101
|
Abstract
The delivery of genetic materials into cells to elicit cellular response has been extensively studied by biomaterials scientists globally.
Collapse
Affiliation(s)
- Xian Jun Loh
- Institute of Materials Research and Engineering
- A*STAR
- (Agency for Science
- Technology and Research)
- Singapore 117602
| | - Tung-Chun Lee
- UCL Institute for Materials Discovery and Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Qingqing Dou
- Institute of Materials Research and Engineering
- A*STAR
- (Agency for Science
- Technology and Research)
- Singapore 117602
| | - G. Roshan Deen
- Soft Materials Laboratory
- Natural Sciences and Science Education
- National Institute of Education
- Nanyang Technological University
- 637616 Singapore
| |
Collapse
|
102
|
Hou W, Wei P, Kong L, Guo R, Wang S, Shi X. Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery. J Mater Chem B 2016; 4:2933-2943. [DOI: 10.1039/c6tb00710d] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Partially PEGylated dendrimer-entrapped gold nanoparticles can be used as a promising nanoplatform for highly efficient pDNA and siRNA delivery.
Collapse
Affiliation(s)
- Wenxiu Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Ping Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Lingdan Kong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Shige Wang
- College of Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
103
|
Mukherjee J, Wong PT, Tang S, Gam K, Coulter A, Baker JR, Choi SK. Mechanism of Cooperativity and Nonlinear Release Kinetics in Multivalent Dendrimer–Atropine Complexes. Mol Pharm 2015; 12:4498-508. [DOI: 10.1021/acs.molpharmaceut.5b00684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jhindan Mukherjee
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pamela T. Wong
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shengzhuang Tang
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristina Gam
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexa Coulter
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James R. Baker
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
104
|
Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015; 115:8564-608. [PMID: 26259712 DOI: 10.1021/cr500131f] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- The State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Dina Maciel
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus da Penteada 9000-390, Funchal, Portugal
| |
Collapse
|
105
|
Swami R, Singh I, Khan W, Ramakrishna S. Diseases originate and terminate by genes: unraveling nonviral gene delivery. Drug Deliv Transl Res 2015; 3:593-610. [PMID: 25786377 DOI: 10.1007/s13346-013-0159-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The world is driving in to the era of transformation of chemical therapeutic molecules to biological genetic material therapeutics, and that is where the biological drugs especially "genes" come into existence. These genes worked as "magical bullets" to specifically silence faulty genes responsible for progression of diseases. Viral gene delivery research is far ahead of nonviral gene delivery technique. However, with more advancement in polymer science, new ways are opening for better and efficient nonviral gene delivery. But efficient delivery method is always considered as a bottleneck for gene delivery as success of which will decide the fate of gene in cells. During the past decade, it became evident that extracellular as well as intracellular barriers compromise the transfection efficiency of nonviral vectors. The challenge for gene therapy research is to pinpoint the rate-limiting steps in this complex process and implement strategies to overcome the biological physiochemical and metabolic barriers encountered during targeting. The synergy between studies that investigate the mechanism of breaking in and breaking out of nonviral gene delivery carrier through various extracellular and intracellular barriers with desired characteristics will enable the rational design of vehicles and revolutionize the treatment of various diseases.
Collapse
Affiliation(s)
- Rajan Swami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | | | | | | |
Collapse
|
106
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
107
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [DOI: 10.1021/cr500542t] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
108
|
Muddineti OS, Ghosh B, Biswas S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm 2015; 484:252-67. [DOI: 10.1016/j.ijpharm.2015.02.038] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 02/06/2023]
|
109
|
Jebali A, Anvari-Tafti MH. Hybridization of different antisense oligonucleotides on the surface of gold nanoparticles to silence zinc metalloproteinase gene after uptake by Leishmania major. Colloids Surf B Biointerfaces 2015; 129:107-13. [PMID: 25835145 DOI: 10.1016/j.colsurfb.2015.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023]
Abstract
The use of antisense oligonucleotides is a novel strategy to treat infectious diseases. In this approach, vital mRNAs are targeted by antisense oligonucleotides. The aim of this study was to evaluate the effects of gold nanoparticles hybridized with different antisense oligonucleotides on Leishmania (L) major. In this project, gold nanoparticles were first synthesized, and then conjugated with primary oligonucleotides, 3'-AAA-5'. Next, conjugated gold nanoparticles (NP1) were separately hybridized with three types of antisense oligonucleotide from coding reign of GP63 gene (NP2), non-coding reign of GP63 gene (NP3), and both coding and non-coding reigns of GP63 (NP4). Then, 1mL of L. major suspension was separately added to 1mL of different hybridized gold nanoparticles at serial concentrations (1-200μg/mL), and incubated for 24, 48, and 72h at 37°C. Next, the uptake of each nanoparticle was separately measured by atomic absorption spectroscopy. After incubation, the cell viability was separately evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Also, the expression of GP63 gene was read out by quantitative-real-time PCR. This study showed that NP2 and NP3 had higher (5-fold) uptake than NP1 and NP4. Moreover, NP2 and NP3 led to less cell viability and gene expression, compared with NP1 and NP4. It could be concluded that both sequence and size of antisense oligonucleotide were important for transfection of L. major. Importantly, these antisense oligonucleotides can be obtained from both coding and non-coding reign of GP63 gene. Moreover, hybridized gold nanoparticles not only could silence GP63 gene, but also could kill L. major.
Collapse
Affiliation(s)
- Ali Jebali
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
110
|
Yan P, Wang R, Zhao N, Zhao H, Chen DF, Xu FJ. Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection. NANOSCALE 2015; 7:5281-5291. [PMID: 25721660 DOI: 10.1039/c5nr00481k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Favorable physical and chemical properties endow Au nanoparticles (Au NPs) with various biomedical applications. After appropriate surface functionalization, Au NPs could construct promising drug/gene carriers with multiple functions. There is now ample evidence that physicochemical properties, such as size, shape, and surface chemistry, can dramatically influence the behaviors of Au NPs in biological systems. Investigation of these parameters could be fundamentally important for the application of Au NPs as drug/gene carriers. In this work, we designed a series of novel gene carriers employing polycation-functionalized Au NPs with five different morphologies (including Au nanospheres, Au nano-octahedra, arrow-headed Au nanorods, and Au nanorods with different aspect ratios). The effects of the particle size and shape of these different carriers on gene transfection were investigated in detail. The morphology of Au NPs is demonstrated to play an important role in gene transfection. The most efficient gene carriers are those fabricated with arrow-headed Au nanorods. Au nanosphere-based carriers exhibit the poorest performance in gene transfection. In addition, Au nanorods with smaller aspect ratios perform better than longer ones. These results may provide new avenues to develop promising gene carriers and gain useful information on the interaction of Au NPs with biological systems.
Collapse
Affiliation(s)
- Peng Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | | | |
Collapse
|
111
|
Kong L, Alves CS, Hou W, Qiu J, Möhwald H, Tomás H, Shi X. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:4833-4843. [PMID: 25658033 DOI: 10.1021/am508760w] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report the use of arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for highly efficient and specific gene delivery to stem cells. In this study, generation 5 poly(amidoamine) dendrimers modified with RGD via a poly(ethylene glycol) (PEG) spacer and with PEG monomethyl ether were used as templates to entrap gold nanoparticles (AuNPs). The native and the RGD-modified PEGylated dendrimers and the respective well characterized Au DENPs were used as vectors to transfect human mesenchymal stem cells (hMSCs) with plasmid DNA (pDNA) carrying both the enhanced green fluorescent protein and the luciferase (pEGFPLuc) reporter genes, as well as pDNA encoding the human bone morphogenetic protein-2 (hBMP-2) gene. We show that all vectors are capable of transfecting the hMSCs with both pDNAs. Gene transfection using pEGFPLuc was demonstrated by quantitative Luc activity assay and qualitative evaluation by fluorescence microscopy. For the transfection with hBMP-2, the gene delivery efficiency was evaluated by monitoring the hBMP-2 concentration and the level of osteogenic differentiation of the hMSCs via alkaline phosphatase activity, osteocalcin secretion, calcium deposition, and von Kossa staining assays. Our results reveal that the stem cell gene delivery efficiency is largely dependent on the composition and the surface functionality of the dendrimer-based vectors. The coexistence of RGD and AuNPs rendered the designed dendrimeric vector with specific stem cell binding ability likely via binding of integrin receptor on the cell surface and improved three-dimensional conformation of dendrimers, which is beneficial for highly efficient and specific stem cell gene delivery applications.
Collapse
Affiliation(s)
- Lingdan Kong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
112
|
Parat A, Bordeianu C, Dib H, Garofalo A, Walter A, Bégin-Colin S, Felder-Flesch D. Dendrimer–nanoparticle conjugates in nanomedicine. Nanomedicine (Lond) 2015; 10:977-92. [DOI: 10.2217/nnm.14.196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nanomedicine can take advantage of the recent developments in nanobiotechnology research areas for the creation of platforms with superior drug carrier capabilities, selective responsiveness to the environment, unique contrast enhancement profiles and improved accumulation at the disease site. Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the NPs surface to have enhanced biocompatibility and reach multifunctional systems for the in vitro and in vivo applications, especially in delivering drugs locally and recognizing overexpressed biomolecules. This paper describes the rational design for dendrimer–nanoparticle conjugates elaboration and reviews their state-of-the-art uses as efficient nanomedicine tools.
Collapse
Affiliation(s)
- Audrey Parat
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Catalina Bordeianu
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Hanna Dib
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Antonio Garofalo
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Aurélie Walter
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Sylvie Bégin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| |
Collapse
|
113
|
Chen Z, Zhang L, He Y, Shen Y, Li Y. Enhanced shRNA delivery and ABCG2 silencing by charge-reversible layered nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:952-962. [PMID: 25330768 DOI: 10.1002/smll.201401397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Indexed: 06/04/2023]
Abstract
Polycationic vectors have been used to deliver short hairpin RNAs (shRNAs) to knock-down genes for cancer therapies, but their inefficiency in lysosomal escape and shRNA release causes their low gene transcription efficiency. Herein, a three-layered polyethyleneimine (PEI)-coated gold nanocomplex interlaid with a pH-responsive charge-reversible chitosan-aconitic anhydride (CS-Aco) is constructed: a Au-PEI/CS-Aco/PEI/shRNA nanoparticle. The negatively charged CS-Aco hydrolyzes into positively charged CS in lysosomes, causing the nanocomposite to disassemble. The released Au-PEI nanoparticles efficiently rupture the lysosomes and thus release the PEI/shRNA polyplexes into cytoplasm, where they quickly disassociate because the PEI chains are short (1.2 kDa). As a consequence, the nanocomplexes display higher shRNA delivery efficiency than the 25 kDa PEI, and efficiently deliver shABCG2 to tumors and markedly silence ABCG2 expression, which sensitizes HepG2 cells to the drugs with minimal toxicity.
Collapse
Affiliation(s)
- Zhenzhen Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | | | | | | | | |
Collapse
|
114
|
Kéri M, Peng C, Shi X, Bányai I. NMR Characterization of PAMAM_G5.NH2 Entrapped Atomic and Molecular Assemblies. J Phys Chem B 2015; 119:3312-9. [DOI: 10.1021/acs.jpcb.5b00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mónika Kéri
- Department
of Colloid and Environmental Chemistry, University of Debrecen, Debrecen, Hungary
| | | | | | - István Bányai
- Department
of Colloid and Environmental Chemistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
115
|
|
116
|
Balmayor ER, van Griensven M. Gene therapy for bone engineering. Front Bioeng Biotechnol 2015; 3:9. [PMID: 25699253 PMCID: PMC4313589 DOI: 10.3389/fbioe.2015.00009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures need to be taken by physicians. It is important to combine cells, scaffolds and growth factors, and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany ; Institute for Advanced Science, Technical University Munich , Garching , Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany
| |
Collapse
|
117
|
Shao N, Wang H, He B, Wang Y, Xiao J, Wang Y, Zhang Q, Li Y, Cheng Y. Hydrogen-bonding dramatically modulates the gene transfection efficacy of surface-engineered dendrimers. Biomater Sci 2015. [DOI: 10.1039/c4bm00335g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen-bond modulation strategy represents a promising tool in the design of highly efficient and less cytotoxic gene materials.
Collapse
Affiliation(s)
- Naimin Shao
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Bingwei He
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Yu Wang
- The Second Military Medical University
- Changzheng Hospital
- Department of Orthopedic Oncology
- Shanghai
- P. R. China
| | - Jianru Xiao
- The Second Military Medical University
- Changzheng Hospital
- Department of Orthopedic Oncology
- Shanghai
- P. R. China
| | - Yitong Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Yujia Li
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai 200241
- P.R. China
| |
Collapse
|
118
|
Sherwani MA, Tufail S, Khan AA, Owais M. Dendrimer-PLGA based multifunctional immuno-nanocomposite mediated synchronous and tumor selective delivery of siRNA and cisplatin: potential in treatment of hepatocellular carcinoma. RSC Adv 2015. [DOI: 10.1039/c5ra03651h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The in-house synthesized PLK-1 siRNA and cisplatin loaded innovative dendrimer-PLGA immuno-nanocomposite bears the capacity of delivering both the cargos simultaneously to the same liver cancer cell in a targeted manner.
Collapse
Affiliation(s)
| | - Saba Tufail
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| | - Aijaz Ahmed Khan
- Department of Anatomy
- Jawaharlal Nehru Medical College
- Faculty of Medicine
- Aligarh Muslim University
- Aligarh
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
119
|
A general strategy to prepare different types of polysaccharide-graft-poly(aspartic acid) as degradable gene carriers. Acta Biomater 2015; 12:156-165. [PMID: 25448351 DOI: 10.1016/j.actbio.2014.10.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/03/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023]
Abstract
Owing to their unique properties such as low cytotoxicity and excellent biocompatibility, poly(aspartic acid) (PAsp) and polysaccharides are good candidates for the development of new biomaterials. In order to construct better gene delivery systems by combining polysaccharides with PAsp, in this work, a general strategy is described for preparing series of polysaccharide-graft-PAsp (including cyclodextrin (CD), dextran (Dex) and chitosan (CS)) gene vectors. Such different polysaccharide-based vectors are compared systematically through a series of experiments including degradability, pDNA condensation capability, cytotoxicity and gene transfection ability. They possess good degradability, which would benefit the release of pDNA from the complexes. They exhibit significantly lower cytotoxicity than the control 'gold-standard' polyethylenimine (PEI, ∼25kDa). More importantly, the gene transfection efficiency of Dex- and CS-based vectors is 12-14-fold higher than CD-based ones. This present study indicates that properly grafting degradable PAsp from polysaccharide backbones is an effective means of producing a new class of degradable biomaterials.
Collapse
|
120
|
Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater 2015; 11:368-80. [PMID: 25204523 DOI: 10.1016/j.actbio.2014.08.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/25/2014] [Accepted: 08/28/2014] [Indexed: 02/01/2023]
Abstract
Multidrug resistance (MDR) is a major barrier against effective cancer treatment. Dual-delivering a therapeutic small interfering RNA (siRNA) and chemotherapeutic agents has been developed to reverse drug resistance in tumor cells. In this study, amine-terminated generation 5 polyamidoamine (PAMAM) dendrimers (G5.NH2)-modified selenium nanoparticles (G5@Se NP) were synthesized for the systemic dual-delivery of mdr1 siRNA and cisplatin (cis-diamminedichloroplatinum-(II), DDP), which was demonstrated to enhance siRNA loading, releasing efficiency and gene-silencing efficacy. When the mdr1 siRNA was conjugated with G5@Se NP via electrostatic interaction, a significant down-regulation of P-glycoprotein and multidrug resistance-associated protein expression was observed; G5@Se-DDP-siRNA arrested A549/DDP cells at G1 phase and led to enhanced cytotoxicity in A549/DDP cells through induction of apoptosis involving the AKT and ERK signaling pathways. Interestingly, G5@Se-DDP NP were much less reactive than DDP in the reactions with both MT and GSH, indicating that loading of DDP in a nano-delivery system could effectively prevent cell detoxification. Furthermore, animal studies demonstrated that the new delivery system of G5@Se-DDP-siRNA significantly enhanced the anti-tumor effect on tumor-bearing nude mice, with no appreciable abnormality in the major organs. These results suggest that G5@Se NP could be a potential platform to combine chemotherapy and gene therapy technology in the treatment of human disease.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemistry
- Cell Line, Tumor
- Cisplatin/administration & dosage
- Cisplatin/chemistry
- Dendrimers/chemistry
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Silencing
- Genetic Therapy/methods
- Humans
- Metal Nanoparticles/administration & dosage
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/ultrastructure
- Mice
- Mice, Nude
- Nanocapsules/administration & dosage
- Nanocapsules/chemistry
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/therapy
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- Selenium/chemistry
- Treatment Outcome
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengwen Cao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yanan Liu
- Department of Biology, The Chinese University of Hong Kong, Hong Kong
| | - Qianqian Yu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chuping Zheng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Dongdong Sun
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaofan Ren
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
121
|
Liu L, Zhao Y, Chen Q, Shi X, Shen M. The assembly of polyethyleneimine-entrapped gold nanoparticles onto filter paper for catalytic applications. RSC Adv 2015. [DOI: 10.1039/c5ra20192f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyethyleneimine-entrapped gold nanoparticles can be assembled onto filter paper via electrostatic interaction for high-performance catalytic applications.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Yili Zhao
- Key Laboratory of Textile Science & Technology
- Ministry of Education
- College of Textiles
- Donghua University
- Shanghai 201620
| | - Qian Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Xiangyang Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| | - Mingwu Shen
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- People's Republic of China
| |
Collapse
|
122
|
He X, Alves CS, Oliveira N, Rodrigues J, Zhu J, Bányai I, Tomás H, Shi X. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf B Biointerfaces 2015; 125:82-9. [PMID: 25437067 DOI: 10.1016/j.colsurfb.2014.11.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/26/2014] [Accepted: 11/03/2014] [Indexed: 02/08/2023]
Abstract
Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells.
Collapse
Affiliation(s)
- Xuedan He
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal
| | - Carla S Alves
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal
| | - Nilsa Oliveira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - István Bányai
- Department of Colloid and Environmental Chemistry, Faculty of Science, University of Debrecen, H4032 Egyetem t.1, Debrecen, Hungary.
| | - Helena Tomás
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
123
|
Quaternary ammonium salt containing soybean oil: An efficient nanosize gene delivery carrier for halophile green microalgal transformation. Chem Biol Interact 2015; 225:80-9. [DOI: 10.1016/j.cbi.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/02/2023]
|
124
|
Luk B, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21859-73. [PMID: 25014486 PMCID: PMC4278687 DOI: 10.1021/am5036225] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/11/2014] [Indexed: 05/05/2023]
Abstract
Nanotheranostics is a relatively new, fast-growing field that combines the advantages of treatment and diagnosis via a single nanoscale carrier. The ability to bundle both therapeutic and diagnostic capabilities into one package offers exciting prospects for the development of novel nanomedicine. Nanotheranostics can deliver treatment while simultaneously monitoring therapy response in real-time, thereby decreasing the potential of over- or under-dosing patients. Polymer-based nanomaterials, in particular, have been used extensively as carriers for both therapeutic and bioimaging agents and thus hold great promise for the construction of multifunctional theranostic formulations. Herein, we review recent advances in polymer-based systems for nanotheranostics, with a particular focus on their applications in cancer research. We summarize the use of polymer nanomaterials for drug delivery, gene delivery, and photodynamic therapy, combined with imaging agents for magnetic resonance imaging, radionuclide imaging, and fluorescence imaging.
Collapse
Affiliation(s)
- Brian
T. Luk
- Department
of NanoEngineering
and Moores Cancer Center, University of
California, San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department
of NanoEngineering
and Moores Cancer Center, University of
California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
125
|
Wang F, Wang Y, Wang H, Shao N, Chen Y, Cheng Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014; 35:9187-98. [DOI: 10.1016/j.biomaterials.2014.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/19/2014] [Indexed: 01/09/2023]
|
126
|
Wong PT, Tang K, Coulter A, Tang S, Baker JR, Choi SK. Multivalent Dendrimer Vectors with DNA Intercalation Motifs for Gene Delivery. Biomacromolecules 2014; 15:4134-45. [DOI: 10.1021/bm501169s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kenny Tang
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Alexa Coulter
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
127
|
Li CY, Wang HJ, Cao JM, Zhang J, Yu XQ. Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors. Eur J Med Chem 2014; 87:413-20. [PMID: 25282264 DOI: 10.1016/j.ejmech.2014.09.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/04/2014] [Accepted: 09/29/2014] [Indexed: 01/18/2023]
Abstract
A series of cationic polymers based on low generation (G1) peptide dendrimer were synthesized with disulfide-containing linkages. The DNA binding abilities of the target polymers were studied by gel electrophoresis and fluorescence quenching assay. The bioreducible property of the disulfide-containing polymers P2 and P3 was also investigated in the presence of dithiothreitol (DTT). Results from dynamic light scattering (DLS) and transmission electron microscopy (TEM) assays reveal that these materials may condense DNA into nanoparticles with proper sizes and zeta-potentials. In vitro cell experiments show that compared to branched 25 KDa PEI, P2 and P3 may exhibit much higher gene transfection efficiency and lower cytotoxicity in both HEK293 and U-2OS cells. Additionally, polymer prepared from Michael addition gives better gene transfection ability, while polymer prepared from ring-opening reaction has better serum tolerance. Results indicate that these polymers might be promising non-viral gene vectors for their easy preparation, very low cytotoxicity, and good transfection efficiency.
Collapse
Affiliation(s)
- Chun-Yan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Hai-Jiao Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Jing-Ming Cao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
128
|
Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
129
|
Hayrapetyan A, Jansen JA, van den Beucken JJJP. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:75-87. [PMID: 25015093 DOI: 10.1089/ten.teb.2014.0119] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone regeneration is a well organized but complex physiological process, in which different cell types and their activated signaling pathways are involved. In bone regeneration and remodeling processes, mesenchymal stem cells (MSCs) have a crucial role, and their differentiation during these processes is regulated by specific signaling molecules (growth factors/cytokines and hormones) and their activated intracellular networks. Especially the utilization of the molecular machinery seems crucial to consider prior to developing bone implants, bone-substitute materials, and cell-based constructs for bone regeneration. The aim of this review is to provide an overview of the signaling mechanisms involved in bone regeneration and remodeling and the osteogenic potential of MSCs to become a key cellular resource for such regeneration and remodeling processes. Additionally, an overview of possibilities to beneficially exploit cell signaling processes to optimize bone regeneration is provided.
Collapse
|
130
|
A facile strategy to functionalize gold nanorods with polycation brushes for biomedical applications. Acta Biomater 2014; 10:3786-94. [PMID: 24814878 DOI: 10.1016/j.actbio.2014.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 11/22/2022]
Abstract
The fabrication of highly efficient nonviral gene carriers with low cytotoxicity remains a challenge in gene therapy. This paper reports a facile strategy to combine the advantages of gold nanorods (Au NRs) and polycations through surface functionalization. Different Au NR carriers with a controlled amount of poly(2-(N,N-dimethyl amino)ethyl methacrylate) (PDAEMA) brushes could be readily synthesized via surface-initiated atom transfer radical polymerization to achieve optimized nanohybrids for gene transfection. The obtained gene carriers demonstrate much higher gene transfection efficiency and lower cytotoxicity compared with polyethylenimine (∼25kDa, gold standard of nonviral gene vector) in both COS7 and HepG2 cell lines. In addition, the potential of the PDMAEMA-grafted Au NR carriers to be utilized as a computed tomography contrast agent for the imaging of cancer cells has also been investigated. This strategy may realize the gene therapy and real-time imaging within one nanostructure and facilitate biomedical applications.
Collapse
|
131
|
Wang M, Cheng Y. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials 2014; 35:6603-13. [DOI: 10.1016/j.biomaterials.2014.04.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/16/2014] [Indexed: 01/01/2023]
|
132
|
Cationic polyene phospholipids as DNA carriers for ocular gene therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:703253. [PMID: 25147812 PMCID: PMC4131563 DOI: 10.1155/2014/703253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/18/2014] [Indexed: 11/17/2022]
Abstract
Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.
Collapse
|
133
|
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2014; 6:139-50. [PMID: 25035633 PMCID: PMC4097927 DOI: 10.4103/0975-7406.130965] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/29/2013] [Accepted: 11/14/2013] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are the emerging polymeric architectures that are known for their defined structures, versatility in drug delivery and high functionality whose properties resemble with biomolecules. These nanostructured macromolecules have shown their potential abilities in entrapping and/or conjugating the high molecular weight hydrophilic/hydrophobic entities by host-guest interactions and covalent bonding (prodrug approach) respectively. Moreover, high ratio of surface groups to molecular volume has made them a promising synthetic vector for gene delivery. Owing to these properties dendrimers have fascinated the researchers in the development of new drug carriers and they have been implicated in many therapeutic and biomedical applications. Despite of their extensive applications, their use in biological systems is limited due to toxicity issues associated with them. Considering this, the present review has focused on the different strategies of their synthesis, drug delivery and targeting, gene delivery and other biomedical applications, interactions involved in formation of drug-dendrimer complex along with characterization techniques employed for their evaluation, toxicity problems and associated approaches to alleviate their inherent toxicity.
Collapse
Affiliation(s)
- Kanika Madaan
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Sandeep Kumar
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Neelam Poonia
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Viney Lather
- Department of Pharmaceutical Chemistry, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| | - Deepti Pandita
- Department of Pharmaceutics, J. C. D. M. College of Pharmacy, Sirsa, Haryana, India
| |
Collapse
|
134
|
Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials 2014; 35:5407-5413. [DOI: 10.1016/j.biomaterials.2014.03.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/17/2014] [Indexed: 12/13/2022]
|
135
|
Zhang MZ, Li C, Fang BY, Yao MH, Ren QQ, Zhang L, Zhao YD. High transfection efficiency of quantum dot-antisense oligonucleotide nanoparticles in cancer cells through dual-receptor synergistic targeting. NANOTECHNOLOGY 2014; 25:255102. [PMID: 24896735 DOI: 10.1088/0957-4484/25/25/255102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency.
Collapse
Affiliation(s)
- Ming-Zhen Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
136
|
Li N, Echeverría M, Moya S, Ruiz J, Astruc D. “Click” Synthesis of Nona-PEG-branched Triazole Dendrimers and Stabilization of Gold Nanoparticles That Efficiently Catalyze p-Nitrophenol Reduction. Inorg Chem 2014; 53:6954-61. [DOI: 10.1021/ic500861f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Na Li
- ISM, UMR CNRS 5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - María Echeverría
- CIC biomaGUNE, Unidad Biosuperficies, Paseo Miramón no. 182, Edif. “C”, 20009 Donostia-San Sebastián, Spain
| | - Sergio Moya
- CIC biomaGUNE, Unidad Biosuperficies, Paseo Miramón no. 182, Edif. “C”, 20009 Donostia-San Sebastián, Spain
| | - Jaime Ruiz
- ISM, UMR CNRS 5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
137
|
Jayakumar MKG, Bansal A, Huang K, Yao R, Li BN, Zhang Y. Near-infrared-light-based nano-platform boosts endosomal escape and controls gene knockdown in vivo. ACS NANO 2014; 8:4848-4858. [PMID: 24730360 DOI: 10.1021/nn500777n] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Current nanoparticle-based gene delivery techniques face two major limitations, namely, endosomal degradation and poor cytosolic release of the nanoparticles and nonspecificity of treatment. These limitations can be overcome with certain light-based techniques, such as photochemical internalization to enable endosomal escape of the delivered nanoparticles and light-controlled gene expression to overcome the nonspecific effects. However, these techniques require UV/visible light, which is either phototoxic and/or has low tissue penetration capabilities, thus preventing their use in deep tissues in a clinical setting. In an effort to overcome these barriers, we have successfully demonstrated a light-based gene delivery system that significantly boosts cytosolic gene delivery, with precise control over gene expression and the potential for use in nonsuperficial tissues. Core-shell fluorescent upconversion nanoparticles excited by highly penetrating near-infrared radiation and emitting simultaneously in the ultraviolet and visible ranges were synthesized and used as remote nanotransducers to simultaneously activate endosomal escape and gene knockdown. Gene knockdown using photomorpholinos was enhanced as much as 30% in vitro compared to the control without endosomal escape facilitation. A similar trend was seen in vivo in a murine melanoma model, demonstrating the enormous clinical potential of this system.
Collapse
|
138
|
Zhao YN, Qureshi F, Zhang SB, Cui SH, Wang B, Chen HY, Lv HT, Zhang SF, Huang L. Novel gemini cationic lipids with carbamate groups for gene delivery. J Mater Chem B 2014; 2:2920-2928. [PMID: 25045521 PMCID: PMC4100725 DOI: 10.1039/c3tb21506g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To obtain efficient non-viral vectors, a series of Gemini cationic lipids with carbamate linkers between headgroups and hydrophobic tails were synthesized. They have the hydrocarbon chains of 12, 14, 16 and 18 carbon atoms as tails, designated as G12, G14, G16 and G18, respectively. These Gemini cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. The DNA-bonding ability of these Gemini cationic liposomes was much better than their mono-head counterparts (designated as M12, M14, M16 and M18, respectively). In the same series of liposomes, bonding ability declined with an increase in tail length. They were tested for their gene-transferring capabilities in Hep-2 and A549 cells. They showed higher transfection efficiency than their mono-head counterparts and were comparable or superior in transfection efficiency and cytotoxicity to the commercial liposomes, DOTAP and Lipofectamine 2000. Our results convincingly demonstrate that the gene-transferring capabilities of these cationic lipids depended on hydrocarbon chain length. Gene transfection efficiency was maximal at a chain length of 14, as G14 can silence about 80 % of luciferase in A549 cells. Cell uptake results indicate that Gemini lipid delivery systems could be internalised by cells very efficiently. Thus, the Gemini cationic lipids could be used as synthetic non-viral gene delivery carriers for further study.
Collapse
Affiliation(s)
- Yi-Nan Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116021, Liaoning, China
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Farooq Qureshi
- Pharmaceutical and Analytical R&D, Roche, New Jersey 07110, USA
| | - Shu-Biao Zhang
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Shao-Hui Cui
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Bing Wang
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Hui-Ying Chen
- SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, Liaoning, China
| | - Hong-Tao Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116012, Liaoning, China
| | - Shu-Fen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116021, Liaoning, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| |
Collapse
|
139
|
Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. NANOSCALE 2014; 6:2502-30. [PMID: 24445488 DOI: 10.1039/c3nr05112a] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.
Collapse
Affiliation(s)
- Joseph A Webb
- Department of Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
140
|
Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY. The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 2014; 89:352-7. [DOI: 10.1016/j.critrevonc.2013.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 10/02/2013] [Indexed: 01/18/2023] Open
|
141
|
Zhang M, Guo R, Kéri M, Bányai I, Zheng Y, Cao M, Cao X, Shi X. Impact of Dendrimer Surface Functional Groups on the Release of Doxorubicin from Dendrimer Carriers. J Phys Chem B 2014; 118:1696-706. [DOI: 10.1021/jp411669k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mengen Zhang
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Rui Guo
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mónika Kéri
- Department
of Colloid and Environmental Chemistry, Faculty of Science, University of Debrecen, H4032 Egyetem t.1, Debrecen, Hungary
| | - István Bányai
- Department
of Colloid and Environmental Chemistry, Faculty of Science, University of Debrecen, H4032 Egyetem t.1, Debrecen, Hungary
| | - Yun Zheng
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mian Cao
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xueyan Cao
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Xiangyang Shi
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro
de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal
| |
Collapse
|
142
|
Figueroa ER, Lin AY, Yan J, Luo L, Foster AE, Drezek RA. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials 2014; 35:1725-1734. [PMID: 24286816 PMCID: PMC3906732 DOI: 10.1016/j.biomaterials.2013.11.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 01/02/2023]
Abstract
The development of efficient and biocompatible non-viral vectors for gene therapy remains a great challenge, and exploiting the properties of both nanoparticle carriers and cationic polymers is an attractive approach. In this work, we have developed gold nanoparticle (AuNP) polyamidoamine (PAMAM) conjugates for use as non-viral transfection agents. AuPAMAM conjugates were prepared by crosslinking PAMAM dendrimers to carboxylic-terminated AuNPs via EDC and sulfo-NHS chemistry. EDC and sulfo-NHS have been utilized widely and in numerous applications such as amino acid coupling; however, their use in the coupling of PAMAM dendrimers to AuNPs presents new challenges to form effective and stable constructs for delivery that have not yet been examined. Enhanced colloidal stability and DNA condensation ability was established by probing two critical synthetic parameters: the reaction rate of the PAMAM crosslinking step, and the amine to carboxyl ratio. Based on this work, increasing the amine to carboxyl ratio during conjugation of PAMAM onto AuNPs yielded the optimal vector with respect to colloidal stability and transfection efficiency in vitro. AuPAMAM conjugates present attractive candidates for non-viral gene delivery due to their commercial availability, ease of fabrication and scale-up, high yield, high transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
| | - Adam Y. Lin
- Rice University, Department of Bioengineering, 6500 Main St, Houston, TX 77030, USA
| | - Jiaxi Yan
- Rice University, Department of Bioengineering, 6500 Main St, Houston, TX 77030, USA
| | - Laureen Luo
- Rice University, Department of Bioengineering, 6500 Main St, Houston, TX 77030, USA
| | | | - Rebekah A. Drezek
- Rice University, Department of Bioengineering, 6500 Main St, Houston, TX 77030, USA
| |
Collapse
|
143
|
Chang H, Wang H, Shao N, Wang M, Wang X, Cheng Y. Surface-engineered dendrimers with a diaminododecane core achieve efficient gene transfection and low cytotoxicity. Bioconjug Chem 2014; 25:342-50. [PMID: 24410081 DOI: 10.1021/bc400496u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cationic dendrimers are widely used as gene vectors; however, these materials are usually associated with unsatisfied transfection efficiency and biocompatibility. In this study, we used an aliphatic hydrocarbon-cored polyamidoamine (PAMAM) dendrimer as an alternative to traditional cationic PAMAM dendrimers in the design of efficient gene vectors. Diaminododecane-cored generation 4 (C12G4) PAMAM dendrimer showed dramatically higher efficacy in luciferase and EGFP gene transfection than diaminoethane-cored generation 4 (C2G4) and diaminohexane-cored generation 4 (C6G4) PAMAM dendrimers. The viability of cells incubated with C12G4 at transfection concentrations is above 90%. The significantly improved gene transfection efficacy of C12G4 is attributed to the hydrophobic core of C12G4 which increases the cellular uptake of dendrimer/DNA polyplexes. Further modification of C12G4 with functional ligands such as arginine, 2,4-diamino-1,3,5-triazine, and fluorine compounds significantly increase its transfection efficiency on several cell lines. These results suggest that diaminododecane-cored dendrimers can be developed as a versatile scaffold in the design of efficient gene vectors.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai, 200241, P.R. China
| | | | | | | | | | | |
Collapse
|
144
|
Liao H, Liu H, Li Y, Zhang M, Tomás H, Shen M, Shi X. Antitumor efficacy of doxorubicin encapsulated within PEGylated poly(amidoamine) dendrimers. J Appl Polym Sci 2014. [DOI: 10.1002/app.40358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Huihui Liao
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada 9000-390 Funchal Portugal
| | - Hui Liu
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| | - Yulin Li
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada 9000-390 Funchal Portugal
| | - Mengen Zhang
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada 9000-390 Funchal Portugal
| | - Mingwu Shen
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| | - Xiangyang Shi
- CQM-Centro de Química da Madeira, Universidade da Madeira; Campus da Penteada 9000-390 Funchal Portugal
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| |
Collapse
|
145
|
Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Am J Cancer Res 2014; 4:240-55. [PMID: 24505233 PMCID: PMC3915088 DOI: 10.7150/thno.6914] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022] Open
Abstract
Gene transfer methods are promising in the field of gene therapy. Current methods for gene transfer include three major groups: viral, physical and chemical methods. This review mainly summarizes development of several types of chemical methods for gene transfer in vitro and in vivo by means of nano-carriers like; calcium phosphates, lipids, and cationic polymers including chitosan, polyethylenimine, polyamidoamine dendrimers, and poly(lactide-co-glycolide). This review also briefly introduces applications of these chemical methods for gene delivery.
Collapse
|
146
|
Wang X, Shao N, Zhang Q, Cheng Y. Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J Mater Chem B 2014; 2:2546-2553. [DOI: 10.1039/c3tb21348j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
147
|
Ge X, Zhang Q, Cai Y, Duan S, Chen S, Lv N, Jin T, Chen Y, Yuan W. PEG-PCL-DEX polymersome-protamine vector as an efficient gene delivery system via PEG-guided self-assembly. Nanomedicine (Lond) 2013; 9:1193-207. [PMID: 24294982 DOI: 10.2217/nnm.13.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The nonviral carrier system based on the triblock copolymer PEG-PCL-DEX (PPD) and protamine was developed for nucleic acid delivery. MATERIALS & METHODS Self-assembly occurred in the PEG continuous phase to form 'dextran-interior' polymersomes. siRNA can be condensed by protamine and encapsulated into PPD polymersomes in order to form the PPD-protamine siRNA nanoparticles by thermodynamically preferential partition between the PEG continuous phase and the dextran cavity. RESULTS This system can package siRNA into PPD polymersomes to form 145.2 ± 8.02-nm (± standard deviation) nanoparticles, and the ζ-potential can be reduced to approximately 0 mV. PPD-protamine siRNA nanoparticles achieved cellular uptake of siRNA in SMMC-7721 cells with negligible cytotoxicity, and the GL3 gene expression can be reduced to 61.73 ± 6.25%. A biodistribution study of nanoparticles suggested that the PPD-protamine siRNA nanoparticles mainly accumulated in liver. CONCLUSION All of these results suggest that PPD-protamine carriers may offer a promising gene delivery strategy for the treatment of liver-related disease.
Collapse
Affiliation(s)
- Xuemei Ge
- School of Pharmacy, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Xiao T, Cao X, Shi X. Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. J Control Release 2013. [DOI: 10.1016/j.jconrel.2013.08.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
149
|
Abdel-Rahman MA, Al-Abd AM. Thermoresponsive dendrimers based on oligoethylene glycols: Design, synthesis and cytotoxic activity against MCF-7 breast cancer cells. Eur J Med Chem 2013; 69:848-54. [DOI: 10.1016/j.ejmech.2013.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 11/26/2022]
|
150
|
Pang P, Wu C, Shen M, Gong F, Zhu K, Jiang Z, Guan S, Shan H, Shuai X. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells. PLoS One 2013; 8:e76612. [PMID: 24116127 PMCID: PMC3792021 DOI: 10.1371/journal.pone.0076612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/26/2013] [Indexed: 01/14/2023] Open
Abstract
The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2), to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively) (P<0.01). Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Pengfei Pang
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun Wu
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Shen
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Faming Gong
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kangshun Zhu
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zaibo Jiang
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shouhai Guan
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Shan
- Molecular Imaging Lab, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Interventional Radiology Institute of Sun Yat-sen University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (HS) (XS)
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HS) (XS)
| |
Collapse
|