101
|
Wang R, Gao Y, Liu A, Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target 2021; 29:687-702. [PMID: 33474998 DOI: 10.1080/1061186x.2021.1878366] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Posterior segment eye disease is a leading cause of irreversible vision impairment and blindness. As the unique organ for vision, eyes are protected by various protective barriers. The existence of physiological barriers and elimination mechanisms makes it challenging to treat the posterior segment eye diseases. To achieve efficient drug delivery to the posterior segment of eyes, different drug delivery systems have been proposed. Due to their abilities to enhance ocular tissue permeability, make controlled drug release and target retina, nanocarriers, such as lipid nanoparticles, liposomes and polymeric nanomicelles, have been widely studied for posterior segment drug delivery. However, clinical applications of nanocarrier mediated drug delivery systems as non-invasive ocular drops is still not ready. The delivery of nanocarrier-mediated drug for posterior segment disease still faces the choice of being more effective or more invasive for long-term treatment. Therefore, it is necessary to have a clear understanding of the barriers and the routes of ocular drug delivery while developing the delivery systems. In this review, types of ocular barriers and drug administration routes are categorised in a more intuitive way. Recent advances in nanocarrier mediated drug delivery systems with focus on posterior segment are reviewed with illustrative examples.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, China
| | - Yuan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, China
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|
102
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
103
|
Sun K, Hu K. Preparation and Characterization of Tacrolimus-Loaded SLNs in situ Gel for Ocular Drug Delivery for the Treatment of Immune Conjunctivitis. Drug Des Devel Ther 2021; 15:141-150. [PMID: 33469266 PMCID: PMC7811375 DOI: 10.2147/dddt.s287721] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background The aim of this study is to develop a novel in situ gel of tacrolimus-loaded SLNs (solid lipid nanoparticles) for ocular drug delivery. Methods The optimal formulation was characterized by surface morphology, particle size, zeta potential, entrapment efficiency, drug loading and in vitro release behavior. In vivo studies were also conducted to evaluate the pharmacokinetic and pharmacodynamic results. Results In this study, TAC-SLNs ISG were prepared using homogenization followed by probe sonication method. The average particle size of TAC-SLNs ISG was observed to be 122.3±4.3 nm. Compared with TAC-SLNs, in situ gel did not increase particle size, and there was no significant difference between them. The results of viscosity measurement showed that TAC SLNs-ISG were typical of pseudo plastic systems and showed a marked increase in viscosity as temperature increased and ultimately formed a rigid gel (32°C). In vitro and in vivo studies illustrated the sustained release model of the drug from TAC-SLNs ISG. Animal model showed that TAC-SLNs ISG had good pharmacodynamics when compared with eye drops and SLNs. Conclusion Our results demonstrated that TAC SLNs-ISG had the potential for being an ideal ocular drug delivery system.
Collapse
Affiliation(s)
- Kexin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, People's Republic of China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, People's Republic of China
| |
Collapse
|
104
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
105
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
106
|
Neurotrophic Factors in Glaucoma and Innovative Delivery Systems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glaucoma is a neurodegenerative disease and a worldwide leading cause of irreversible vision loss. In the last decades, high efforts have been made to develop novel treatments effective in inducing protection and/or recovery of neural function in glaucoma, including neurotrophic factors (NTFs). These approaches have shown encouraging data in preclinical setting; however, the challenge of sustained, targeted delivery to the retina and optic nerve still prevents the clinical translation. In this paper, the authors review and discuss the most recent advances for the use of NTFs treatment in glaucoma, including intraocular delivery. Novel strategies in drug and gene delivery technology for NTFs are proving effective in promoting long-term retinal ganglion cells (RGCs) survival and related functional improvements. Results of experimental and clinical studies evaluating the efficacy and safety of biodegradable slow-release NTF-loaded microparticle devices, encapsulated NTF-secreting cells implants, mimetic ligands for NTF receptors, and viral and non-viral NTF gene vehicles are discussed. NTFs are able to prevent and even reverse apoptotic ganglion cell death. Nevertheless, neuroprotection in glaucoma remains an open issue due to the unmet need of sustained delivery to the posterior segment of the eye. The recent advances in intraocular delivery systems pave the way for possible future use of NTFs in clinical practice for the treatment of glaucoma.
Collapse
|
107
|
Mohammad G, Radhakrishnan R, Kowluru RA. Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:35. [PMID: 33372981 PMCID: PMC7774116 DOI: 10.1167/iovs.61.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyperglycemia damages the retinal mitochondria, and the mitochondrial damage plays a central role in the development of diabetic retinopathy. Patients with diabetes also have higher homocysteine levels, and abnormalities in homocysteine metabolism result in decreased levels of hydrogen sulfide (H2S), an endogenous gasotransmitter signaling molecule with antioxidant properties. This study aimed to investigate the role of H2S in the development of diabetic retinopathy. Methods Streptozotocin-induced diabetic mice were administered a slow releasing H2S donor GYY4137 for 6 months. The retina was used to measure H2S levels, and their retinal vasculature was analyzed for the histopathology characteristic of diabetic retinopathy and oxidative stress, mitochondrial damaging matrix metalloproteinase-9 (MMP-9), and mitochondrial integrity. These parameters were also measured in the isolated retinal endothelial cells incubated in high glucose medium containing GYY4137. Results Administration of GYY4137 to diabetic mice ameliorated decrease in H2S and prevented the development of histopathology, characteristic of diabetic retinopathy. Diabetes-induced increase in oxidative stress, MMP-9 activation, and mitochondrial damage were also attenuated in mice receiving GYY4137. Results from isolated retinal endothelial cells confirmed the results obtained from diabetic mice. Conclusions Thus, supplementation of H2S donor prevents the development of diabetic retinopathy by ameliorating increase in oxidative stress and preserving the mitochondrial integrity. H2S donors may provide a novel therapeutic strategy to inhibit the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | | | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
108
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Pérez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part I: Biomaterials-Based Drug Delivery Devices. Front Bioeng Biotechnol 2020; 8:549089. [PMID: 33224926 PMCID: PMC7670958 DOI: 10.3389/fbioe.2020.549089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 years old people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting of intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, the development of biomaterials-based approaches for a personalized and controlled delivery of therapeutic drugs and biomolecules represents the main challenge for the defeat of this neurodegenerative disease. Here we present a critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In the first part we expose the physiological and clinical aspects of the disease, focusing on the multiple factors that give origin to the disorder and highlighting the contribution of these factors to the triggering of each step of the disease. Then we analyze available and under development biomaterials-based drug-delivery devices (DDD), taking into account the anatomical and functional characteristics of the healthy and ill retinal tissue.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V Guinea
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| |
Collapse
|
109
|
Bhattacharya M, Sadeghi A, Sarkhel S, Hagström M, Bahrpeyma S, Toropainen E, Auriola S, Urtti A. Release of functional dexamethasone by intracellular enzymes: A modular peptide-based strategy for ocular drug delivery. J Control Release 2020; 327:584-594. [DOI: 10.1016/j.jconrel.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
|
110
|
Żuk M, Lobashova E, Żuk O, Wierzba S. Efficacy of systemic administration of riboflavin on a rabbit model of corneal alkali burn. Sci Rep 2020; 10:17278. [PMID: 33057108 PMCID: PMC7561723 DOI: 10.1038/s41598-020-74484-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/30/2020] [Indexed: 01/28/2023] Open
Abstract
Changes in the barrier mechanisms in the eye should determine the rational route for the administration and dosage of each drug in the treatment of traumatic injuries and other pathologies. The aim of this study was to examine the efficacy of intra-arterial delivery of 14C-riboflavin (as an "indicator") and compare it with intravenous and intramuscular administration in an animal model of chemical eye burn. 14C-riboflavin (14C-I) was administered by intra-arterial (carotid artery), intravenous (femoral vein) and intramuscular (femoral muscle) routes. The total radioactivity was determined over 2 h in the plasma and structures of the rabbit's eyes using a scintillation counter. The results of the study show that intravascular administration of 14C-I gives significantly higher concentrations of total radioactivity in the blood and is accompanied by a significant increase in the permeability of the blood-barrier and barrier in eyes suffering from burns. The highest concentration in the plasma and aqueous humour of the anterior chamber of the eye was observed during the first hour with the intra-arterial route of administration of 14C-I in either burnt and unburnt eyes. The distribution of total radioactivity in the structures of the eye over the 2 h of the experiment showed a higher level of the drug under intra-arterial administered in the uveal regions, namely: the iris, ciliary body, choroid, retina and also the sclera and cornea. This experimental model shows that intra-arterial administration can increase the bioavailability of a drug to the structures of the eye within a short period of time.
Collapse
Affiliation(s)
- Maksym Żuk
- Faculty of Health Sciences, University of Opole, Katowicka 68, Opole, Poland.
| | - Ekaterina Lobashova
- Department of Pharmacology, Odessa National Medical University, Valikhovskiy lane, 2., Odessa, Ukraine
| | - Olga Żuk
- Institute of Environmental Engineering and Biotechnology, University of Opole, Kominka 6 A, Opole, Poland
| | - Sławomir Wierzba
- Institute of Environmental Engineering and Biotechnology, University of Opole, Kominka 6 A, Opole, Poland
| |
Collapse
|
111
|
Lutein-Loaded, Biotin-Decorated Polymeric Nanoparticles Enhance Lutein Uptake in Retinal Cells. Pharmaceutics 2020; 12:pharmaceutics12090798. [PMID: 32847030 PMCID: PMC7558721 DOI: 10.3390/pharmaceutics12090798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Age related macular degeneration (AMD) is one of the leading causes of visual loss and is responsible for approximately 9% of global blindness. It is a progressive eye disorder seen in elderly people (>65 years) mainly affecting the macula. Lutein, a carotenoid, is an antioxidant, and has shown neuroprotective properties in the retina. However, lutein has poor bioavailability owing to poor aqueous solubility. Drug delivery to the posterior segment of the eye is challenging due to the blood–retina barrier. Retinal pigment epithelium (RPE) expresses the sodium-dependent multivitamin transporter (SMVT) transport system which selectively uptakes biotin by active transport. In this study, we aimed to enhance lutein uptake into retinal cells using PLGA–PEG–biotin nanoparticles. Lutein loaded polymeric nanoparticles were prepared using O/W solvent-evaporation method. Particle size and zeta potential (ZP) were determined using Malvern Zetasizer. Other characterizations included differential scanning calorimetry, FTIR, and in-vitro release studies. In-vitro uptake and cytotoxicity studies were conducted in ARPE-19 cells using flow cytometry and confocal microscopy. Lutein was successfully encapsulated into PLGA and PLGA–PEG–biotin nanoparticles (<250 nm) with uniform size distribution and high ZP. The entrapment efficiency of lutein was ≈56% and ≈75% for lutein-loaded PLGA and PLGA–PEG–biotin nanoparticles, respectively. FTIR and DSC confirmed encapsulation of lutein into nanoparticles. Cellular uptake studies in ARPE-19 cells confirmed a higher uptake of lutein with PLGA–PEG–biotin nanoparticles compared to PLGA nanoparticles and lutein alone. In vitro cytotoxicity results confirmed that the nanoparticles were safe, effective, and non-toxic. Findings from this study suggest that lutein-loaded PLGA–PEG–biotin nanoparticles can be potentially used for treatment of AMD for higher lutein uptake.
Collapse
|
112
|
Shah J, Vaze A, Tang Lee Say T, Gillies MC, Fraser-Bell S. Emerging corticosteroid delivery platforms for treatment of diabetic macular edema. Expert Opin Emerg Drugs 2020; 25:383-394. [PMID: 32815413 DOI: 10.1080/14728214.2020.1810664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic macular edema (DME) is a leading cause of vision impairment. Low-grade inflammation is thought to play a critical role in its pathogenesis. Although vascular endothelial growth factor inhibitors are used first-line, not all eyes with DME respond optimally and may respond better to corticosteroids. Currently corticosteroids for DME are given intravitreally and require regular monitoring. There is an unmet need for longer lasting therapies and/or effective noninvasive therapies such as those given via oral or topical routes. AREAS COVERED This review discusses emerging corticosteroid delivery platforms for DME treatment. A literature search of investigational novel therapeutic steroid delivery platform in DME was conducted. Results are presented from preclinical, phase 1,2 & 3 clinical trials of various drug delivery systems using new technologies such as Solubilizing Nanoparticle technology, Mucus Penetrating Particles technology and Particle Replication In Non-wetting Templates. These new platforms aim to deliver corticosteroids effectively via topical, episcleral, subtenon, oral, and intravitreal routes. EXPERT OPINION These novel drug delivery platforms have the potential to lead to noninvasive or minimally invasive therapies and may overcome the shortcomings of current pharmacotherapy. However, larger comparative trials are needed for these agents to be added to the current armamentarium in DME management.
Collapse
Affiliation(s)
- Janika Shah
- Medical Retina Department, Sydney Eye Hospital , Sydney, Australia.,Macula Research Unit, Save Sight Institute, University of Sydney , Sydney, Australia
| | - Anagha Vaze
- Medical Retina Department, Sydney Eye Hospital , Sydney, Australia.,Macula Research Unit, Save Sight Institute, University of Sydney , Sydney, Australia
| | - Timothy Tang Lee Say
- Medical Retina Department, Sydney Eye Hospital , Sydney, Australia.,Macula Research Unit, Save Sight Institute, University of Sydney , Sydney, Australia
| | - Mark C Gillies
- Medical Retina Department, Sydney Eye Hospital , Sydney, Australia.,Macula Research Unit, Save Sight Institute, University of Sydney , Sydney, Australia
| | - Samantha Fraser-Bell
- Medical Retina Department, Sydney Eye Hospital , Sydney, Australia.,Macula Research Unit, Save Sight Institute, University of Sydney , Sydney, Australia
| |
Collapse
|
113
|
Sreekumar PG, Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol 2020; 37:101663. [PMID: 32768357 PMCID: PMC7767738 DOI: 10.1016/j.redox.2020.101663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial-derived peptides (MDPs) are a new class of small open reading frame encoded polypeptides with pleiotropic properties. The prominent members are Humanin (HN) and small HN-like peptide (SHLP) 2, which encode 16S rRNA, while mitochondrial open reading frame of the twelve S c (MOTS-c) encodes 12S rRNA of the mitochondrial genome. While the multifunctional properties of HN and its analog 14-HNG have been well documented, their protective role in the retinal pigment epithelium (RPE)/retina has been investigated only recently. In this review, we have summarized the multiple effects of HN and its analogs, SHLP2 and MOTS-c in oxidatively stressed human RPE and the regulatory pathways of signaling, mitochondrial function, senescence, and inter-organelle crosstalk. Emphasis is given to the mitochondrial functions such as biogenesis, bioenergetics, and autophagy in RPE undergoing oxidative stress. Further, the potential use of HN and its analogs in the prevention of age-related macular degeneration (AMD) are also presented. In addition, the role of novel, long-acting HN elastin-like polypeptides in nanotherapy of AMD and other ocular diseases stemming from oxidative damage is discussed. It is expected MDPs will become a promising group of mitochondrial peptides with valuable therapeutic applications in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
114
|
Suri R, Neupane YR, Jain GK, Kohli K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur J Pharm Sci 2020; 153:105489. [PMID: 32717428 DOI: 10.1016/j.ejps.2020.105489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Degenerative diseases of eye like Age-related macular degeneration (AMD), that affects the central portion of the retina (macula), is one of the leading causes of blindness worldwide especially in the elderly population. It is classified mainly as wet and dry form. With expanding knowledge about the underlying pathophysiology of the disease, various treatment strategies are being employed to halt the course of the disease progression. Hitherto, there is no ideal therapy which can cure the disease completely, and targeting the posterior segment of the eye is yet another challenge. The purpose of this review is to summarize the recent advances in the management and treatment stratagems (therapies, delivery systems and diagnostic tools) pertaining to AMD viz. molecular targeting, stem cell therapy, nanotechnology and exosomes with special reference to newer technologies like artificial intelligence and 3D printing. Furthermore, the role of diet and nutritional supplements in the prevention and treatment of the disease has also been highlighted. The alarming increase in the said disorder around the globe demands exhaustive research and investigations in the treatment zone. This review thus additionally directs the attention towards the challenges and future perspectives of different treatment approaches for AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
115
|
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10:27835-27855. [PMID: 35516960 PMCID: PMC9055630 DOI: 10.1039/d0ra04971a] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ocular diseases have a significant effect on vision and quality of life. Drug delivery to ocular tissues is a challenge to formulation scientists. The major barriers to delivering drugs to the anterior and posterior segments include physiological barriers (nasolacrimal drainage, blinking), anatomical barriers (static and dynamic), efflux pumps and metabolic barriers. The static barriers comprise the different layers of the cornea, sclera, and blood-aqueous barriers whereas dynamic barriers involve conjunctival blood flow, lymphatic clearance and tear drainage. The tight junctions of the blood-retinal barrier (BRB) restrict systemically administered drugs from entering the retina. Nanocarriers have been found to be effective at overcoming the issues associated with conventional ophthalmic dosage forms. Various nanocarriers, including nanodispersion systems, nanomicelles, lipidic nanocarriers, polymeric nanoparticles, liposomes, niosomes, and dendrimers, have been investigated for improved permeation and effective targeted drug delivery to various ophthalmic sites. In this review, various nanomedicines and their application for ophthalmic delivery of therapeutics are discussed. Additionally, scale-up and clinical status are also addressed to understand the current scenario for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Prem Prakash Singh
- Formulation Development, Slayback Pharma India LLP Hyderabad Telangana 500072 India
| | - Sunil Kumar Dubey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
- Birla Institute of Technology & Science (BITS) Pilani, Dubai Campus UAE
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus Rajasthan India 333031
| |
Collapse
|
116
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
117
|
Kapadia R, Parikh K, Jain M, Sawant K. Topical instillation of triamcinolone acetonide-loaded emulsomes for posterior ocular delivery: statistical optimization and in vitro-in vivo studies. Drug Deliv Transl Res 2020; 11:984-999. [PMID: 32567039 DOI: 10.1007/s13346-020-00810-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of the present investigation was to formulate and characterize a novel lipid-based carrier-emulsomes loaded with triamcinolone acetonide (TA)/Nile red (NR) for non-invasive delivery to the posterior segment of the eye upon topical application. To optimize and delineate the effect of independent variables on dependent variables, Box-Behnken design (BBD) was adopted. The optimized batch was characterized for size, zeta potential, surface morphology by transmission electron microscopy, drug-excipient interaction by differential scanning calorimetry, osmolarity, pH, ex vivo transcorneal permeation, and stability studies. A short-term exposure (STE) test was performed on Statens Seruminstitut Rabbit Corneal (SIRC) cell lines to evaluate the in vitro ocular irritation. Precorneal retention study was performed in rabbit eyes. Confocal microscopy was used for ocular distribution studies in mice eye by preparing dye (Nile red)-loaded formulations. The surface response and contour plots along with ANOVA results demonstrated an interaction between the factors. The optimized batch had particle size of 131.17 ± 3.17 nm and entrapment efficiency of 71.56 ± 4.19%. TEM image showed unimodal, nano-sized emulsomes. TA-loaded emulsomes exhibited higher transcorneal permeation as compared to drug solution. In vitro irritation studies confirmed the safety of excipients for ophthalmic use. Fluorescence microscopic images obtained after ocular distribution studies showed strong fluorescence in inner and outer plexiform layers of the retina in comparison to dye solution confirming the delivery of dye to the posterior segment of mice eye after topical ocular instillation. Graphical abstract.
Collapse
Affiliation(s)
- Rakhee Kapadia
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India
| | - Kinjal Parikh
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India
| | - Mahendra Jain
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India
| | - Krutika Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, 390 001, India.
| |
Collapse
|
118
|
Sustained subconjunctival drug delivery systems: current trends and future perspectives. Int Ophthalmol 2020; 40:2385-2401. [DOI: 10.1007/s10792-020-01391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
|
119
|
Nayak K, Misra M. Triamcinolone Acetonide-Loaded PEGylated Microemulsion for the Posterior Segment of Eye. ACS OMEGA 2020; 5:7928-7939. [PMID: 32309702 PMCID: PMC7160842 DOI: 10.1021/acsomega.9b04244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Present work investigates the possibility of a polyethyleneglycolylated (PEGylated) microemulsion (ME) to deliver drug to the posterior segment of eye. Triamcinolone acetonide (TA), a widely used drug in intraocular diseases, was selected as the model drug. Based on solubility and emulsification capacity, components of microemulsion were selected and optimum formulation was obtained using a pseudoternary phase diagram. The optimized ratio of Capmul MCM C8 (oil): AccononMC8-2 (surfactant): Transcutol (cosurfactant): deionized water was 5:35.5:4.5:55. This was further PEGylated using 1,2-distearoylphosphatylethanolamine-polyethyleneglycol 2000 (DSPE-PEG 2000). This PEGylated ME loaded with TA was characterized and evaluated in vitro, ex vivo, and in vivo for topical ocular use. The developed PEGylated ME loaded with TA was homogenous, stable, and nonirritable to eye and had the ability to reach the posterior segment of eye on topical instillation.
Collapse
|
120
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
121
|
Kim S, Kang-Mieler JJ, Liu W, Wang Z, Yiu G, Teixeira LBC, Mieler WF, Thomasy SM. Safety and Biocompatibility of Aflibercept-Loaded Microsphere Thermo-Responsive Hydrogel Drug Delivery System in a Nonhuman Primate Model. Transl Vis Sci Technol 2020; 9:30. [PMID: 32742760 PMCID: PMC7354880 DOI: 10.1167/tvst.9.3.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To evaluate the safety and tolerability of a microsphere thermo-responsive hydrogel drug delivery system (DDS) loaded with aflibercept in a nonhuman primate model. Methods A sterile 50 µL of aflibercept-loaded microsphere thermo-responsive hydrogel-DDS (aflibercept-DDS) was injected intravitreally into the right eye of 10 healthy rhesus macaques. A complete ophthalmic examination, intraocular pressure (IOP) measurement, fundus photography, spectral-domain optical coherence tomography (SD-OCT), and electroretinogram were performed monthly for 6 months. One macaque was euthanized monthly, and the enucleated eyes were submitted for measurement of bioactive aflibercept concentrations. Four eyes were submitted for histopathology. Results Injected aflibercept-DDS was visualized in the vitreous until 6 months postinjection. No abnormalities were observed in the anterior segment, and IOP remained within normal range during the study period. A small number of cells were observed in the vitreous of some macaques, but otherwise the remainder of the posterior segment examination was normal. No significant changes in retinal architecture or function as assessed by SD-OCT and histology or full-field electroretinography, respectively, were observed. A mild, focal foreign body reaction around the injectate was observed with histology at 6 months postinjection. A mean of 2.1 ng/µL of aflibercept was measured in the vitreous. Conclusions Intravitreally injected aflibercept-DDS achieved controlled, sustained release of aflibercept with no adverse effects for up to 6 months in the eyes of healthy rhesus macaques. Translational Relevance Aflibercept-DDS may be a more effective method to deliver bioactive antivascular endothelial growth factor agents than current practice by reducing the frequency of intravitreal injections and providing controlled drug release.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California -Davis, Davis, CA, USA
| | - Jennifer J Kang-Mieler
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Wenqiang Liu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Zhe Wang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California -Davis, Davis, CA, USA
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, School of Medicine, University of California-Davis, Davis, CA, USA
| | - Leandro B C Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - William F Mieler
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California -Davis, Davis, CA, USA.,Department of Ophthalmology and Vision Science, School of Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
122
|
Yang X, Wang L, Li L, Han M, Tang S, Wang T, Han J, He X, He X, Wang A, Sun K. A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment. Drug Deliv 2020; 26:989-1001. [PMID: 31571502 PMCID: PMC6781193 DOI: 10.1080/10717544.2019.1667455] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Noninvasive drug delivery is a promising treatment strategy for ocular posterior segment diseases. Many physiological and anatomical barriers of the eye considerably restrict effective diffusion of therapeutics to the target site. To overcome this problem, a novel cyclic arginine-glycine-aspartate (RGD) hexapeptide and penetratin (PEN) co-modified PEGylation polyamidoamine (PAMAM) was designed as a nanocarriers (NCs), and its penetrating and targeting abilities were evaluated. In this study, we show that PAMAM-PEG (reaction molar ratio 1:32) has a relatively high grafting efficiency and low cytotoxicity. The particle size was within the range of 15-20 nm after modification with RGD and PEN. Cellular uptake of RGD-modified NCs involved significant affinity toward integrin αvβ3, which validated the targeting of neovasculature. An in vitro permeation study indicated that modification with PEN significantly improved penetration of the NCs (1.5 times higher). In vivo ocular distribution studies showed that, the NCs (modified with PEN or co-modified with RGD and PEN) were highly distributed in the cornea and retina (p < .001), and modification extended retinal retention time for more than 12 h. Therefore, these NCs appear to be a promising noninvasive ocular drug delivery system for ocular posterior segment diseases.
Collapse
Affiliation(s)
- Xiucheng Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Lihua Wang
- School Hospital of Yantai University , Yantai , China
| | - Lin Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Meishan Han
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Shengnan Tang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Tengteng Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Junping Han
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Xiaoyan He
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Xiuting He
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| | - Aiping Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd. , Yantai , China
| | - Kaoxiang Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , China
| |
Collapse
|
123
|
Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:549-560. [PMID: 31902299 DOI: 10.1080/09205063.2020.1712175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiuju Zhang
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| | - Xiuzhen Cao
- Department of Anus and Intestine Surgery, Taian Central Hospital, Taian, Shandong, China
| | - Ping Qi
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
124
|
Bongiovì F, Fiorica C, Palumbo FS, Pitarresi G, Giammona G. Hyaluronic acid based nanohydrogels fabricated by microfluidics for the potential targeted release of Imatinib: Characterization and preliminary evaluation of the antiangiogenic effect. Int J Pharm 2020; 573:118851. [DOI: 10.1016/j.ijpharm.2019.118851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/18/2023]
|
125
|
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in Ocular Drug Delivery. Pharmaceutics 2019; 12:E22. [PMID: 31878298 PMCID: PMC7023054 DOI: 10.3390/pharmaceutics12010022] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides, such as cellulose, hyaluronic acid, alginic acid, and chitosan, as well as polysaccharide derivatives, have been successfully used to augment drug delivery in the treatment of ocular pathologies. The properties of polysaccharides can be extensively modified to optimize ocular drug formulations and to obtain biocompatible and biodegradable drugs with improved bioavailability and tailored pharmacological effects. This review discusses the available polysaccharide choices for overcoming the difficulties associated with ocular drug delivery, and it explores the reasons for the dependence between the physicochemical properties of polysaccharide-based drug carriers and their efficiency in different formulations and applications. Polysaccharides will continue to be of great interest to researchers endeavoring to develop ophthalmic drugs with improved effectiveness and safety.
Collapse
Affiliation(s)
- Natallia Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Daria Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Sergei Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| | - Arto Urtti
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| |
Collapse
|
126
|
Gupta A, Nayak K, Misra M. Cow ghee fortified ocular topical microemulsion; in vitro, ex vivo, and in vivo evaluation. J Microencapsul 2019; 36:603-621. [DOI: 10.1080/02652048.2019.1662121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Aashu Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Kritika Nayak
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Manju Misra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| |
Collapse
|
127
|
Nagai N, Nezhad ZK, Daigaku R, Saijo S, Song Y, Terata K, Hoshi A, Nishizawa M, Nakazawa T, Kaji H, Abe T. Transscleral sustained ranibizumab delivery using an episcleral implantable device: Suppression of laser-induced choroidal neovascularization in rats. Int J Pharm 2019; 567:118458. [PMID: 31247277 DOI: 10.1016/j.ijpharm.2019.118458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
Successful treatment of age-related macular diseases requires an effective controlled drug release system with less invasive route of administration in the eye to reduce the burden of frequent intravitreal injections for patients. In this study, we developed an episcleral implantable device for sustained release of ranibizumab, and evaluated its efficacy on suppression of laser-induced choroidal neovascularization (CNV) in rats. We tested both biodegradable and non-biodegradable sheet-type devices consisting of crosslinked gelatin/chitosan (Gel/CS) and photopolymerized poly(ethyleneglycol) dimethacrylate that incorporated collagen microparticles (PEGDM/COL). In vitro release studies of FITC-labeled albumin showed a constant release from PEGDM/COL sheets compared to Gel/CS sheets. The Gel/CS sheets gradually biodegraded in the sclera during the 24-week implantation; however, the PEGDM/COL sheets did not degrade. FITC-albumin was detected in the retina during 18 weeks implantation in the PEGDM/COL sheet-treated group, and was detected in the Gel/CS sheet-treated group during 6 weeks implantation. CNV was suppressed 18 weeks after application of ranibizumab-loaded PEGDM/COL sheets compared to a placebo PEGDM/COL sheet-treated group, and to the intravitreal ranibizumab-injected group. In conclusion, the PEGDM/COL sheet device suppressed CNV via a transscleral administration route for 18 weeks, indicating that prolonged sustained ranibizumab release could reduce the burden of repeated intravitreal injections.
Collapse
Affiliation(s)
- Nobuhiro Nagai
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Zhaleh Kashkouli Nezhad
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Reiko Daigaku
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Saaya Saijo
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuanhui Song
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiko Terata
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Ayako Hoshi
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
128
|
Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today 2019; 24:1679-1684. [PMID: 31175955 PMCID: PMC6708448 DOI: 10.1016/j.drudis.2019.05.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 01/21/2023]
Abstract
Drug delivery to the posterior segment of the eye remains challenging even though the eye is readily accessible. Its unique and complex anatomy and physiology contribute to the limited options for drug delivery via non-invasive topical treatment, which is the prevalent ophthalmic treatment. To treat the most common retinal diseases, intravitreal (IVT) injection has been a common and effective therapy. With the advancement of nanotechnologies, novel formulations and drug delivery systems are being developed to treat posterior segment diseases. Here, we discuss the recent advancement in ocular delivery systems, including-sustained release formulations, IVT implants, and preclinical topical formulations, and the challenges faced in their clinical translation.
Collapse
Affiliation(s)
- Fernando J Cabrera
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel C Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kartik Reddy
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Crystal S Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
129
|
Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration Enhancers in Ocular Drug Delivery. Pharmaceutics 2019; 11:E321. [PMID: 31324063 PMCID: PMC6681039 DOI: 10.3390/pharmaceutics11070321] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 100 recognized disorders of the eye. This makes the development of advanced ocular formulations an important topic in pharmaceutical science. One of the ways to improve drug delivery to the eye is the use of penetration enhancers. These are defined as compounds capable of enhancing drug permeability across ocular membranes. This review paper provides an overview of anatomical and physiological features of the eye and discusses some common ophthalmological conditions and permeability of ocular membranes. The review also presents the analysis of literature on the use of penetration-enhancing compounds (cyclodextrins, chelating agents, crown ethers, bile acids and bile salts, cell-penetrating peptides, and other amphiphilic compounds) in ocular drug delivery, describing their properties and modes of action.
Collapse
Affiliation(s)
- Roman V Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Peter W J Morrison
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Fraser Steele
- MC2 Therapeutics, James House, Emlyn Lane, Leatherhead KT22 7EP, UK
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK.
| |
Collapse
|
130
|
Current Approaches to Use Cyclodextrins and Mucoadhesive Polymers in Ocular Drug Delivery—A Mini-Review. Sci Pharm 2019. [DOI: 10.3390/scipharm87030015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ocular drug delivery provides a challenging opportunity to develop optimal formulations with proper therapeutic effects and acceptable patient compliance because there are many restricting factors involved, such as complex anatomical structures, defensive mechanisms, rapid drainage, and applicability issues. Fortunately, recent advances in the field mean that these problems can be overcome through the formulation of innovative ophthalmic products. Through the addition of solubility enhancer cyclodextrin derivatives and mucoadhesive polymers, the permeability of active ingredients is improved, and retention time is increased in the ocular surface. Therefore, preferable efficacy and bioavailability can be achieved. In this short review, the authors describe the theoretical background, technological possibilities, and the current approaches in the field of ophthalmology.
Collapse
|
131
|
Solanki A, Smalling R, Parola AH, Nathan I, Kasher R, Pathak Y, Sutariya V. Humanin Nanoparticles for Reducing Pathological Factors Characteristic of Age-Related Macular Degeneration. Curr Drug Deliv 2019; 16:226-232. [PMID: 30381074 DOI: 10.2174/1567201815666181031163111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Humanin is a novel neuronal peptide that has displayed potential in the treatment of Alzheimer's Disease through the suppression of inflammatory IL-6 cytokine receptors. Such receptors are found throughout the body, including the eye, suggesting its other potential applications. Age-related Macular Degeneration (AMD) is the leading cause of blindness in the developing world. There is no cure for this disease, and current treatments have several negative side effects associated with them, making finding other treatment options desirable. OBJECTIVE In this study, the potential applications in treating AMD for a more potent humanin derivative, AGA-HNG, were studied. METHODS AGA-HNG was synthesized and encapsulated in chitosan Nanoparticles (NPs), which were then characterized for their size, Encapsulation Efficiency (EE), and drug release. Their ability to suppress VEGF secretion and protect against oxidative apoptosis was studied in vitro using ARPE-19 cells. The chitosan NPs exhibited similar anti-VEGF properties and oxidative protection as the free protein while exhibiting superior pharmaceutical characteristics including biocompatibility and drug release. RESULTS Drug-loaded NPs exhibited a radius of 346nm with desirable pharmacokinetic properties including a stable surface charge (19.5 ± 3.7 mV) and steady drug release capacity. AGA-HNG showed great promise in mediating apoptosis in hypoxic cells. They were also able to significantly reduce VEGF expression in vitro with reduced cellular toxicity compared to the free drug. CONCLUSION The ability of this drug delivery system to reduce retinal apoptosis with desirable pharmacokinetic and biocompatible properties makes this a promising therapeutic option for AMD.
Collapse
Affiliation(s)
- Aum Solanki
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,USF Morsani College of Medicine, University of South Florida, Tampa, FL 33647, United States
| | - Rudy Smalling
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| | - Abraham H Parola
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boquer Campus, Beersheba, 8499000, Israel
| | - Yashwant Pathak
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| |
Collapse
|
132
|
Schlesinger EB, Bernards DA, Chen HH, Feindt J, Cao J, Dix D, Romano C, Bhisitkul RB, Desai TA. Device design methodology and formulation of a protein therapeutic for sustained release intraocular delivery. Bioeng Transl Med 2019; 4:152-163. [PMID: 30680326 PMCID: PMC6336666 DOI: 10.1002/btm2.10121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/28/2022] Open
Abstract
Despite years of effort, sustained delivery of protein therapeutics remains an unmet need due to three primary challenges - dose, duration, and stability. The work presented here provides a design methodology for polycaprolactone reservoir-based thin film devices suitable for long-acting protein delivery to the back of the eye. First, the challenge of formulating highly concentrated protein in a device reservoir was addressed by improving stability with solubility-reducing excipients. Next, predictive correlations between design parameters and device performance were developed to provide a methodology to achieve a target product profile. Prototype devices were designed using this methodology to achieve desired device size, release rate, therapeutic payload, and protein stability, assessed by in vitro studies. Finally, prototype tolerability was established in a non-human primate model. The design methodology presented here is widely applicable to reservoir-based sustained delivery devices for proteins and provides a general device design framework.
Collapse
Affiliation(s)
- Erica B. Schlesinger
- Graduate Program in BioengineeringUniversity of CaliforniaSan FranciscoCA 94158
- Formulation Development GroupRegeneron PharmaceuticalsTarrytownNY 10591
| | - Daniel A. Bernards
- Dept. of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCA 94158
| | - Hunter H. Chen
- Formulation Development GroupRegeneron PharmaceuticalsTarrytownNY 10591
| | - James Feindt
- Formulation Development GroupRegeneron PharmaceuticalsTarrytownNY 10591
| | - Jingtai Cao
- Ophthalmology ResearchRegeneron PharmaceuticalsTarrytownNY 10591
| | - Daniel Dix
- Formulation Development GroupRegeneron PharmaceuticalsTarrytownNY 10591
| | - Carmelo Romano
- Ophthalmology ResearchRegeneron PharmaceuticalsTarrytownNY 10591
| | | | - Tejal A. Desai
- Graduate Program in BioengineeringUniversity of CaliforniaSan FranciscoCA 94158
- Dept. of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCA 94158
| |
Collapse
|