep 2014; 10:473-8. [PMID: 24787958 DOI: 10.3892/mmr.2014.2178] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/07/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)‑195 has been reported to be a tumor suppressor. Downregulation of miR‑195 has been shown to correlate with lymph node metastasis and poor prognosis in colorectal cancer. However, the specific regulatory role of miR‑195 in colorectal cancer cells is yet to be elucidated. In the present study, miR‑195 expression was significantly reduced in colorectal cancer tissues. Furthermore, CARMA3 was identified as a novel target of miR‑195, which was observed to be upregulated in colorectal cancer. In addition, downregulation of miR‑195 increased CARMA3 protein expression, whereas miR‑195 upregulation suppressed CARMA3 protein expression in SW480 and HT29 colorectal cancer cells. Moreover, overexpression of miR‑195 downregulated cell proliferation, colony‑formation and invasion in SW480 and HT29 cells, which was reversed upon CARMA3 overexpression. In conclusion, the findings of the present study suggest that miR‑195 has a suppressive role in colorectal cancer cells through directly targeting CARMA3. Therefore, CARMA3 may be a potential target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ling Wang
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liyuan Qian
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- The Second Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jin Yan
- Department of Nursing, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
115
|
Kim YW, Kim EY, Jeon D, Liu JL, Kim HS, Choi JW, Ahn WS. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:293-314. [PMID: 24591819 PMCID: PMC3938445 DOI: 10.2147/dddt.s51969] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the development of miRNA therapies in treating ovarian cancer.
Collapse
Affiliation(s)
- Yong-Wan Kim
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Young Kim
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Doin Jeon
- Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Juinn-Lin Liu
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | | | - Jin Woo Choi
- Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA
| | - Woong Shick Ahn
- Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
116
|
Itesako T, Seki N, Yoshino H, Chiyomaru T, Yamasaki T, Hidaka H, Yonezawa T, Nohata N, Kinoshita T, Nakagawa M, Enokida H. The microRNA expression signature of bladder cancer by deep sequencing: the functional significance of the miR-195/497 cluster. PLoS One 2014; 9:e84311. [PMID: 24520312 PMCID: PMC3919700 DOI: 10.1371/journal.pone.0084311] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Current genome-wide microRNA (miRNA) expression signature analysis using deep sequencing technologies can drive the discovery of novel cancer pathways regulated by oncogenic and/or tumor suppressive miRNAs. We determined the genome-wide miRNA expression signature in bladder cancer (BC) by deep sequencing technology. A total of ten small RNA libraries were sequenced (five BCs and five samples of histologically normal bladder epithelia (NBE)), and 13,190,619 to 18,559,060 clean small RNA reads were obtained. A total of 933 known miRNAs and 17 new miRNA candidates were detected in this analysis. Among the known miRNAs, a total of 60 miRNAs were significantly downregulated in BC compared with NBE. We also found that several miRNAs, such as miR-1/133a, miR-206/133b, let-7c/miR-99a, miR-143/145 and miR-195/497, were located close together at five distinct loci and constituted clustered miRNAs. Among these clustered miRNAs, we focused on the miR-195/497 cluster because this clustered miRNA had not been analyzed in BC. Transfection of mature miR-195 or miR-497 in two BC cell lines (BOY and T24) significantly inhibited cancer cell proliferation, migration and invasion, suggesting that the miR-195/497 cluster functioned as tumor suppressors in BC. Regarding the genes targeted by the miR-195/497 cluster, the TargetScan algorithm showed that 6,730 genes were putative miR-195/497 targets, and 113 significantly enriched signaling pathways were identified in this analysis. The “Pathways in cancer” category was the most enriched, involving 104 candidate target genes. Gene expression data revealed that 27 of 104 candidate target genes were actually upregulated in BC clinical specimens. Luciferase reporter assays and Western blotting demonstrated that BIRC5 and WNT7A were directly targeted by miR-195/497. In conclusion, aberrant expression of clustered miRNAs was identified by deep sequencing, and downregulation of miR-195/497 contributed to BC progression and metastasis. Tumor suppressive miRNA-mediated cancer pathways provide new insights into the potential mechanisms of BC oncogenesis.
Collapse
Affiliation(s)
- Toshihiko Itesako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takeshi Chiyomaru
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takeshi Yamasaki
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideo Hidaka
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomokazu Yonezawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Nijiro Nohata
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Kinoshita
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
117
|
MicroRNA-195 inhibits non-small cell lung cancer cell proliferation, migration and invasion by targeting MYB. Cancer Lett 2014; 347:65-74. [PMID: 24486218 DOI: 10.1016/j.canlet.2014.01.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
MicroRNA-195 (miR-195) has been implicated in several other cancers; however, its role in non-small cell lung cancer (NSCLC) remains unclear. In this study, we demonstrated that miR-195 was significantly down-regulated in NSCLC samples and cell lines compared with corresponding normal counterparts. In vitro and in vivo functional assays demonstrated that modulation of miR-195 expression affected NSCLC cell proliferation, migration and invasion. Using miRNA target prediction algorithms and reporter assays, we demonstrated that miR-195 suppressed the expression of MYB both at the mRNA and protein level, and was directly bound to the 3'untranslated region of MYB mRNA. Overexpression of MYB in NSCLC cells using an ectopic expression vector restored the decreased cell proliferation, migration and invasion effects induced by miR-195. Finally, we observed an inverse correlation between MYB and miR-195 in NSCLC. Taken together, our findings indicated that miR-195 functions as tumour suppressor in NSCLC, and the miR-195/MYB axis might represent a potential therapeutic target for NSCLC intervention.
Collapse
|
118
|
Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, Radova L, Fabian P, Slaba K, Kiss I, Vyzula R, Slaby O. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med 2014. [PMID: 22469014 DOI: 10.1111/j.1582-4934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) constitute a robust regulatory network with post-transcriptional regulatory efficiency for almost one half of human coding genes, including oncogenes and tumour suppressors. We determined the expression profile of 667 miRNAs in colorectal cancer (CRC) tissues and paired non-tumoural tissues and identified 42 differentially expressed miRNAs. We chose miR-215, miR-375, miR-378, miR-422a and miR-135b for further validation on an independent cohort of 125 clinically characterized CRC patients and for in vitro analyses. MiR-215, miR-375, miR-378 and miR-422a were significantly decreased, whereas miR-135b was increased in CRC tumour tissues. Levels of miR-215 and miR-422a correlated with clinical stage. MiR-135b was associated with higher pre-operative serum levels of CEA and CA19-9. In vitro analyses showed that ectopic expression of miR-215 decreases viability and migration, increases apoptosis and promotes cell cycle arrest in DLD-1 and HCT-116 colon cancer cell lines. Similarly, overexpression of miR-375 and inhibition of miR-135b led to decreased viability. Finally, restoration of miR-378, miR-422a and miR-375 inhibited G1/S transition. These findings indicate that miR-378, miR-375, miR-422a and miR-215 play an important role in CRC as tumour suppressors, whereas miR-135b functions as an oncogene; both groups of miRNA contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Petra Faltejskova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI), Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma. J Genet 2013; 92:489-97. [DOI: 10.1007/s12041-013-0299-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
120
|
The expression of miR-25 is increased in colorectal cancer and is associated with patient prognosis. Med Oncol 2013; 31:781. [PMID: 24293092 DOI: 10.1007/s12032-013-0781-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022]
Abstract
MicroRNA-25 (miR-25) has recently been found to be involved in many critical processes in human malignancies. We aimed to investigate the expression pattern and prognostic role of miR-25 in colorectal cancer. Colorectal cancer and adjacent normal specimens from 186 patients who had not received neoadjuvant chemotherapy were collected. The expression of miR-25 was detected with a quantitative real-time PCR assay, and the association of miR-25 with overall patient survival was analyzed via statistical analysis. The results indicated that the level of miR-25 expression was significantly elevated in colorectal cancer compared with the level observed in the adjacent normal tissue. It was also demonstrated that miR-25 expression is associated with tumor invasion, lymph node metastasis, distant metastasis and the TNM stage of colorectal cancer. In addition, a Kaplan-Meier analysis revealed that an increased level of miR-25 expression is associated with a poor overall survival of patients. A multivariate survival analysis also indicated that miR-25 is an independent prognostic marker after adjusting for known prognostic factors. These results prove that miR-25 expression is increased in colorectal cancer and is associated with tumor progression. This study also provides the first evidence that miR-25 is an independent prognostic factor for patients with colorectal cancer, indicating the potential role of miR-25 as a highly specific and sensitive biomarker.
Collapse
|
121
|
Fu MG, Li S, Yu TT, Qian LJ, Cao RS, Zhu H, Xiao B, Jiao CH, Tang NN, Ma JJ, Hua J, Zhang WF, Zhang HJ, Shi RH. Differential expression of miR-195 in esophageal squamous cell carcinoma and miR-195 expression inhibits tumor cell proliferation and invasion by targeting of Cdc42. FEBS Lett 2013; 587:3471-9. [PMID: 24025765 DOI: 10.1016/j.febslet.2013.08.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/22/2013] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNA) have played an important role in carcinogenesis. In this study, Agilent miRNA microarray was used to identify differentially expressed miRNAs in esophageal squamous cell carcinoma (ESCC) tissues and miR-195 was downregulated in ESCC compared with normal esophageal tissues. Moreover, Cdc42 was confirmed as target gene of miR-195. Ectopic expression of miR-195 in ESCC cells significantly downregulated Cdc42 by directly binding its 3' untranslated regions, and induced G1 cell cycle arrest, leading to a significant decrease in cell growth, migration, and invasion in vitro. Therefore, our findings demonstrated that miR-195 may act as a tumor suppressor in ESCC by targeting Cdc42.
Collapse
Affiliation(s)
- Min-gen Fu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Xinyu People's Hospital, Jiangxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J, Jia WH, Yuan Y, Zhuang SM. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology 2013; 58:642-53. [PMID: 23468064 DOI: 10.1002/hep.26373] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. There is frequent down-regulation of miR-195 expression in HCC tissues. In this study, the role of miR-195 in HCC angiogenesis and metastasis was investigated with in vitro capillary tube formation and transwell assays, in vivo orthotopic xenograft mouse models, and human HCC specimens. Reduction of miR-195 in HCC tissues was significantly associated with increased angiogenesis, metastasis, and worse recurrence-free survival. Both gain-of-function and loss-of-function studies of in vitro models revealed that miR-195 not only suppressed the ability of HCC cells to promote the migration and capillary tube formation of endothelial cells but also directly repressed the abilities of HCC cells to migrate and invade extracellular matrix gel. Based on mouse models, we found that the induced expression of miR-195 dramatically reduced microvessel densities in xenograft tumors and repressed both intrahepatic and pulmonary metastasis. Subsequent investigations disclosed that miR-195 directly inhibited the expression of the proangiogenic factor vascular endothelial growth factor (VEGF) and the prometastatic factors VAV2 and CDC42. Knockdown of these target molecules of miR-195 phenocopied the effects of miR-195 restoration, whereas overexpression of these targets antagonized the function of miR-195. Furthermore, we revealed that miR-195 down-regulation resulted in enhanced VEGF levels in the tumor microenvironment, which subsequently activated VEGF receptor 2 signaling in endothelial cells and thereby promoted angiogenesis. Additionally, miR-195 down-regulation led to increases in VAV2 and CDC42 expression, which stimulated VAV2/Rac1/CDC42 signaling and lamellipodia formation and thereby facilitated the metastasis of HCC cells. CONCLUSION miR-195 deregulation contributes to angiogenesis and metastasis in HCC. The restoration of miR-195 expression may be a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Ruizhi Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Ding J, Huang S, Wang Y, Tian Q, Zha R, Shi H, Wang Q, Ge C, Chen T, Zhao Y, Liang L, Li J, He X. Genome-wide screening reveals that miR-195 targets the TNF-α/NF-κB pathway by down-regulating IκB kinase alpha and TAB3 in hepatocellular carcinoma. Hepatology 2013; 58:654-66. [PMID: 23487264 DOI: 10.1002/hep.26378] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/02/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Nuclear factor kappa B (NF-κB) is an important factor linking inflammation and tumorigenesis. In this study we experimentally demonstrated through a high-throughput luciferase reporter screen that NF-κB signaling can be directly targeted by nearly 29 microRNAs (miRNAs). Many of these miRNAs can directly target NF-κB signaling nodes by binding to their 3' untranslated region (UTR). miR-195, a member of the miR-15 family, is frequently down-regulated in gastrointestinal cancers, especially in hepatocellular carcinoma (HCC). The expression level of miR-195 is inversely correlated with HCC tumor size. We further show that miR-195 suppresses cancer cell proliferation and migration in vitro and reduces tumorigenicity and metastasis in vivo. Additionally, miR-195 may exert its tumor suppressive function by decreasing the expression of multiple NF-κB downstream effectors by way of the direct targeting of IKKα and TAB3. CONCLUSION Multiple miRNAs are involved in the NF-κB signaling pathway and miR-195 plays important inhibitory roles in cancer progression and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Jie Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Epigenetics meets radiation biology as a new approach in cancer treatment. Int J Mol Sci 2013; 14:15059-73. [PMID: 23873297 PMCID: PMC3742287 DOI: 10.3390/ijms140715059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease that results from both genetic and epigenetic changes. In recent decades, a number of people have investigated the disparities in gene expression resulting from variable DNA methylation alteration and chromatin structure modification in response to the environment. Especially, colon cancer is a great model system for investigating the epigenetic mechanism for aberrant gene expression alteration. Ionizing radiation (IR) could affect a variety of processes within exposed cells and, in particular, cause changes in gene expression, disruption of cell cycle arrest, and apoptotic cell death. Even though there is growing evidence on the importance of epigenetics and biological processes induced by radiation exposure in various cancer types including colon cancer, specific epigenetic alterations induced by radiation at the molecular level are incompletely defined. This review focuses on discussing possible IR-mediated changes of DNA methylation and histone modification in cancer.
Collapse
|
125
|
Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M, Jiricny J, Buffoli F, Marra G. Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis 2013; 2:e56. [PMID: 23857251 PMCID: PMC3740287 DOI: 10.1038/oncsis.2013.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022] Open
Abstract
Epigenetic silencing of protein-encoding genes is common in early-stage colorectal tumorigenesis. Less is known about the methylation-mediated silencing of genes encoding microRNAs (miRNAs), which are also important epigenetic modulators of gene expression. Using quantitative PCR, we identified 56 miRNAs that were expressed in normal colorectal mucosa and in HT29 colorectal cancer cells treated with demethylating agents but not in untreated HT29 cells, suggesting that they probably undergo methylation-induced silencing during colorectal tumorigenesis. One of these, miR-195, had recently been reported to be underexpressed in colorectal cancers and to exert tumor-suppressor effects in colorectal cancer cells. We identified the transcription start site (TSS) for primary miRNA (pri-miR)-497/195, the primary precursor that yields miR-195 and another candidate on our list, miR-497, and a single CpG island upstream to the TSS, which controls expression of both miRNAs. Combined bisulfite restriction analysis and bisulfite genomic sequencing studies revealed monoallelic methylation of this island in normal colorectal mucosa (50/50 samples) and full methylation in most colorectal adenomas (38/50; 76%). The hypermethylated precancerous lesions displayed significantly downregulated expression of both miRNAs. Similar methylation patterns were observed at two known imprinted genes, MEG3 and GNAS-AS1, which encode several of the 56 miRNAs on our list. Imprinting at these loci was lost in over half the adenomas (62% at MEG3 and 52% at GNAS-AS1). Copy-number alterations at MEG3, GNAS-AS1 and pri-miR-497/195, which are frequent in colorectal cancers, were less common in adenomas and confined to tumors displaying differential methylation at the involved locus. Our data show that somatically acquired, epigenetic changes at monoallelically methylated regions encoding miRNAs are relatively frequent in sporadic colorectal adenomas and might contribute to the onset and progression of these tumors.
Collapse
Affiliation(s)
- M Menigatti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - T Staiano
- Gastroenterology and Endoscopy Unit, Hospital of Cremona, Cremona, Italy
| | - C N Manser
- Gastroenterology and Endoscopy Unit, University of Zurich Hospital, Zurich, Switzerland
| | - P Bauerfeind
- Gastroenterology and Endoscopy Unit, University of Zurich Hospital, Zurich, Switzerland
| | - A Komljenovic
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - M Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - J Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - F Buffoli
- Gastroenterology and Endoscopy Unit, Hospital of Cremona, Cremona, Italy
| | - G Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
126
|
Masliah-Planchon J, Pasmant E, Luscan A, Laurendeau I, Ortonne N, Hivelin M, Varin J, Valeyrie-Allanore L, Dumaine V, Lantieri L, Leroy K, Parfait B, Wolkenstein P, Vidaud M, Vidaud D, Bièche I. MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics 2013; 14:473. [PMID: 23848554 PMCID: PMC3744175 DOI: 10.1186/1471-2164-14-473] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 11/22/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a common dominant tumor predisposition syndrome affecting 1 in 3,500 individuals. The hallmarks of NF1 are the development of peripheral nerve sheath tumors either benign (dermal and plexiform neurofibromas) or malignant (MPNSTs). Results To comprehensively characterize the role of microRNAs in NF1 tumorigenesis, we analyzed 377 miRNAs expression in a large panel of dermal and plexiform neurofibromas, and MPNSTs. The most significantly upregulated miRNA in plexiform neurofibromas was miR-486-3p that targets the major tumor suppressor gene, PTEN. We confirmed PTEN downregulation at mRNA level. In plexiform neurofibromas, we also report aberrant expression of four miRNAs involved in the RAS-MAPK pathway (miR-370, miR-143, miR-181a, and miR-145). In MPNSTs, significant deregulated miRNAs were involved in PTEN repression (miR-301a, miR-19a, and miR-106b), RAS-MAPK pathway regulation (Let-7b, miR-195, and miR-10b), mesenchymal transition (miR-200c, let-7b, miR-135a, miR-135b, and miR-9), HOX genes expression (miR-210, miR-196b, miR-10a, miR-10b, and miR-9), and cell cycle progression (miR-195, let-7b, miR-20a, miR-210, miR-129-3p, miR-449a, and miR-106b). Conclusion We confirmed the implication of PTEN in genesis of plexiform neurofibromas and MPNSTs in NF1. Markedly deregulated miRNAs might have potential diagnostic or prognostic value and could represent novel strategies for effective pharmacological therapies of NF1 tumors.
Collapse
Affiliation(s)
- Julien Masliah-Planchon
- UMR745 INSERM, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
George Priya Doss C, Rajith B, Samuel Jeba Seelan T, Santhosh Kumar R. In silico profiling of miRNAs and their target polymorphisms in leukemia associated genes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2013.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
128
|
MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells. Cell Death Dis 2013; 4:e695. [PMID: 23807224 PMCID: PMC3702293 DOI: 10.1038/cddis.2013.195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neural progenitor cells (NPCs) derived from human embryonic stem cells (hESCs) have great potential in cell therapy, drug screening and toxicity testing of neural degenerative diseases. However, the molecular regulation of their proliferation and apoptosis, which needs to be revealed before clinical application, is largely unknown. MicroRNA miR-195 is known to be expressed in the brain and is involved in a variety of proapoptosis or antiapoptosis processes in cancer cells. Here, we defined the proapoptotic role of miR-195 in NPCs derived from two independent hESC lines (human embryonic stem cell-derived neural progenitor cells, hESC-NPCs). Overexpression of miR-195 in hESC-NPCs induced extensive apoptotic cell death. Consistently, global transcriptional microarray analyses indicated that miR-195 primarily regulated genes associated with apoptosis in hESC-NPCs. Mechanistically, a small GTP-binding protein ADP-ribosylation factor-like protein 2 (ARL2) was identified as a direct target of miR-195. Silencing ARL2 in hESC-NPCs provoked an apoptotic phenotype resembling that of miR-195 overexpression, revealing for the first time an essential role of ARL2 for the survival of human NPCs. Moreover, forced expression of ALR2 could abolish the cell number reduction caused by miR-195 overexpression. Interestingly, we found that paraquat, a neurotoxin, not only induced apoptosis but also increased miR-195 and reduced ARL2 expression in hESC-NPCs, indicating the possible involvement of miR-195 and ARL2 in neurotoxin-induced NPC apoptosis. Notably, inhibition of miR-195 family members could block neurotoxin-induced NPC apoptosis. Collectively, miR-195 regulates cell apoptosis in a context-dependent manner through directly targeting ARL2. The finding of the critical role of ARL2 for the survival of human NPCs and association of miR-195 and ARL2 with neurotoxin-induced apoptosis have important implications for understanding molecular mechanisms that control NPC survival and would facilitate our manipulation of the neurological pathogenesis.
Collapse
|
129
|
Chana G, Bousman CA, Money TT, Gibbons A, Gillett P, Dean B, Everall IP. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front Cell Neurosci 2013; 7:95. [PMID: 23805071 PMCID: PMC3693064 DOI: 10.3389/fncel.2013.00095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/03/2013] [Indexed: 12/28/2022] Open
Abstract
Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations.
Collapse
Affiliation(s)
- Gursharan Chana
- Department of Psychiatry, Melbourne Brain Centre, The University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
130
|
YANG GE, WU DAOQUAN, ZHU JING, JIANG OU, SHI QIONG, TIAN JIE, WENG YAGUANG. Upregulation of miR-195 increases the sensitivity of breast cancer cells to Adriamycin treatment through inhibition of Raf-1. Oncol Rep 2013; 30:877-89. [DOI: 10.3892/or.2013.2532] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/08/2013] [Indexed: 11/05/2022] Open
|
131
|
Cai ZG, Zhang SM, Zhang H, Zhou YY, Wu HB, Xu XP. Aberrant expression of microRNAs involved in epithelial-mesenchymal transition of HT-29 cell line. Cell Biol Int 2013; 37:669-74. [PMID: 23483606 DOI: 10.1002/cbin.10087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/08/2013] [Indexed: 02/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential step for cancer metastasis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate target-mRNAs post-transcriptionally. The expression and function of miRNAs in EMT of HT-29 colonic cells remain elusive. This study looks at expression of miRNAs in EMT and explores the effects of miRNAs on EMT in HT-29 cell line. HT-29 was treated with TGF β to establish an EMT model, in which a collection of miRNAs was dynamically regulated by real-time PCR (qPCR) analysis. Among them, miR-21 and miR-27 were significantly upregulated, while miR-22, miR-26, miR-30, miR-181, miR-200b, miR-200c and miR-214 were markedly downregulated. MiRNA-inhibitors were used to knockdown miRNAs in HT-29 and EMT markers were determined by qPCR to monitor the effects of miRNAs on EMT process. Results showed that miR-22 could not alter the expression of EMT markers, while knockdown of miR-200b could significantly increase that of epithelial markers, N-cadherin, Vimentin, α-Sma and Twist1 and decrease that of mesenchymal marker, E-cadherin. Bioinformatic analysis and Western blot showed that ZEB1 was directly suppressed by miR-200b. In conclusion, miRNAs are dynamically regulated in TGF β-induced EMT of HT-29 and miR-200b was essential for EMT by suppressing the expression of ZEB1 in HT-29.
Collapse
Affiliation(s)
- Zhi-Gang Cai
- Department of Cardio-Thoracic Surgery, Number 455 Hospital of The Chinese People's Liberation Army, Shanghai 200052, China.
| | | | | | | | | | | |
Collapse
|
132
|
Mazeh H, Mizrahi I, Ilyayev N, Halle D, Brücher B, Bilchik A, Protic M, Daumer M, Stojadinovic A, Itzhak A, Nissan A. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review. J Cancer 2013; 4:281-95. [PMID: 23459799 PMCID: PMC3584841 DOI: 10.7150/jca.5836] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research. Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC. The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC.
Collapse
Affiliation(s)
- Haggi Mazeh
- 1. Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Jia LF, Wei SB, Gong K, Gan YH, Yu GY. Prognostic implications of micoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS One 2013; 8:e56634. [PMID: 23451060 PMCID: PMC3579853 DOI: 10.1371/journal.pone.0056634] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background miR-195 is aberrantly expressed in multiple types of disease. But little is known about the dysregulation of miR-195 in tongue squamous cell carcinoma (TSCC). In this study, we investigated the roles of miR-195 in the development and progression of TSCC. Methods Using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), we evaluated miR-195 expression in TSCC samples from 81 patients. Overall survival of these patients was examined using Kaplan–Meier curves with log-rank tests and the Cox proportional hazards model. The expression of two known miR-195 target genes, Cyclin D1 and Bcl-2, was also examined in the TSCC samples by immunohistochemistry. The effects of miR-195 overexpression on cell cycle progression and apoptosis and its effects on the expression of Cyclin D1 and Bcl-2 were examined in transfected TSCC cell lines (SCC-15 and Cal27) using fluorescence-activated cell sorting assays, luciferase reporter assays, and Western blots. Results Reduced miR-195 expression was associated with tumor size and the clinical stage of TSCC tumors. Kaplan–Meier survival analysis indicated that the TSCC patients with reduced expression of miR-195 had poor overall survival and in multivariable analyses low levels of miR-195 emerged as an independent prognostic factor for this clinical outcome. Levels of miR-195 expression were inversely correlated with the expression of Cyclin D1 and Bcl-2. Overexpression of miR-195 inhibited cell cycle progression, promoted apoptosis, and reduced Cyclin D1 and Bcl-2 expression in two TSCC cell lines. Conclusions miR-195 may have potential applications as a prognostic factor for TSCC patients.
Collapse
Affiliation(s)
- Ling-fei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Su-bi Wei
- Medical Systems Biology Research Center, Tsinghua University, Beijing, People’s Republic of China
| | - Kai Gong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Ye-hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
- * E-mail: (YHG); (GYY)
| | - Guang-yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
- * E-mail: (YHG); (GYY)
| |
Collapse
|
134
|
Liu L, Nie J, Chen L, Dong G, Du X, Wu X, Tang Y, Han W. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression. PLoS One 2013; 8:e55532. [PMID: 23393589 PMCID: PMC3564758 DOI: 10.1371/journal.pone.0055532] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor (TGF)-β/Smad signaling plays an important role in colon cancer development, progression and metastasis. In this study we demonstrated that the microRNA-130a/301a/454 family is up-regulated in colon cancer tissues compared to paired adjacent normal mucosa, which share the same 3′-untranslational region (3′-UTR) binding seed sequence and are predicated to target Smad4. In colorectal cancer HCT116 and SW480 cells, overexpression of miRNA-130a/301a/454 mimics enhances cell proliferation and migration, while inhibitors of these miRNAs affect cell survival. The biological function of miRNA-130a/301a/454 on colon cancer cells is likely mediated by suppression of Smad4, and the up-regulation of the miRNAs is correlated with Smad4 down-regulation in human colon cancers. Collectively, these results suggest that miRNA-130a/301a/454 are novel oncogenic miRNAs contributing to colon tumorigenesis by regulating TGF-β/Smad signaling, which may have potential application in cancer therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of General Surgery, PLA General Hospital, Beijing, China
| | - Jing Nie
- Department of Molecular Biology, PLA General Hospital, Beijing, China
| | - Lin Chen
- Department of General Surgery, PLA General Hospital, Beijing, China
| | - Guanglong Dong
- Department of General Surgery, PLA General Hospital, Beijing, China
| | - Xiaohui Du
- Department of General Surgery, PLA General Hospital, Beijing, China
| | - Xin Wu
- Department of General Surgery, PLA General Hospital, Beijing, China
| | - Yun Tang
- Department of General Surgery, PLA General Hospital, Beijing, China
- * E-mail: (YT); (WH)
| | - Weidong Han
- Department of Molecular Biology, PLA General Hospital, Beijing, China
- * E-mail: (YT); (WH)
| |
Collapse
|
135
|
Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ. Functional microRNAs in Alzheimer's disease and cancer: differential regulation of common mechanisms and pathways. Front Genet 2013; 3:323. [PMID: 23335942 PMCID: PMC3547332 DOI: 10.3389/fgene.2012.00323] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/24/2012] [Indexed: 01/12/2023] Open
Abstract
Two of the main research priorities in the United States are cancer and neurodegenerative diseases, which are attributed to abnormal patterns of cellular behavior. MicroRNAs (miRNA) have been implicated as regulators of cellular metabolism, and thus are an active topic of investigation in both disease areas. There is presently a more extensive body of work on the role of miRNAs in cancer compared to neurodegenerative diseases, and therefore it may be useful to examine whether there is any concordance between the functional roles of miRNAs in these diseases. As a case study, the roles of miRNAs in Alzheimer's disease (AD) and their functions in various cancers will be compared. A number of miRNA expression patterns are altered in individuals with AD compared with healthy older adults. Among these, some have also been shown to correlate with neuropathological changes including plaque and tangle accumulation, as well as expression levels of other molecules known to be involved in disease pathology. Importantly, these miRNAs have also been shown to have differential expression and or functional roles in various types of cancer. To examine possible intersections between miRNA functions in cancer and AD, we review the current literature on these miRNAs in cancer and AD, focusing on their roles in known biological pathways. We propose a pathway-driven model in which some molecular processes show an inverse relationship between cancer and neurodegenerative disease (e.g., proliferation and apoptosis) whereas others are more parallel in their activity (e.g., immune activation and inflammation). A critical review of these and other molecular mechanisms in cancer may shed light on the pathophysiology of AD, and highlight key areas for future research. Conclusions from this work may be extended to other neurodegenerative diseases for which some molecular pathways have been identified but which have not yet been extensively researched for miRNA involvement.
Collapse
Affiliation(s)
- Kelly N Holohan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
136
|
An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS One 2013; 8:e51436. [PMID: 23349673 PMCID: PMC3547917 DOI: 10.1371/journal.pone.0051436] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/31/2012] [Indexed: 01/05/2023] Open
Abstract
Background Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play pivotal roles in stem cell biology. Methyl-CpG binding protein 1 (MBD1), an important epigenetic regulator of adult neurogenesis, controls the proliferation and differentiation of adult neural stem/progenitor cells (aNSCs). We recently demonstrated that MBD1 deficiency in aNSCs leads to altered expression of several noncoding microRNAs (miRNAs). Methodology/Principal Findings Here we show that one of these miRNAs, miR-195, and MBD1 form a negative feedback loop. While MBD1 directly represses the expression of miR-195 in aNSCs, high levels of miR-195 in turn repress the expression of MBD1. Both gain-of-function and loss-of-function investigations show that alterations of the MBD1–miR-195 feedback loop tip the balance between aNSC proliferation and differentiation. Conclusions/Significance Therefore the regulatory loop formed by MBD1 and miR-195 is an important component of the epigenetic network that controls aNSC fate.
Collapse
|
137
|
Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology 2012; 143:1442-1460.e1. [PMID: 23000599 PMCID: PMC3611241 DOI: 10.1053/j.gastro.2012.09.032] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022]
Abstract
In the early years of the molecular biology revolution, cancer research was mainly focused on genetic changes (ie, those that altered DNA sequences). Although this has been extremely useful as our understanding of the pathogenesis and biology of cancer has grown and matured, there is another realm in tumor development that does not involve changing the sequence of cellular DNA. This field is called "epigenetics" and broadly encompasses changes in the methylation of cytosines in DNA, changes in histone and chromatin structure, and alterations in the expression of microRNAs, which control the stability of many messenger RNAs and serve as "master regulators" of gene expression. This review focuses on the epigenetics of colorectal cancer and illustrates the impact epigenetics has had on this field.
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
138
|
Dunmire JJ, Lagouros E, Bouhenni RA, Jones M, Edward DP. MicroRNA in aqueous humor from patients with cataract. Exp Eye Res 2012; 108:68-71. [PMID: 23146683 DOI: 10.1016/j.exer.2012.10.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/05/2012] [Accepted: 10/31/2012] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules with regulatory function and marked tissue specificity that can modulate multiple gene targets. They have been detected in body fluids and are associated with various physiologic and pathologic processes. We analyzed aqueous humor (AH) from human subjects undergoing cataract surgery to establish the presence and relative quantities of known miRNAs. AH was collected from patients without known ocular diseases other than cataract and a normal systemic history. Quantitative real-time PCR in an array platform was used to detect known miRNAs present in the AH. Among the 264 miRNAs tested, 110 were present in the AH. The top 5 abundant miRNAs identified were miR-202, miR-193b, miR-135a, miR-365, and miR-376a. The presence of miRNAs in AH suggests that they may have functional roles in regulating target genes in tissues lining the anterior chamber. Further analysis of the AH miRNA population may identify potential gene targets and provide insights regarding their roles in AH regulation, glaucoma and anterior segment disease processes.
Collapse
|
139
|
Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, Radova L, Fabian P, Slaba K, Kiss I, Vyzula R, Slaby O. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med 2012; 16:2655-66. [PMID: 22469014 PMCID: PMC4118234 DOI: 10.1111/j.1582-4934.2012.01579.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/27/2012] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a robust regulatory network with post-transcriptional regulatory efficiency for almost one half of human coding genes, including oncogenes and tumour suppressors. We determined the expression profile of 667 miRNAs in colorectal cancer (CRC) tissues and paired non-tumoural tissues and identified 42 differentially expressed miRNAs. We chose miR-215, miR-375, miR-378, miR-422a and miR-135b for further validation on an independent cohort of 125 clinically characterized CRC patients and for in vitro analyses. MiR-215, miR-375, miR-378 and miR-422a were significantly decreased, whereas miR-135b was increased in CRC tumour tissues. Levels of miR-215 and miR-422a correlated with clinical stage. MiR-135b was associated with higher pre-operative serum levels of CEA and CA19-9. In vitro analyses showed that ectopic expression of miR-215 decreases viability and migration, increases apoptosis and promotes cell cycle arrest in DLD-1 and HCT-116 colon cancer cell lines. Similarly, overexpression of miR-375 and inhibition of miR-135b led to decreased viability. Finally, restoration of miR-378, miR-422a and miR-375 inhibited G1/S transition. These findings indicate that miR-378, miR-375, miR-422a and miR-215 play an important role in CRC as tumour suppressors, whereas miR-135b functions as an oncogene; both groups of miRNA contribute to CRC pathogenesis.
Collapse
Affiliation(s)
- Petra Faltejskova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
- Central European Institute of Technology (CEITEC)Brno, Czech Republic
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
- Central European Institute of Technology (CEITEC)Brno, Czech Republic
| | - Klara Srutova
- Central European Institute of Technology (CEITEC)Brno, Czech Republic
| | - Jitka Mlcochova
- Central European Institute of Technology (CEITEC)Brno, Czech Republic
| | - Andrej Besse
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
- Central European Institute of Technology (CEITEC)Brno, Czech Republic
| | - Jana Nekvindova
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine and Faculty Hospital in Hradec Kralove, Charles UniversityHradec Kralove, Czech Republic
| | - Lenka Radova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky UniversityOlomouc, Czech Republic
| | - Pavel Fabian
- Department of Oncological and Experimental Pathology, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
| | - Katerina Slaba
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute (MMCI)Brno, Czech Republic
- Central European Institute of Technology (CEITEC)Brno, Czech Republic
| |
Collapse
|
140
|
Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS, Zhang L, Hu Y. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis 2012; 34:426-35. [PMID: 23104180 DOI: 10.1093/carcin/bgs333] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deregulated microRNAs (miRNAs) and their roles in cancer development have attracted much attention. Two miRNAs, miR-15a and miR-16, which act as putative tumor suppressor by targeting the oncogene BCL2, have been implicated in cell cycle, apoptosis and proliferation. In this study, we investigated the possible role of miR-15a/16 in the angiogenesis of multiple myeloma (MM). Using a stem-loop quantitative reverse transcription-PCR, we analyzed miR-15a/16 expressions in bone marrow samples from newly diagnosed MM patients and a panel of MM cell lines. miRNA transfection, western blotting analysis and assay of luciferase activity were used to examine whether vascular endothelial growth factor (VEGF) is the target of miR-15a/16. The functional roles of miR-15a/16 on tumorigenesis and angiogenesis were examined by in vitro angiogenesis models and in vivo tumor xenograft model. We showed that miR-15a and miR-16 were significantly underexpressed in primary MM cells as well as in MM cell lines. The aberrant expression of miR-15a/16 was detected especially in advanced stage MM. In human MM cell lines and normal plasma cells, expression of miR-15a/16 inversely correlated with the expression of VEGF-A. Western blotting combined with the luciferase reporter assay demonstrated that VEGF-A was a direct target of miR-15a/16. Ectopic overexpression of miR-15a/16 led to decreased pro-angiogenic activity of MM cells. Finally, infection of lentivirus-miR-15a or lentivirus-miR-16 resulted in significant inhibition of tumor growth and angiogenesis in nude mice. This study suggest that miR-15a/16 could play a role in the tumorigenesis of MM at least in part by modulation of angiogenesis through targeting VEGF-A.
Collapse
Affiliation(s)
- Chun-Yan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free Circulating miRNA Biomarkers in Cancer. J Cancer 2012; 3:432-48. [PMID: 23074383 PMCID: PMC3471083 DOI: 10.7150/jca.4919] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice.
Collapse
Affiliation(s)
- Meng-Hsuan Mo
- 1. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | | | | | | |
Collapse
|
142
|
Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett 2012; 4:1037-1042. [PMID: 23162647 DOI: 10.3892/ol.2012.866] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/06/2012] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, particularly in adolescents and young adults. Early diagnosis remains a significant problem in the clinical treatment of OS as we remain far from a comprehensive understanding of the molecular genetic mechanisms and the biology involved. In addition, microRNAs (miRNAs or miRs), a large family of small non-coding RNAs, may provide a greater understanding of OS as they play a complex role in gene expression regulation in vitro and in vivo. In the current study, the differential expression profiles of miRNAs between OS and osteoblast cell lines were investigated by miRNA microarrays and real-time quantitative PCR (RT-qPCR). A total of 268 miRNAs were identified that were significantly dysregulated in OS compared with the osteoblast cell line, including miR-9, miR-99, miR-195, miR-148a and miR-181a, which had been validated as overexpressed, and miR-143, miR-145, miR-335 and miR-539, which were confirmed to be downregulated. This differential expression may aid future OS diagnosis and prognosis prediction and illustration of the potential mechanisms in the oncogenesis, development and metastasis of OS. Bioinformatic research on these differentially expressed miRNAs suggests that they are able to regulate the biological behaviors of OS in a complex and effective manner. Further study on the function of these miRNAs is likely to provide new insights into OS biology and treatment.
Collapse
Affiliation(s)
- Hao Hu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Command; ; Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, P.R. China
| | | | | | | | | |
Collapse
|
143
|
Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, Shu Y. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett 2012; 4:1125-1129. [PMID: 23162665 DOI: 10.3892/ol.2012.863] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/08/2012] [Indexed: 12/22/2022] Open
Abstract
microRNAs are involved in different cancer-related processes. miR-195, one of the miR-16/15/195/424/497 family members, has been shown to act as a tumor suppressor during tumorigenesis. However, the function of miR-195 in osteosarcoma is still unclear. In our study, the miR-195 expression level was upregulated in osteosarcoma cells, by transfection with miR-195, and the fatty acid synthase (FASN) mRNA and protein expression levels were measured by RT-PCR and western blotting. Cell migration and invasion was measured using wound healing migration and Transwell invasion assays. We found that the upregulation of miR-195 greatly decreased cell invasion and the migration of U2OS. We also identified that FASN may be a direct target of miR-195 by the luciferase activity assay. These findings provide evidence that miR-195 plays a key role in inhibiting osteosarcoma cell migration and invasion through targeting FASN, and strongly suggest that exogenous miR-195 may have therapeutic value in treating osteosarcoma.
Collapse
Affiliation(s)
- Jian Hua Mao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University
| | | | | | | | | | | | | |
Collapse
|
144
|
Gaedcke J, Grade M, Camps J, Søkilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Møller S, Beissbarth T, Ried T, Litman T. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 2012; 18:4919-30. [PMID: 22850566 DOI: 10.1158/1078-0432.ccr-12-0016] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE miRNAs play a prominent role in a variety of physiologic and pathologic biologic processes, including cancer. For rectal cancers, only limited data are available on miRNA expression profiles, whereas the underlying genomic and transcriptomic aberrations have been firmly established. We therefore, aimed to comprehensively map the miRNA expression patterns of this disease. EXPERIMENTAL DESIGN Tumor biopsies and corresponding matched mucosa samples were prospectively collected from 57 patients with locally advanced rectal cancers. Total RNA was extracted, and tumor and mucosa miRNA expression profiles were subsequently established for all patients. The expression of selected miRNAs was validated using semi-quantitative real-time PCR. RESULTS Forty-nine miRNAs were significantly differentially expressed (log(2)-fold difference >0.5 and P < 0.001) between rectal cancer and normal rectal mucosa. The predicted targets for these miRNAs were enriched for the following pathways: Wnt, TGF-beta, mTOR, insulin, mitogen-activated protein kinase, and ErbB signaling. Thirteen of these 49 miRNAs seem to be rectal cancer-specific, and have not been previously reported for colon cancers: miR-492, miR-542-5p, miR-584, miR-483-5p, miR-144, miR-2110, miR-652, miR-375, miR-147b, miR-148a, miR-190, miR-26a/b, and miR-338-3p. Of clinical impact, miR-135b expression correlated significantly with disease-free and cancer-specific survival in an independent multicenter cohort of 116 patients. CONCLUSION This comprehensive analysis of the rectal cancer miRNAome uncovered novel miRNAs and pathways associated with rectal cancer. This information contributes to a detailed view of this disease. Moreover, the identification and validation of miR-135b may help to identify novel molecular targets and pathways for therapeutic exploitation.
Collapse
Affiliation(s)
- Jochen Gaedcke
- Department of General and Visceral Surgery, Medical Statistics, University Medical Center, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Bhattacharya A, Schmitz U, Wolkenhauer O, Schönherr M, Raatz Y, Kunz M. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene 2012; 32:3175-83. [PMID: 22847610 DOI: 10.1038/onc.2012.324] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.
Collapse
Affiliation(s)
- A Bhattacharya
- Department of Dermatology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
146
|
Wang YS, Wang HYJ, Liao YC, Tsai PC, Chen KC, Cheng HY, Lin RT, Juo SHH. MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc Res 2012; 95:517-26. [PMID: 22802111 DOI: 10.1093/cvr/cvs223] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS Proliferation and migration of vascular smooth muscle cells (VSMCs) can cause atherosclerosis and neointimal formation. MicroRNAs have been shown to regulate cell proliferation and phenotype transformation. We discovered abundant expression of microRNA-195 in VSMCs and conducted a series of studies to identify its function in the cardiovascular system. METHODS AND RESULTS MicroRNA-195 expression was initially found to be altered when VSMCs were treated with oxidized low-density lipoprotein (oxLDL) in a non-replicated microRNA array experiment. Using cellular studies, we found that microRNA-195 reduced VSMC proliferation, migration, and synthesis of IL-1β, IL-6, and IL-8. Using bioinformatics prediction and experimental studies, we showed that microRNA-195 could repress the expression of Cdc42, CCND1, and FGF1 genes. Using a rat model, we found that the microRNA-195 gene, introduced by adenovirus, substantially reduced neointimal formation in a balloon-injured carotid artery. In situ hybridization confirmed the presence of microRNA-195 in the treated arteries but not in control arteries. Immunohistochemistry experiments showed abundant Cdc42 in the neointima of treated arteries. CONCLUSIONS We showed that microRNA-195 plays a role in the cardiovascular system by inhibiting VSMC proliferation, migration, and proinflammatory biomarkers. MicroRNA-195 may have the potential to reduce neointimal formation in patients receiving stenting or angioplasty.
Collapse
Affiliation(s)
- Yung-Song Wang
- Department of Genome Medicine, Kaohsiung Medical University, No. 100, TzYou First Road, Kaohsiung 80708, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
MicroRNAs have been implicated as important mediators of cancer cell homeostasis, and accumulating data suggest compelling roles for them in the apoptosis pathway. X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor and an important barrier to apoptotic cell death, but the mechanisms which determine the diverse range of XIAP expression seen in cancer remains unclear. In this study, we present evidence that miR-24 directly targets the 3′UTR of the XIAP mRNA to exert translational repression. Using a heuristic algorithm of bioinformatics analysis and in vitro screening, we identified miR-24 as a candidate regulator of XIAP expression. Array CGH and SKY analysis reveal that genomic copy number loss at the miR-24 locus is concordant with loss of endogenous miR-24 in cancer cells. Using a luciferase construct of the XIAP 3′UTR, we showed that miR-24 specifically coordinates to the XIAP mRNA. And interference with miR-24’s binding of the critical seed region, resulting from site-directed mutagenesis of the 3′UTR, significantly abrogated miR-24’s effects on XIAP expression. Moreover, miR-24 over-expression can overcome apoptosis-resistance in cancer cells via down-regulation of XIAP expression, and the resulting cancer cell death induced by TRAIL is executed by the canonical caspase-mediated apoptosis pathway. In summary, our data suggest a novel mechanism by which miR-24 directly modulates XIAP expression level and consequently the apoptosis threshold in cancer cells.
Collapse
|
148
|
Aslam MI, Patel M, Singh B, Jameson JS, Pringle JH. MicroRNA manipulation in colorectal cancer cells: from laboratory to clinical application. J Transl Med 2012; 10:128. [PMID: 22716183 PMCID: PMC3539910 DOI: 10.1186/1479-5876-10-128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/21/2012] [Indexed: 12/12/2022] Open
Abstract
The development of Colorectal Cancer (CRC) follows a sequential progression from adenoma to the carcinoma. Therefore, opportunities exist to interfere with the natural course of disease development and progression. Dysregulation of microRNAs (miRNAs) in cancer cells indirectly results in higher levels of messenger RNA (mRNA) specific to tumour promoter genes or tumour suppressor genes. This narrative review aims to provide a comprehensive review of the literature about the manipulation of oncogenic or tumour suppressor miRNAs in colorectal cancer cells for the purpose of development of anticancer therapies. A literature search identified studies describing manipulation of miRNAs in colorectal cancer cells in vivo and in vitro. Studies were also included to provide an update on the role of miRNAs in CRC development, progression and diagnosis. Strategy based on restoration of silenced miRNAs or inhibition of over expressed miRNAs has opened a new area of research in cancer therapy. In this review article different techniques for miRNA manipulation are reviewed and their utility for colorectal cancer therapy has been discussed in detail. Restoration of normal equilibrium for cancer related miRNAs can result in inhibition of tumour growth, apoptosis, blocking of invasion, angiogenesis and metastasis. Furthermore, drug resistant cancer cells can be turned into drug sensitive cells on alteration of specific miRNAs in cancer cells. MiRNA modulation in cancer cells holds great potential to replace current anticancer therapies. However, further work is needed on tissue specific delivery systems and strategies to avoid side effects.
Collapse
Affiliation(s)
- Muhammad Imran Aslam
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, P O Box 65, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | |
Collapse
|
149
|
Bai Y, Yang W, Yang HX, Liao Q, Ye G, Fu G, Ji L, Xu P, Wang H, Li YX, Peng C, Wang YL. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression. PLoS One 2012; 7:e38875. [PMID: 22723898 PMCID: PMC3378540 DOI: 10.1371/journal.pone.0038875] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022] Open
Abstract
Background Preeclampsia (PE) is a pregnancy-specific syndrome manifested by on-set of hypertension and proteinuria after 20 weeks of gestation. Abnormal placenta development has been generally accepted as initial cause of the disorder. Recently, miR-195 was found to be down-regulated in preeclamptic placentas compared with normal pregnant ones, indicating possible association of this small molecule with placental pathology of preeclampsia. By far the function of miR-195 in the development of placenta remains unknown. Methodology/Principal Findings Bioinformatic assay predicted ActRIIA as one of the targets for miR-195. By using Real-time PCR, Western blotting and Dual Luciferase Assay, we validated that ActRIIA was the direct target of miR-195 in human trophoblast cells. Transwell insert invasion assay showed that miR-195 could promote cell invasion in trophoblast cell line, HTR8/SVneo cells, and the effect could be abrogated by overexpressed ActRIIA. In preeclamptic placenta tissues, pri-miR-195 and mature miR-195 expressions were down-regulated, whereas ActRIIA level appeared to be increased when compared with that in gestational-week-matched normal placentas. Conclusions/Significance This is the first report on the function of miR-195 in human placental trophoblast cells which reveals an invasion-promoting effect of the small RNA via repressing ActRIIA. Aberrant expression of miR-195 may contribute to the occurrence of preeclampsia through interfering with Activin/Nodal signaling mediated by ActRIIA in human placenta.
Collapse
Affiliation(s)
- Yang Bai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Hui-xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Gang Ye
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Guodong Fu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Lei Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Xu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Yu-xia Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail: (YLW); (CP)
| | - Yan-ling Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YLW); (CP)
| |
Collapse
|
150
|
Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY, Thorne RF, Jin L, Zhang XD. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 2012; 32:1910-20. [PMID: 22710713 PMCID: PMC3630484 DOI: 10.1038/onc.2012.214] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Past studies have shown that amplified insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1-R) signalling has an important role in colorectal cancer (CRC) development, progression and resistance to treatment. In this report, we demonstrate that downregulation of microRNA-497 (miR-497) as a result of DNA copy number reduction is involved in upregulation of IGF1-R in CRC cells. MiR-497 and miR-195 of the miR-15/16/195/424/497 family that share the same 3′ untranslated region (3′UTR) binding seed sequence and are predicted to target IGF1-R were concurrently downregulated in the majority of CRC tissues relative to paired adjacent normal mucosa. However, only overexpression of miR-497 led to suppression of the IGF1-R 3′UTR activity and downregulation of the endogenous IGF1-R protein in CRC cells. This was associated with inhibition of cell survival, proliferation and invasion, and increased sensitivity to apoptosis induced by various stimuli including the chemotherapeutic drugs cisplatin and 5-fluorouracil, and the death ligand tumour necrosis factor-related apoptosis-inducing ligand. The biological effect of miR-497 on CRC cells was largely mediated by inhibition of phosphatidylinositol 3-kinase/Akt signalling, as overexpression of an active form of Akt reversed its impact on cell survival and proliferation, recapitulating the effect of overexpression of IGF1-R. Downregulation of miR-497 and miR-195 appeared to associate with copy number loss of a segment of chromosome 17p13.1, where these miRs are located at proximity. Similarly to miR-195, the members of the same miR family, miR-424 that was upregulated, and miR-15a, miR-15b and miR-16 that were unaltered in expression in CRC tissues compared with paired adjacent normal mucosa, did not appear to have a role in regulating the expression of IGF1-R. Taken together, these results identify downregulation of miR-497 as an important mechanism of upregulation of IGF1-R in CRC cells that contributes to malignancy of CRC.
Collapse
Affiliation(s)
- S T Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|