101
|
The Calcium Channel Affect Osteogenic Differentiation of Mesenchymal Stem Cells on Strontium-Substituted Calcium Silicate/Poly-ε-Caprolactone Scaffold. Processes (Basel) 2020. [DOI: 10.3390/pr8020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There had been a paradigm shift in tissue engineering studies over the past decades. Of which, part of the hype in such studies was based on exploring for novel biomaterials to enhance regeneration. Strontium ions have been reported by others to have a unique effect on osteogenesis. Both in vitro and in vivo studies had demonstrated that strontium ions were able to promote osteoblast growth, and yet at the same time, inhibit the formation of osteoclasts. Strontium is thus considered an important biomaterial in the field of bone tissue engineering. In this study, we developed a Strontium-calcium silicate scaffold using 3D printing technology and evaluated for its cellular proliferation capabilities by assessing for protein quantification and mineralization of Wharton’s Jelly mesenchymal stem cells. In addition, verapamil (an L-type of calcium channel blocker, CCB) was used to determine the mechanism of action of strontium ions. The results found that the relative cell proliferation rate on the scaffold was increased between 20% to 60% within 7 days of culture, while the CCB group only had up to approximately 10% proliferation as compared with the control specimen. Besides, the CCB group had downregulation and down expressions of all downstream cell signaling proteins (ERK and P38) and osteogenic-related protein (Col I, OPN, and OC). Furthermore, CCB was found to have 3–4 times lesser calcium deposition and quantification after 7 and 14 days of culture. These results effectively show that the 3D printed strontium-contained scaffold could effectively stimulate stem cells to undergo bone differentiation via activation of L-type calcium channels. Such results showed that strontium-calcium silicate scaffolds have high development potential for bone tissue engineering.
Collapse
|
102
|
Shan SK, Lin X, Li F, Xu F, Zhong JY, Guo B, Wang Y, Zheng MH, Wu F, Yuan LQ. Exosomes and Bone Disease. Curr Pharm Des 2020; 25:4536-4549. [PMID: 31775592 DOI: 10.2174/1381612825666191127114054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
:
Exosomes, which mediate cell-to-cell communications and provide a novel insight into information
exchange, have drawn increasing attention in recent years. The homeostasis of bone metabolism is critical for
bone health. The most common bone diseases such as osteoporosis, osteoarthritis and bone fractures have apparent
correlations with exosomes. Accumulating evidence has suggested the potential regenerative capacities of
stem cell-derived exosomes. In this review, we summarise the pathophysiological mechanism, clinical picture and
therapeutic effects of exosomes in bone metabolism. We introduce the advantages and challenges in the application
of exosomes. Although the exact mechanisms remain unclear, miRNAs seem to play major roles in the
exosome.
Collapse
Affiliation(s)
- Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Fuxingzi Li
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Yu Zhong
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Guo
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Wang
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Hui Zheng
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Wu
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Disease, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
103
|
Ferreira FV, Souza LP, Martins TMM, Lopes JH, Mattos BD, Mariano M, Pinheiro IF, Valverde TM, Livi S, Camilli JA, Goes AM, Gouveia RF, Lona LMF, Rojas OJ. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. NANOSCALE 2019; 11:19842-19849. [PMID: 31441919 DOI: 10.1039/c9nr05383b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil and Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland. and Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - Lucas P Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Thais M M Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900, Sao Jose dos Campos-SP, Brazil
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| | - Marcos Mariano
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Ivanei F Pinheiro
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Thalita M Valverde
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Sébastien Livi
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - José A Camilli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Alfredo M Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| |
Collapse
|
104
|
Exosomal MMP2 derived from mature osteoblasts promotes angiogenesis of endothelial cells via VEGF/Erk1/2 signaling pathway. Exp Cell Res 2019; 383:111541. [PMID: 31369752 DOI: 10.1016/j.yexcr.2019.111541] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
Abstract
The skeletal system is a dynamic organ that continuously undergoes coupled trabeculae and blood vessels remodeling, indicating the possible existence of molecular crosstalk between endothelial and osteoblastic cells. Since the cross-talk between bone-forming osteoblasts (OBs) and vessel-forming endothelial cells (ECs) have progressively gained investigators' attention, few studies focused on the regulatory function of extracellular vesicles derived from OBs on ECs. In this study, the effect of the exosomes derived from mature osteoblasts (MOBs) on the ECs was investigated. Firstly, exosomes derived from mature osteoblasts (MOB-Exos) were isolated and identified by NanoSight light scatter technology, electron microscopy and Western bolting. Fluorescent labeling of MOB-Exos revealed its internalization by ECs. RNA interference technique was used to knock down matrix metalloproteinase-2 (MMP2) in MOB-Exos. Then ECs were co-cultured with MOB-Exos and MMP2 knockdown MOB-Exos. Wound healing migration assay, transwell migration assay, CCK-8 assay and tube formation assay of ECs were conducted to determine the angiogenic capability of ECs. Then the VEGF/Erk1/2 pathway markers were detected by Western blot. Our results showed that MOB-Exos could promote the proliferation, migration and tube formation of ECs. Meanwhile, the promoted angiogenetic capacities of ECs were impaired when MMP2 in MOB-Exos was knocked down. In addition, immunoblotting indicated that MOB-Exos could promote the activation of the VEGF/Erk1/2 pathway of ECs; whereas the activation of the VEGF/Erk1/2 pathway was attenuated when the ECs were co-cultured with the MMP2 knockdown MOB-Exos. In conclusion, the MMP-2 existing in exosomes derived from MOBs could promote the angiogenesis of ECs in vitro, which might be realized through VEGF/Erk1/2 signaling pathway.
Collapse
|
105
|
Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019; 219:119366. [PMID: 31374482 DOI: 10.1016/j.biomaterials.2019.119366] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Biomedical implants have been widely used in various orthopedic treatments, including total hip arthroplasty, joint arthrodesis, fracture fixation, non-union, dental repair, etc. The modern research and development of orthopedic implants have gradually shifted from traditional mechanical support to a bioactive graft in order to endow them with better osteoinduction and osteoconduction. Inspired by structural and mechanical properties of natural bone, this review provides a panorama of current biological surface modifications for facilitating the interaction between medical implants and bone tissue and gives a future outlook for fabricating the next-generation multifunctional and smart implants by systematically biomimicking the physiological processes involved in formation and functioning of bones.
Collapse
Affiliation(s)
- Chao Hu
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Deepu Ashok
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - David R Nisbet
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, ACT, 2601, Australia.
| |
Collapse
|
106
|
Xia Y, He W, Li J, Zeng L, Chen T, Liao Y, Sun W, Lan J, Zhuo S, Zhang J, Yang H, Chen J. Acridone Derivate Simultaneously Featuring Multiple Functions and Its Applications. Anal Chem 2019; 91:8406-8414. [DOI: 10.1021/acs.analchem.9b01289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yaokun Xia
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Wenhui He
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350108, People’s Republic of China
| | - Lupeng Zeng
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Tingting Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Yijuan Liao
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, People’s Republic of China
| | - Weiming Sun
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Jianming Lan
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Shuangmu Zhuo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian Province 350007, People’s Republic of China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, People’s Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350108, People’s Republic of China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| |
Collapse
|