101
|
|
102
|
At the Start of the Sarcomere: A Previously Unrecognized Role for Myosin Chaperones and Associated Proteins during Early Myofibrillogenesis. Biochem Res Int 2012; 2012:712315. [PMID: 22400118 PMCID: PMC3287041 DOI: 10.1155/2012/712315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
The development of striated muscle in vertebrates requires the assembly of contractile myofibrils, consisting of highly ordered bundles of protein filaments. Myofibril formation occurs by the stepwise addition of complex proteins, a process that is mediated by a variety of molecular chaperones and quality control factors. Most notably, myosin of the thick filament requires specialized chaperone activity during late myofibrillogenesis, including that of Hsp90 and its cofactor, Unc45b. Unc45b has been proposed to act exclusively as an adaptor molecule, stabilizing interactions between Hsp90 and myosin; however, recent discoveries in zebrafish and C. elegans suggest the possibility of an earlier role for Unc45b during myofibrillogenesis. This role may involve functional control of nonmuscle myosins during the earliest stages of myogenesis, when premyofibril scaffolds are first formed from dynamic cytoskeletal actin. This paper will outline several lines of evidence that converge to build a model for Unc45b activity during early myofibrillogenesis.
Collapse
|
103
|
Ballester-Beltrán J, Cantini M, Lebourg M, Rico P, Moratal D, García AJ, Salmerón-Sánchez M. Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:195-204. [PMID: 22201030 DOI: 10.1007/s10856-011-4532-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
Fibronectin (FN) assembles into fibrillar networks by cells through an integrin-dependent mechanism. We have recently shown that simple FN adsorption onto poly(ethyl acrylate) surfaces (PEA), but not control polymer (poly(methyl acrylate), PMA), also triggered FN organization into a physiological fibrillar network. FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules. In the present study, we investigate the influence of topological cues on the material-driven FN assembly and the myogenic differentiation process. Aligned and random electrospun fibers were prepared. While FN fibrils assembled on the PEA fibers as they do on the smooth surface, the characteristic distribution of globular FN molecules observed on flat PMA transformed into non-connected FN fibrils on electrospun PMA, which significantly enhanced cell differentiation. The direct relationship between the fibrillar organization of FN at the material interface and the myogenic process was further assessed by preparing FN gradients on smooth PEA and PMA films. Isolated FN molecules observed at one edge of the substrate gradually interconnected with each other, eventually forming a fully developed network of FN fibrils on PEA. In contrast, FN adopted a globular-like conformation along the entire length of the PMA surface, and the FN gradient consisted only of increased density of adsorbed FN. Correspondingly, the percentage of differentiated cells increased monotonically along the FN gradient on PEA but not on PMA. This work demonstrates an interplay between material chemistry and topology in modulating material-driven FN fibrillogenesis and cell differentiation.
Collapse
Affiliation(s)
- José Ballester-Beltrán
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
104
|
Cha KJ, Park KS, Kang SW, Cha BH, Lee BK, Han IB, Shin DA, Kim DS, Lee SH. Effect of Replicated Polymeric Substrate with Lotus Surface Structure on Adipose-Derived Stem Cell Behaviors. Macromol Biosci 2011; 11:1357-63. [DOI: 10.1002/mabi.201100134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Indexed: 10/24/2022]
|
105
|
|
106
|
Raghavan S, Lam MT, Foster LL, Gilmont RR, Somara S, Takayama S, Bitar KN. Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro. Tissue Eng Part C Methods 2011; 16:999-1009. [PMID: 20001822 DOI: 10.1089/ten.tec.2009.0394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The objective of this study was to develop a physiological model of longitudinal smooth muscle tissue from isolated longitudinal smooth muscle cells arranged in the longitudinal axis. METHODS Longitudinal smooth muscle cells from rabbit sigmoid colon were isolated and expanded in culture. Cells were seeded at high densities onto laminin-coated Sylgard surfaces with defined wavy microtopographies. A highly aligned cell sheet was formed, to which addition of fibrin resulted in delamination. RESULTS (1) Acetylcholine (ACh) induced a dose-dependent, rapid, and sustained force generation. (2) Absence of extracellular calcium attenuated the magnitude and sustainability of ACh-induced force by 50% and 60%, respectively. (3) Vasoactive intestinal peptide also attenuated the magnitude and sustainability of ACh-induced force by 40% and 60%, respectively. These data were similar to force generated by longitudinal tissue. (4) Bioengineered constructs also maintained smooth muscle phenotype and calcium-dependence characteristics. SUMMARY This is a novel physiologically relevant in vitro three-dimensional model of colonic longitudinal smooth muscle tissue. Bioengineered three-dimensional longitudinal smooth muscle presents the ability to generate force, and respond to contractile agonists and relaxant peptides similar to native longitudinal tissue. This model has potential applications to investigate the underlying pathophysiology of dysfunctional colonic motility. It also presents as a readily implantable band-aid colonic longitudinal muscle tissue.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Pediatrics-Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0658, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Bhat ZF, Fayaz H. Prospectus of cultured meat—advancing meat alternatives. Journal of Food Science and Technology 2010. [DOI: 10.1007/s13197-010-0198-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
108
|
Park SJ, Jang CH. Using liquid crystals to detect DNA hybridization on polymeric surfaces with continuous wavy features. NANOTECHNOLOGY 2010; 21:425502. [PMID: 20858927 DOI: 10.1088/0957-4484/21/42/425502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, we examined the orientational behavior of thermotropic liquid crystals (LCs) supported on a film of DNA that was chemically immobilized on a nanostructure surface. The surface was comprised of gold film deposited onto a polymer substrate that had a sinusoidal distortion normal to the surface, leading to a parallel array of peaks and troughs. The sinusoidal structures were produced by treating a polydimethylsiloxane (PDMS) substrate with oxygen plasma and buckled on a cylindrical surface. This patterned PDMS was then used to create replicas of the associated relief structures on another polymer surface, poly(urethaneacrylate), where a film of gold was deposited. The gold films were functionalized with thiol-modified DNA, and then used as substrates for the hybridization of a complementary strand of DNA (cDNA). The orientation of nematic 4-cyano-4'-pentylbiphenyl (5CB) was found to be parallel to the plane of the surface-immobilized DNA before incubation with a solution of cDNA. However, the hybridization of DNA induced a random orientation of 5CB, indicating that the DNA complexes disturbed the sinusoidal structure of the surface. These results demonstrate that LC can be used to detect the hybridization of DNA by manipulating the response of LC to the DNA decorated surfaces.
Collapse
Affiliation(s)
- So-Jung Park
- College of BioNano Technology, Kyungwon University,Sujeong-Gu, Seongnam-City, Gyeonggi-Do, Korea
| | | |
Collapse
|
109
|
Fujita H, Dau VT, Shimizu K, Hatsuda R, Sugiyama S, Nagamori E. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed Microdevices 2010; 13:123-9. [DOI: 10.1007/s10544-010-9477-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
110
|
Yeong WY, Yu H, Lim KP, Ng KLG, Boey YCF, Subbu VS, Tan LP. Multiscale Topological Guidance for Cell Alignment via Direct Laser Writing on Biodegradable Polymer. Tissue Eng Part C Methods 2010; 16:1011-21. [DOI: 10.1089/ten.tec.2009.0604] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wai Yee Yeong
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Haiyang Yu
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Kee Pah Lim
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Ka Lai Gary Ng
- Singapore Institute of Manufacturing Technology, Singapore
| | - Yin Chiang Freddy Boey
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Venkatraman S. Subbu
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Lay Poh Tan
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
111
|
Wang PY, Yu HT, Tsai WB. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol Bioeng 2010; 106:285-94. [PMID: 20148416 DOI: 10.1002/bit.22697] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alignment and fusion of myoblasts into parallel arrays of multinucleated myotubes are critical in skeletal muscle tissue engineering. It is well known that contact guidance by grooves/ridges structures induces myoblasts to align and to migrate along the anisotropic direction. In this study, two series of grooved substrata with different widths (450 and 900 nm) and different depths (100, 350, and 550 nm) were studied on their effects on myoblast adhesion, proliferation, and differentiation into myotubes. We found that C2C12 cells were aligned and elongated along the direction of grooves. Groove depth was more influential on cellular morphology, proliferation, and differentiation than groove width. While cell proliferation was retarded on the grooved surfaces especially on the substrate with 900/550 nm (width/depth), differentiation was also enhanced on the patterned surfaces compared to the flat control. Our results demonstrated the potential of grooved substrata with submicron scale in skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Roosevelt Rd., Sec. 4, Taipei 106, Taiwan
| | | | | |
Collapse
|
112
|
Altomare L, Gadegaard N, Visai L, Tanzi MC, Farè S. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomater 2010; 6:1948-57. [PMID: 20040385 DOI: 10.1016/j.actbio.2009.12.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 12/01/2022]
Abstract
During tissue formation, skeletal muscle precursor cells fuse together to form multinucleated myotubes. To understand this mechanism, in vitro systems promoting cell alignment need to be developed; for this purpose, micrometer-scale features obtained on substrate surfaces by photolithography can be used to control and affect cell behaviour. This work was aimed at investigating how differently microgrooved polymeric surfaces can affect myoblast alignment, fusion and myotube formation in vitro. Microgrooved polymeric films were obtained by solvent casting of a biodegradable poly-l-lactide/trimethylene carbonate copolymer (PLLA-TMC) onto microgrooved silicon wafers with different groove widths (5, 10, 25, 50, 100microm) and depths (0.5, 1, 2.5, 5microm), obtained by a standard photolithographic technique. The surface topography of wafers and films was evaluated by scanning electron microscopy. Cell assays were performed using C2C12 cells and myotube formation was analysed by immunofluorescence assays. Cell alignment and circularity were also evaluated using ImageJ software. The obtained results confirm the ability of microgrooved surfaces to influence myotube formation and alignment; in addition, they represent a novel further improvement to the comprehension of best features to be used. The most encouraging results were observed in the case of microstructured PLLA-TMC films with grooves of 2.5 and 1microm depth, presenting, in particular, a groove width of 50 and 25microm.
Collapse
Affiliation(s)
- L Altomare
- BioMatLab, Bioengineering Department, Politecnico di Milano, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
113
|
Shah R, Lewis MP. The Future? Craniofacial Skeletal Muscle Engineering as an Aid for the Management of Craniofacial Deformities. Semin Orthod 2010. [DOI: 10.1053/j.sodo.2010.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
114
|
Kim MS, Jun I, Shin YM, Jang W, Kim SI, Shin H. The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications. Macromol Biosci 2010; 10:91-100. [PMID: 19685497 DOI: 10.1002/mabi.200900168] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Composite nanofibers of poly(caprolactone) (PCL) and gelatin crosslinked with genipin are prepared. The contact angles and mechanical properties of crosslinked PCL-gelatin nanofibers decrease as the gelatin content increases. The proliferation of myoblasts is higher in the crosslinked PCL-gelatin nanofibers than in the PCL nanofibers, and the formation of myotubes is only observed on the crosslinked PCL-gelatin nanofibers. The expression level of myogenin, myosin heavy chain, and troponin T genes is increased as the gelatin content is increased. The results suggest that PCL-gelatin nanofibers crosslinked with genipin can be used as a substrate to modulate proliferation and differentiation of myoblasts, presenting potential applications in muscle tissue engineering.
Collapse
Affiliation(s)
- Min Sup Kim
- Department of Biomedical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
| | | | | | | | | | | |
Collapse
|
115
|
Gingras J, Rioux RM, Cuvelier D, Geisse NA, Lichtman JW, Whitesides GM, Mahadevan L, Sanes JR. Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J 2010; 97:2771-9. [PMID: 19917231 DOI: 10.1016/j.bpj.2009.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 01/16/2023] Open
Abstract
Micropatterned poly(dimethylsiloxane) substrates fabricated by soft lithography led to large-scale orientation of myoblasts in culture, thereby controlling the orientation of the myotubes they formed. Fusion occurred on many chemically identical surfaces in which varying structures were arranged in square or hexagonal lattices, but only a subset of patterned surfaces yielded aligned myotubes. Remarkably, on some substrates, large populations of myotubes oriented at a reproducible acute angle to the lattice of patterned features. A simple geometrical model predicts the angle and extent of orientation based on maximizing the contact area between the myoblasts and patterned topographic surfaces. Micropatterned substrates also provided short-range cues that influenced higher-order functions such as the localization of focal adhesions and accumulation of postsynaptic acetylcholine receptors. Our results represent what we believe is a new approach for musculoskeletal tissue engineering, and our model sheds light on mechanisms of myotube alignment in vivo.
Collapse
Affiliation(s)
- Jacinthe Gingras
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Ahn SM, Jang CH. Effective Parameters for the Precise Control of Thin Film Buckling on Elastomeric Substrates. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.02.419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
117
|
|
118
|
|
119
|
Liao H, Zhou GQ. Development and progress of engineering of skeletal muscle tissue. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:319-31. [PMID: 19591626 DOI: 10.1089/ten.teb.2009.0092] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Engineering skeletal muscle tissue remains still a challenge, and numerous studies have indicated that this technique may be of great importance in medicine in the near future. This article reviews some of the recent findings resulting from tissue engineering science related to the contractile behavior and the phenotypes of muscle tissue cells in different three-dimensional environment, and discusses how tissue engineering could be used to create and regenerate skeletal muscle, as well as the extended applications and the related patents concerned with engineered skeletal muscle.
Collapse
Affiliation(s)
- Hua Liao
- Department of Anatomy, Southern Medical University, GuangZhou, PR China
| | | |
Collapse
|
120
|
Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components. Biomaterials 2009; 30:5292-304. [DOI: 10.1016/j.biomaterials.2009.06.059] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/29/2009] [Indexed: 12/30/2022]
|
121
|
The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials 2009; 30:5950-8. [DOI: 10.1016/j.biomaterials.2009.07.039] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/22/2009] [Indexed: 12/31/2022]
|
122
|
Liu Y, Ji Y, Ghosh K, Clark RAF, Huang L, Rafailovich MH. Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds. J Biomed Mater Res A 2009; 90:1092-106. [DOI: 10.1002/jbm.a.32165] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
123
|
Shimizu K, Fujita H, Nagamori E. Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis. J Biosci Bioeng 2009; 109:174-8. [PMID: 20129103 DOI: 10.1016/j.jbiosc.2009.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/16/2009] [Accepted: 07/28/2009] [Indexed: 12/24/2022]
Abstract
We have developed a micropatterning procedure for single myotubes and demonstrated recovery of patterned myotubes without the use of methods that might cause damage to the cells. Since skeletal muscle is a highly ordered tissue mainly composed of myotubes, analysis of single myotubes is one of the promising approaches for studying the various diseases related to skeletal muscle tissues. However, the analysis of single myotubes is quite complicated because of the difficulty in distinguishing individual myotubes differentiated on a normal cell culture surface. In the present study, thin polydimethylsiloxane (PDMS) membranes, which have rectangular holes (30, 50, 100, and 200 microm in width; 500, 750, and 1000 microm in length) through them, were fabricated by using a photolithography technique and used for single myotube micropatterning. A bovine serum albumin-coated (BSA-coated) stencil membrane was placed on a cell culture surface and C2C12 myoblasts were seeded on it. Since the cells could not attach to the surface of the stencil membrane, the cell proliferated and differentiated into myotubes in the hole areas specifically. By peeling off the membrane, a micropattern of myotubes was obtained. It was revealed that the optimum width of rectangular holes for a micropattern of single myotubes was between 30 to 50 microm. Furthermore, by placing a membrane on a thermoresponsive culture surface, recovery of the micropatterned myotubes was possible by lowering the temperature. This method involving the stencil membranes and a thermoresponsive culture surface is useful for analyzing subcellular or single myotubes.
Collapse
Affiliation(s)
- Kazunori Shimizu
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi, Japan
| | | | | |
Collapse
|
124
|
Shimizu K, Fujita H, Nagamori E. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnol Bioeng 2009; 103:631-8. [PMID: 19189396 DOI: 10.1002/bit.22268] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alignment of cells plays a significant key role in skeletal muscle tissue engineering because skeletal muscle tissue in vivo has a highly organized structure consisting of long parallel multinucleated myotubes formed through differentiation and fusion of myoblasts. In the present study, we developed an easy, simple, and low-cost method for aligning skeletal muscle cells by using surfaces with linear microscale features fabricated by grinding. Iron blocks were ground in one direction with three kinds of abrasives (9 microm diamond suspension, #400 sandpaper, and #150 sandpaper) and then used as molds to make micropatterned polydimethylsiloxane (PDMS) substrates (type I, type II, and type III). Observation of the surface topography revealed that the PDMS substrates exhibited different degree of mean roughness (Ra), 0.03 microm for type I, 0.16 microm for type II, and 0.56 microm for type III, respectively. Murine skeletal muscle cell line C2C12 myoblasts were cultured and differentiated on the patterned PDMS substrates, and it was examined whether the alignment of C2C12 myoblasts and myotubes was possible. Although the cell growth and differentiation on the three types of patterned substrates were similar to those on the flat PDMS substrate as a control, the alignment of both C2C12 myoblasts and myotubes was obviously observed on types II and III, but not on type I or the control substrate. These results indicate that surfaces ground with abrasives will be useful for fabricating aligned skeletal muscle tissues.
Collapse
Affiliation(s)
- Kazunori Shimizu
- Frontier Research Center, Toyota Central R&D Labs., Inc., Aichi, Japan
| | | | | |
Collapse
|
125
|
Guan L, Peng K, Yang Y, Qiu X, Wang C. The nanofabrication of polydimethylsiloxane using a focused ion beam. NANOTECHNOLOGY 2009; 20:145301. [PMID: 19420520 DOI: 10.1088/0957-4484/20/14/145301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nanofabrication on insulating and flexible films of polydimethylsiloxane (PDMS) using a focused ion beam (FIB) has been illustrated in this study. The charge accumulation effect, which is inevitable in polymeric fabrication, was shown to be relieved by simultaneously introducing electron beam flooding in the area exposed to FIB. The topography of the fabricated pattern is subsequently characterized by using an atomic force microscope (AFM), by which the dependence of height/depth of the fabricated arrays on ion beam dose could be obtained. In addition, the swelling effect and milling effect relating to focused ion beam dose could be identified in this study.
Collapse
Affiliation(s)
- Li Guan
- National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
126
|
Lam MT, Huang YC, Birla RK, Takayama S. Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials 2009; 30:1150-5. [PMID: 19064284 DOI: 10.1016/j.biomaterials.2008.11.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
Engineering tissue similar in structure to their natural equivalents is a major challenge and crucial to function. Despite attempts to engineer skeletal muscle, it is still difficult to effectively mimic tissue architecture. Rigid scaffolds can guide cell alignment but have the critical drawback of hindering mechanical function of the resultant tissue. We present a method for creating highly ordered tissue-only constructs by using rigid microtopographically patterned surfaces to first guide myoblast alignment, followed by transfer of aligned myotubes into a degradable hydrogel and self-organization of the ordered cells into a functional, 3-dimensional, free-standing construct independent of the initial template substrate. Histology revealed an intracellular organization resembling that of native muscle. Aligned cell constructs exhibited a 2-fold increase in peak force production compared to controls. Effective specific force, or force normalized over cross-sectional area, was increased by 23%. This template, transfer, and self-organization strategy is envisioned to be broadly useful in improving construct function and clinical applicability for highly ordered tissues like muscle.
Collapse
Affiliation(s)
- Mai T Lam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
127
|
Zhao Y, Zeng H, Nam J, Agarwal S. Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnol Bioeng 2009; 102:624-31. [PMID: 18958861 DOI: 10.1002/bit.22080] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Skeletal muscle fiber construction for tissue-engineered grafts requires assembly of unidirectionally aligned juxtaposed myotubes. To construct such a tissue, a polymer microchip with linearly aligned microgrooves was fabricated that could direct myoblast adaptation under stringent conditions. The closely spaced microgrooves fabricated by a modified replica molding process guided linear cellular alignment. Examination of the myoblasts by immunofluorescence microscopy demonstrated that the microgrooves with subcellular widths and appropriate height-to-width ratios were required for practically complete linear alignment of myoblasts. The topology-dependent cell alignment encouraged differentiation of myoblasts into multinucleate, myosin heavy chain positive myotubes. The monolayer of myotubes formed on the microstructured chips allowed attachment, growth and differentiation of subsequent layers of linearly arranged myoblasts, parallel to the primary monolayer of myotubes. The consequent deposition of additional myoblasts on the previous layer of myotubes resulted in three-dimensional multi-layered structures of myotubes, typical of differentiated skeletal muscle tissue. The findings demonstrate that the on-chip device holds promise for providing an efficient means for guided muscle tissue construction.
Collapse
Affiliation(s)
- Yi Zhao
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | |
Collapse
|
128
|
Liao IC, Liu JB, Bursac N, Leong KW. Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cell Mol Bioeng 2008; 1:133-145. [PMID: 19774099 DOI: 10.1007/s12195-008-0021-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering may provide an alternative to cell injection as a therapeutic solution for myocardial infarction. A tissue-engineered muscle patch may offer better host integration and higher functional performance. This study examined the differentiation of skeletal myoblasts on aligned electrospun polyurethane (PU) fibers and in the presence of electromechanical stimulation. Skeletal myoblasts cultured on aligned PU fibers showed more pronounced elongation, better alignment, higher level of transient receptor potential cation channel-1 (TRPC-1) expression, upregulation of contractile proteins and higher percentage of striated myotubes compared to those cultured on random PU fibers and film. The resulting tissue constructs generated tetanus forces of 1.1 mN with a 10-ms time to tetanus. Additional mechanical, electrical, or synchronized electromechanical stimuli applied to myoblasts cultured on PU fibers increased the percentage of striated myotubes from 70 to 85% under optimal stimulation conditions, which was accompanied by an upregulation of contractile proteins such as α-actinin and myosin heavy chain. In describing how electromechanical cues can be combined with topographical cue, this study helped move towards the goal of generating a biomimetic microenvironment for engineering of functional skeletal muscle.
Collapse
Affiliation(s)
- I-Chien Liao
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
129
|
Vrana E, Builles N, Hindie M, Damour O, Aydinli A, Hasirci V. Contact guidance enhances the quality of a tissue engineered corneal stroma. J Biomed Mater Res A 2008; 84:454-63. [PMID: 17618494 DOI: 10.1002/jbm.a.31442] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Corneal stroma is a very complex structure, composed of 200 lamellae of oriented collagen fibers. This highly complex nature of cornea is known to be important for its transparency and mechanical integrity. Thus, an artificial cornea design has to take into account this complex structure. In this study, behavior of human corneal keratocytes on collagen films patterned with parallel channels was investigated. Keratocytes proliferated well on films and reached confluency after 7 days in the incubation medium. Nearly all of the cells responded to the patterns and were aligned in contrast to the cells on unpatterned surfaces. Collagen type I and keratan sulfate secreted by keratocytes on patterned films appeared to be aligned in the direction of the patterns. The films showed an intermediate degradation over the course of a month. On the whole, transparency of the films increased with degradation and decreased by the presence of the cells. The decrease was, however, low and transparency level was maintained on the patterned films while on the unpatterned films a sharp decrease in transparency was followed by an improvement. This was due to the more organized distribution of cells and the oriented secretion of extracellular matrix molecules on patterned collagen films. Thus, these results suggest that application of contact guidance in cornea tissue engineering may facilitate the remodeling process, hence decrease the rehabilitation period.
Collapse
Affiliation(s)
- E Vrana
- BIOMAT, Department of Biological Sciences, Biotechnology Research Unit, Middle East Technical University, Ankara 06531, Turkey
| | | | | | | | | | | |
Collapse
|
130
|
Lam MT, Clem WC, Takayama S. Reversible on-demand cell alignment using reconfigurable microtopography. Biomaterials 2008; 29:1705-12. [PMID: 18192004 DOI: 10.1016/j.biomaterials.2007.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 12/04/2007] [Indexed: 12/29/2022]
Abstract
Traditional cell culture substrates consist of static, flat surfaces although in vivo, cells exist on various dynamic topographies. We report development of a reconfigurable microtopographical system compatible with cell culture that is comprised of reversible wavy microfeatures on poly(dimethylsiloxane). Robust reversibility of the wavy micropattern is induced on the cell culture customized substrate by first plasma oxidizing the substrate to create a thin, brittle film on the surface and then applying and releasing compressive strain, to introduce and remove the microfeatures, respectively. The reversible topography was able to align, unalign, and realign C2C12 myogenic cell line cells repeatedly on the same substrate within 24 h intervals, and did not inhibit cell differentiation. The flexibility and simplicity of the materials and methods presented here provide a broadly applicable capability by which to investigate and compare dynamic cellular processes not yet easily studied using conventional in vitro culture substrates.
Collapse
Affiliation(s)
- Mai T Lam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
131
|
Ren K, Crouzier T, Roy C, Picart C. Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. ADVANCED FUNCTIONAL MATERIALS 2008; 18:1378-1389. [PMID: 18841249 PMCID: PMC2561337 DOI: 10.1002/adfm.200701297] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Beside chemical properties and topographical features, mechanical properties of gels have been recently demonstrated to play an important role in various cellular processes, including cell attachment, proliferation, and differentiation. In this work, we used multilayer films made of poly(L-lysine)/Hyaluronan (PLL/HA) of controlled stiffness to investigate the effects of mechanical properties of thin films on skeletal muscle cells (C2C12 cells) differentiation. Prior to differentiation, cells need to adhere and proliferate in growth medium. Stiff films (E(0) > 320 kPa) promoted formation of focal adhesions and organization of the cytoskeleton as well as an enhanced proliferation, whereas soft films were not favorable for cell anchoring, spreading or proliferation. Then C2C12 cells were switched to a low serum containing medium to induce cell differentiation, which was also greatly dependent on film stiffness. Although myogenin and troponin T expressions were only moderately affected by film stiffness, the morphology of the myotubes exhibited striking stiffness-dependent differences. Soft films allowed differentiation only for few days and the myotubes were very short and thick. Cell clumping followed by aggregates detachment could be observed after ~2 to 4 days. On stiffer films, significantly more elongated and thinner myotubes were observed for up to ~ 2 weeks. Myotube striation was also observed but only for the stiffer films. These results demonstrate that film stiffness modulates deeply adhesion, proliferation and differentiation, each of these processes having its own stiffness requirement.
Collapse
Affiliation(s)
- Kefeng Ren
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Thomas Crouzier
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Christian Roy
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| | - Catherine Picart
- DIMNP, UMR 5235, Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, Université Montpellier II et I, cc 107, 34 095 Montpellier, France
| |
Collapse
|
132
|
Rowlands AS, Hudson JE, Cooper-White JJ. From scrawny to brawny: the quest for neomusculogenesis; smart surfaces and scaffolds for muscle tissue engineering. Expert Rev Med Devices 2007; 4:709-28. [PMID: 17850206 DOI: 10.1586/17434440.4.5.709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The successful generation of functional muscle tissues requires both an in-depth knowledge of muscle tissue physiology and advanced engineering practices. The inherent contractile functionality of muscle is a result of its high-level cellular and matrix organization over a multitude of length scales. While there have been many attempts to produce artificial muscle, a method to fabricate a highly organized construct, comprised of multiple cell types and capable of delivering contractile strengths similar to that of native smooth, skeletal or cardiac muscle has remained elusive. This is largely due to a lack of control over phenotype and spatial organization of cells. This paper covers state-of-the-art approaches to generating both 2D and 3D substrates that provide some form of higher level organization or multiple biochemical, mechanical or electrical cues to cells in order to successfully manipulate their behavior, in a manner that is conducive to the production of contractile muscle tissue. These so-called 'smart surfaces' and 'smart scaffolds' represent vital steps towards surface-engineered substrates for the engineering of muscle tissues, showing confidently that cellular behavior can be effectively and reproducibly manipulated through the design of the physical, chemical and electrical properties of the substrates on which cells are grown. However, many challenges remain to be overcome prior to reaching the ultimate goal of fully functional 3D vascularized engineered muscle.
Collapse
Affiliation(s)
- Andrew S Rowlands
- Australian Institute for Bioengineering & Nanotechnology, Tissue Engineering and Microfluidics Laboratory, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
133
|
Pitcher MW, Arslan Y, Edinç P, Kartal M, Masjedi M, Metin Ö, Şen F, Türkarslan Ö, Yiğitsoy B. Recent Advances in the Synthesis and Applications of Inorganic Polymer. PHOSPHORUS SULFUR 2007. [DOI: 10.1080/10426500701540431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Michael W. Pitcher
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Yasin Arslan
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Pelin Edinç
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Müjgan Kartal
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Mehdi Masjedi
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Önder Metin
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Fatih Şen
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Özlem Türkarslan
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| | - Başak Yiğitsoy
- a Department of Chemistry , Middle East Technical University , Ankara, Turkey
| |
Collapse
|
134
|
Arai F, Nakano T, Tada M, Lin YC, Ikeda S, Uchida T, Oura H, Fukuda T, Matsuda T, Negoro M. Fabrication of Cell-Adhesion Surface and Arteriole Model by Photolithography. JOURNAL OF ROBOTICS AND MECHATRONICS 2007. [DOI: 10.20965/jrm.2007.p0535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have been developing scaffolds of three-dimensional (3D) synthetic vascular prosthesis in tailor-made. Human umbilical vein endothelial cells (HUVECs) attached on the inner surface of the scaffold have anticoagulant effects. Asperity structures of the inner surface are important to cell adhesion. It is important to quantify the inner surface asperity condition of the scaffold by observing HUVECs behavior and morphology. For this purpose, we recreated the inner surface profile of the scaffold on a poly(dimethilsiloxane) (PDMS) substrate by microfabrication. We made semiround convex patterns of resist that had 8 µm in diameter and 5 µm high using photolithography, and the concave pattern on the PDMS substrate by printing. We observed HUVECs adhering to the PDMS substrate having concave pattern on it surface. The distribution density of the concaves of the tested pattern is 1600 /mm2or 40,000 in a 25 mm2area. In addition, we fabricated an arteriole model by photolithography, creating an arteriole tube model that had 1.1 cm long and 300-400 µm in diameter. We confirmed that the arteriole model had no leakage using a methylene blue solution flow in the channel.
Collapse
|