101
|
Ghafouri-Fard S, Shoorei H, Hussen BM, Dong P, Zhai T, Taheri M, Samadian M. The significance of N6-methyladenosine-modified non-coding RNAs in different disorders. Eur J Pharmacol 2023; 946:175644. [PMID: 36921707 DOI: 10.1016/j.ejphar.2023.175644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
N6-methyladenosine (m6A) is the most widespread endogenous modification affecting the expression of eukaryotic mRNA transcripts. Recent studies have shown that the m6A marks within non-coding RNAs can affect their functions and expression in a manner similar to that of mRNA-coding genes. Since non-coding RNAs are involved in the pathophysiology of several disorders, identification of the role of m6A marks in the regulation of expression of non-coding RNAs can open a new era for identifying underlying mechanisms of several disorders and designing novel therapeutic modalities for a variety of disorders, particularly cancers. Moreover, a number of non-coding RNAs can affect m6A levels. In the current review, we discuss the impacts of m6A marks on the expression of non-coding RNAs in the context of different disorders, such as bone, gastrointestinal, neurologic, renal, pulmonary, hepatic and other disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tianyue Zhai
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
102
|
Makler A, Asghar W. Exosomal miRNA Biomarker Panel for Pancreatic Ductal Adenocarcinoma Detection in Patient Plasma: A Pilot Study. Int J Mol Sci 2023; 24:ijms24065081. [PMID: 36982154 PMCID: PMC10049393 DOI: 10.3390/ijms24065081] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming one of the leading causes of cancer-related deaths in the United States, and with its high mortality rate, there is a pressing need to develop sensitive and robust methods for detection. Exosomal biomarker panels provide a promising avenue for PDAC screening since exosomes are highly stable and easily harvested from body fluids. PDAC-associated miRNAs packaged within these exosomes could be used as diagnostic markers. We analyzed a series of 18 candidate miRNAs via RT-qPCR to identify the differentially expressed miRNAs (p < 0.05, t-test) between plasma exosomes harvested from PDAC patients and control patients. From this analysis, we propose a four-marker panel consisting of miR-93-5p, miR-339-3p, miR-425-5p, and miR-425-3p with an area under the curve (AUC) of the receiver operator characteristic curve (ROC) of 0.885 with a sensitivity of 80% and a specificity of 94.7%, which is comparable to the CA19-9 standard PDAC marker diagnostic.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence:
| |
Collapse
|
103
|
Bostanshirin N, Hajikhani B, Vaezi AA, Kermanian F, Sameni F, Yaslianifard S, Goudarzi M, Dadashi M. Association between colorectal cancer and expression levels of miR-21, miR-17-5P, miR-155 genes and the presence of Fusobacterium nucleatum in biopsy samples obtained from Iranian patients. Infect Agent Cancer 2023; 18:14. [PMID: 36859379 PMCID: PMC9979415 DOI: 10.1186/s13027-023-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered the second-deadliest and third-most common malignancy worldwide. Studying the carcinogenic mechanism of bacteria or their role in aggravating cancer can be precious. Fusobacterium nucleatum (F. nucleatum) is one of the important bacteria in the occurrence and spread of CRC. In this study, we investigated the expression levels of miR-21, miR-17-5P, miR-155, and the relative frequency of F. nucleatum in biopsy samples from patients with CRC. METHOD DNA and RNA samples were extracted using a tissue extraction kit, and then cDNAs were synthesized using a related kit. Based on the sequence of miR-17-5P, miR-21, and miR-155 genes, F. nucleatum specific 16srRNA and bacterial universal16srRNA specific primers were selected, and the expression levels of the target genes were analyzed using the Real-Time PCR method. RESULTS The expression level of miR-21, miR-17-5P, and miR-155 genes showed a significant increase in the cancer group. Also, the expression of the mentioned miRNAs was significantly raised in the positive samples for F. nucleatum presence. The relative frequency of F. nucleatum in the cancer group was significantly increased compared to the control group. CONCLUSION Due to the changes in the expression of genes involved in causing CRC in the presence of F. nucleatum, it is possible to prompt identification and provide therapeutic solutions to cancer patients by studying their microbial profiles and the expression changes of different selected genes.
Collapse
Affiliation(s)
- Nazila Bostanshirin
- grid.411705.60000 0001 0166 0922Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahareh Hajikhani
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Vaezi
- grid.411705.60000 0001 0166 0922Department of Internal Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Kermanian
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Sameni
- grid.412501.30000 0000 8877 1424Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Somayeh Yaslianifard
- grid.411705.60000 0001 0166 0922Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Goudarzi
- grid.411600.2Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran. .,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
104
|
Mao H, Cao Y, Zou Z, Xia J, Zhao J. An enzyme-powered microRNA discriminator for the subtype-specific diagnosis of breast cancer. Chem Sci 2023; 14:2097-2106. [PMID: 36845930 PMCID: PMC9944337 DOI: 10.1039/d3sc00090g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Breast cancer, a disease with highly heterogeneous features, is the most common malignancy diagnosed in people worldwide. Early diagnosis of breast cancer is crucial for improving its cure rate, and accurate classification of the subtype-specific features is essential to precisely treat the disease. An enzyme-powered microRNA (miRNA, RNA = ribonucleic acid) discriminator was developed to selectively distinguish breast cancer cells from normal cells and further identify subtype-specific features. Specifically, miR-21 was used as a universal biomarker to discriminate between breast cancer cells and normal cells, and miR-210 was used to identify triple-negative subtype features. The experimental results demonstrated that the enzyme-powered miRNA discriminator displayed low limits of detection at fM levels for both miR-21 and miR-210. Moreover, the miRNA discriminator enabled the discrimination and quantitative determination of breast cancer cells derived from different subtypes based on their miR-21 levels, and the further identification of the triple-negative subtype in combination with the miR-210 levels. Therefore, it is hoped that this study will provide insight into subtype-specific miRNA profiling, which may have potential use in the clinical management of breast tumours based on their subtype characteristics.
Collapse
Affiliation(s)
- Huiru Mao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University Shanghai 200444 P. R. China
| | - Ya Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing UniversityNanjing 210023P. R. China
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University Shanghai 200444 P. R. China
| | - Jianan Xia
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University Shanghai 200444 P. R. China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
105
|
Lu Q, Xie L, Yin S, Chen F, Wu C, Liu M, Li H, Zhang Y. Ultrasensitive detection of microRNA-10b through target-triggered catalytic hairpin assembly and upconversion nanoparticles-based luminescence resonance energy transfer. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
106
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
107
|
Aalami AH, Abdeahad H, Aalami F, Amirabadi A. Can microRNAs be utilized as tumor markers for recurrence following nephrectomy in renal cell carcinoma patients? A meta-analysis provides the answer. Urol Oncol 2023; 41:52.e1-52.e10. [PMID: 36280530 DOI: 10.1016/j.urolonc.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is an aggressive tumor. Many studies investigated microRNAs (miRs) as RCC prognostic biomarkers, often reporting inconsistent findings. We present a meta-analysis to identify if tissue-derived miRs can be used as a prognostic factor in patients after nephrectomy. METHODS Data were obtained from PubMed, Embase, and Web of Science. The hazard ratio with 95% confidence intervals assessed the prognostic value of microRNAs. Outcomes of interest included the prognosis role of microRNAs in overall survival (OS), recurrence-free survival (RFS), and cancer-specific survival (CSS) in nephrectomy patients. RESULTS Nine retrospective studies that evaluated microRNAs in 1,541 nephrectomy patients were collected. There were heterogeneities across studies for microRNAs in the 15 studies examining OS, RFS, and CSS (I2 = 84.51%; P < 0.01); the random-effect model was calculated (HR = 1.371; (95% CI: 0.831-2.260); P = 0.216). CONCLUSION Our study indicated that miRNAs cannot be used as a marker for recurrence in RCC patients after nephrectomy, and researchers shouldn't make the mistake that if miRs can be used as a biomarker in RCC, they cannot be used as a marker after nephrectomy in RCC. As all of these findings were from retrospective studies, further studies are needed to verify the role of microRNAs in clinical trials.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir Amirabadi
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
108
|
Fan Z, Zhao X, Dong Y, Zhou J, Li Y, Wang J, Qi Y, Tan C, Yu H, Li J. Protein-free, ultrasensitive miRNA analysis based on an entropy-driven catalytic reaction switched on a smart-responsive DNAzyme dual-walker amplification strategy. Int J Biol Macromol 2022; 223:931-938. [PMID: 36372107 DOI: 10.1016/j.ijbiomac.2022.11.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs), useful biomarkers for cancer diagnosis, play an important role in tumorigenesis and progression, but many of the current analysis methods can suffer from excessive protease dependence, being time-consuming and unsatisfactory performance. Therefore, a reliable sensing strategy for the protein-free, ultrasensitive analysis of tumor-associated miRNAs is desired. The proposed dual-walker biosensing strategy based on an entropy-driven catalytic (EDC) walker coupled with a smart-responsive DNAzyme walker was demonstrated for the dual-amplification detection of miRNA-21. Namely, the target miRNA-21 initiates the three-stranded substrate complex of the traditional EDC circuit to release the input trigger of the Dz walker, which recognizes the circular binding domain to restore the cleavage activity of the DzS-AuNP walker. The fluorescence signal continuously released from the AuNPs was recorded by a fluorescence reader for miRNA-21 sensing. The optimized dual-walker exhibited appreciable sensitivity with a detection limit of 70 fM, satisfactory flexibility, fine specificity and ideal stability for clinical serum sample assays. The proposed strategy may open a new avenue for the development of powerful DNA molecular tools for cancer diagnosis.
Collapse
Affiliation(s)
- Zhichao Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Zhou
- Department of Laboratory Medicine, Xingcheng Special Service Sanatorium of Strategic Support Force, Huludao 125100, China
| | - Yingxue Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junyi Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuchen Qi
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Congcong Tan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
109
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Hatamian S, Taheri M, Kiani A. A review on the role of miR-671 in human disorders. Front Mol Biosci 2022; 9:1077968. [PMID: 36545507 PMCID: PMC9760869 DOI: 10.3389/fmolb.2022.1077968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
miR-671 is encoded by a gene on 7q36.1 and contributes to the pathogenesis of a variety of disorders, including diverse types of cancers, atherosclerosis, ischemic stroke, liver fibrosis, osteoarthritis, Parkinson's disease, rheumatoid arthritis, acute myocardial infarction and Crohn's disease. In the context of cancer, different studies have revealed opposite roles for this miRNA. In brief, it has been shown to be down-regulated in pancreatic ductal carcinoma, ovarian cancer, gastric cancer, osteosarcoma, esophageal squamous cell carcinoma and myelodysplastic syndromes. Yet, miR-671 has been up-regulated in glioma, colorectal cancer, prostate cancer and hepatocellular carcinoma. Studies in breast, lung and renal cell carcinoma have reported inconsistent results. The current review aims at summarization of the role of miR-671 in these disorders focusing on its target mRNA in each context and dysregulated signaling pathways. We also provide a summary of the role of this miRNA as a prognostic factor in malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq,Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Sevak Hatamian
- Department of Anesthesia, Shahid Madani Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| |
Collapse
|
110
|
Non-coding RNAs in breast cancer: Implications for programmed cell death. Cancer Lett 2022; 550:215929. [DOI: 10.1016/j.canlet.2022.215929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
111
|
Downregulation of hsa-miR-135b-5p Inhibits Cell Proliferation, Migration, and Invasion in Colon Adenocarcinoma. Genet Res (Camb) 2022; 2022:2907554. [PMID: 36407085 PMCID: PMC9640266 DOI: 10.1155/2022/2907554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/08/2022] [Indexed: 01/11/2023] Open
Abstract
Colon cancer is the most common malignant tumor of the gastrointestinal tract, and approximately 80%-90% of colon cancers are colon adenocarcinomas (COADs). This study aimed to screen key microRNAs (miRNAs) associated with COAD. Differentially expressed (DE) miRNAs were screened between COAD and adjacent cancer samples based on the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas obtained from datasets. The miRNAs of interest were validated using quantitative real-time polymerase chain reaction. Moreover, the effects of hsa-miR-135b-5p on the biological behavior of COAD cells were observed. To obtain the target genes of hsa-miR-135b-5p, transcriptome sequencing of the SW480 cells was performed, followed by protein-protein interaction (PPI) network and hsa-miR-135b-5p-target gene regulatory network construction and prognostic analysis. Downregulation of hsa-miR-135b-5p significantly inhibited SW480 cell proliferation, migration, and invasion and significantly facilitated apoptosis (P < 0.05). A total of 3384 DEmRNAs were screened, and enrichment analysis showed that the upregulated mRNAs were enriched in 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 326 Gene Ontology Biological Processes (GO-BPs) while the downregulated mRNAs were enriched in 20 KEGG pathways and 276 GO-BPs. A PPI network was then constructed, and H2BC14, H2BC3, and H4C11 had a higher degree. In addition, a total of 352 hsa-miR-135b-5p-gene regulatory relationships were identified. Prognostic analysis showed that FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B had prognostic significance (P < 0.05). In addition, the validation analysis results showed that FOXN2, NSA2, and DESI1 were significantly expressed between the miR-135b-5p-inhibitor and negative control groups (P < 0.05). Therefore, downregulation of hsa-miR-135b-5p inhibits cell proliferation, migration, and invasion in COAD, and carcinogenesis may function by targeting FOXN2, NSA2, MYCBP, DIRAS2, DESI1, and RAB33B.
Collapse
|
112
|
Ahmed R, Samanta S, Banerjee J, Kar SS, Dash SK. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100131. [PMID: 36568259 PMCID: PMC9780070 DOI: 10.1016/j.crphar.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Over the past few decades, thyroid cancer has become one of the most common types of endocrine cancer, contributing to an increase in prevalence. In the year 2020, there were 586,202 newly diagnosed cases of thyroid cancer around the world. This constituted approximately 3.0% of all patients diagnosed with cancer. The World Health Organization reported that there will be 2.3 million women receiving treatment for breast cancer in 2020, with 685,000. Despite the fact that carcinoma is one of the world's leading causes of death, there is still a paucity of information about its biology. MicroRNAs (miRNAs; miRs) are non-coding RNAs that can reduce gene expression by cleaving the 3' untranslated regions of mRNA. These factors make them a potential protein translation inhibitor. Diverse biological mechanisms implicated in the genesis of cancer are modulated by miRNA. The investigation of global miRNA expression in cancer showed regulatory activity through up regulation and down-regulation in several cancers, including thyroid cancer and breast cancer. In thyroid cancer, miRNA influences several cancers related signaling pathways through modulating MAPK, PI3K, and the RAS pathway. In breast cancer, the regulatory activity of miRNA was played through the cyclin protein family, protein kinases and their inhibitors, and other growth promoters or suppressors, which modulated cell proliferation and cell cycle progression. This article's goal is to discuss key miRNA expressions that are involved in the development of thyroid and breast cancer as well as their therapeutic manipulation for these two specific cancer types.
Collapse
Affiliation(s)
- Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Suvrendu Sankar Kar
- Department of Medicine, R.G.Kar Medical College and Hospital, Kolkata, 700004, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India,Corresponding author.
| |
Collapse
|
113
|
Luo X, Wu H, Xiong M, Jiang L, Jiang Z, Gong M. Split-DNAzyme cooperating primer exchange reaction for sensitive miRNA detection. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractSensitive quantification of microRNA (miRNA) plays a crucial role in early diagnosis and precise therapy of osteosarcoma. Herein, we build a label-free and sensitive miRNA quantification approach based on the activation of split-DNAzyme initiated primer exchange reaction (PER). Target miRNA cooperates the activation of split-DNAzyme with Mg2+ through assisting the assembly of DNAzyme to correct conformation, which enables the performance of PER-based nucleic acids amplification to produce a large amount of single-strand DNA (ssDNA) sequences. The G-quadruplexes (G4) in ssDNA sequences products bind with N-methyl mesoporphyrin IX (NMM) to form G4-NMM complex with the enhanced fluorescence respond. The results demonstrate that miRNA-21 can assist the activation of split-DNAzyme, and the active DNAzyme exhibits a high specificity and efficiency in inducing the subsequent PER. Based on the split-DNAzyme-assisted signal recycle and PER, the method eventually shows a high sensitivity and selectivity, providing a promising prospect for the for early stage tumor diagnosis and more precise tumor therapy.
Collapse
|
114
|
Luo Y, Hu S, Wang F, Yang J, Gong D, Xu W, Xu X, Min L. miR-137 represses migration and cell motility by targeting COX-2 in non-small cell lung cancer. Transl Cancer Res 2022; 11:3803-3813. [PMID: 36388045 PMCID: PMC9641119 DOI: 10.21037/tcr-22-2177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 09/15/2023]
Abstract
BACKGROUND Lung cancer is a common malignant tumor, with, non-small cell lung cancer (NSCLC) accounting for about 80-85% of cases. This study investigated the expression of miR-137 in NSCLC tissues and cells and its effects on the migration and invasion of NSCLC cells and related mechanisms. METHODS We collected the neoplastic and paracancerous tissues of NSCLC patients, detected the expression of miR-137 in NSCLC tissues and cell lines by real-time quantitative polymerase chain reaction (RT-qPCR), and analyzed the correlation between miR-137 expression and the clinicopathological features and survival of NSCLC. Following transfection with miR-137 mimic or inhibitor in NSCLC cell lines (A549 or H1299) to upregulate or downregulate the expression of miR-137, transwell assay was employed to detect the effects of miR-137 on migration or invasion. Online software was employed to predict and analyze the target gene of miR-137, and luciferase reporter gene system was adopted to validate it. The effects of miR-137 on the expressions of COX-2 and Epithelial-Mesenchymal Transition (EMT) related proteins were investigated by Western blot. RESULTS Compared to paracancerous tissues and BEAS-2B cells, the expressions of miR-137 in NSCLC tissues, A549 and H1299 cells were dramatically down-regulated (P<0.01). After transfection with miR-137 mimic or inhibitor in A549 and H1299 cells, the miR-137 expressions were markedly up-regulated or down-regulated (P<0.01), respectively. The number of migrating or invading cells was observably decreased or increased (P<0.01) after transfected with mimic or inhibitor, respectively, while relative luciferase activity was evidently decreased in cells co-transfected with miR-137 mimic and wild type recombined vector of 3'UTR of COX-2. While the expressions of COX-2 and E-cadherin were both substantially reduced in A549 cells treated with miR-137 mimic, that of vimentin was substantially raised. The expression of miR-137 correlated with smoking history, lymph node metastasis, and TNM clinical stage, and patients with high miR-137 expression had apparent longer survival. CONCLUSIONS The expression of miR-137 was significantly down-regulated in NSCLC tissues and cells, and correlated with NSCLC progress. miR-137 suppressed the migration and invasion of NSCLC cells through regulating EMT relative proteins by targeting COX-2. miR-137 is expected to become a novel biomarker and therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Yutu Luo
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Taizhou Second People’s Hospital, Medical School of Yangzhou University, Taizhou, China
| | - Suwei Hu
- Medical Genetic Center, Affiliated Yangzhou Women and Children Hospital, Medical School of Yangzhou University, Yangzhou, China
| | - Fang Wang
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Junjun Yang
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Daohui Gong
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Wenjing Xu
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xingxiang Xu
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Lingfeng Min
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
115
|
Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis 2022; 13:834. [PMID: 36171196 PMCID: PMC9519946 DOI: 10.1038/s41419-022-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/23/2023]
Abstract
Non-coding RNAs (ncRNAs) are a group of RNA molecules, such as small nucleolar RNAs, circular RNAs (circRNAs), microRNAs (miRNAs) and long-noncoding RNAs (ncRNAs), that do not encode proteins. Although their biofunctions are not well-understood, many regulatory ncRNAs appear to be highly involved in regulating the transcription and translation of several genes that have essential biological roles including cell differentiation, cell death, metabolism, tumorigenesis and so on. A growing number of studies have revealed the associations between dysregulated ncRNAs and caspases involved in cell death in numerous human diseases. As one of the initiator and executor caspases, caspase-2 is the most evolutionally conserved caspase in mammals, exerting both apoptotic and non-apoptotic functions. A great deal of studies has shown the involvement of caspase-2 as a tumor suppressor in multiple oncogene-driven cancers, and yet a comprehensive understanding of its biological roles remains largely unknown. In this review, we highlight a compilation of studies focused on the interaction between caspase-2 and miRNAs/lncRNAs in the context of different diseases in order to deepen our knowledge on the regulatory biofunctions of caspase-2 and, furthermore, provide more insight into understanding the role that ncRNAs/caspase-2 axis plays in the development of human diseases.
Collapse
Affiliation(s)
- Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
116
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
117
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. miR-1908: a microRNA with diverse functions in cancers and non-malignant conditions. Cancer Cell Int 2022; 22:281. [PMID: 36100870 PMCID: PMC9469614 DOI: 10.1186/s12935-022-02709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are small-sized transcripts with about 22 nucleotide length. They have been shown to influence almost every aspect of cellular functions through regulation of expression of target genes. miR-1908 is a miRNA with diverse roles in human disorders. This miRNA is encoded by MIR1908 gene on chr11:61,815,161-61,815,240, minus strand. Expression assays have confirmed dysregulation of miR-1908 in cancer-derived cell lines in addition to biological samples obtained from patients affected with cancer. In most assessed cell lines, miR-1908 has an oncogenic role. However, this miRNA has been shown to act as a tumor suppressor in chordoma, lung cancer and ovarian cancer. In addition, several lines of evidence have shown involvement of this miRNA in the pathoetiology of bipolar disorder, myocardial infarction, obesity, renal fibrosis, rheumatoid arthritis and scar formation. In the current review, we elucidate the results of diverse studies which evaluated participation of miR-1908 in these conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
118
|
Yousefnia S. A comprehensive review on miR-153: Mechanistic and controversial roles of miR-153 in tumorigenicity of cancer cells. Front Oncol 2022; 12:985897. [PMID: 36158686 PMCID: PMC9500380 DOI: 10.3389/fonc.2022.985897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
miRNAs play a crucial role in regulating genes involved in cancer progression. Recently, miR-153 has been mainly well-known as a tumor suppressive miRNA modulating genes in proliferation, metastasis, EMT, angiogenesis and drug resistance ability of a variety types of cancer. Mechanistic activity of miR-153 in tumorigenicity has not been fully reviewed. This manuscript presents a comprehensive review on the tumor suppressive activity of miR-153 as well as introducing the controversial role of miR-153 as an oncogenic miRNA in cancer. Furthermore, it summarizes all potential non-coding RNAs such as long non-coding RNAs (LncRNAs), transcribed ultra-conserved regions (T-UCRs) and circular RNAs (CircRNAs) targeting and sponging miR-153. Understanding the critical role of miR-153 in cell growth, metastasis, angiogenesis and drug resistance ability of cancer cells, suggests miR-153 as a potential prognostic biomarker for detecting cancer as well as providing a novel treatment strategy to combat with several types of cancer.
Collapse
|
119
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
120
|
Treatment Response Predictors of Neoadjuvant Therapy for Locally Advanced Gastric Cancer: Current Status and Future Perspectives. Biomedicines 2022; 10:biomedicines10071614. [PMID: 35884916 PMCID: PMC9312565 DOI: 10.3390/biomedicines10071614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (LAGC) has been recognized as an effective therapeutic option because it is expected to improve the curative resection rate by reducing the tumor size and preventing recurrence of micrometastases. However, for patients resistant to NAC, not only will operation timing be delayed, but they will also suffer from side effects. Thus, it is crucial to develop a comprehensive strategy and select patients sensitive to NAC. However, the therapeutic effect of NAC is unpredictable due to tumor heterogeneity and a lack of predictive biomarkers for guiding the choice of optimal preoperative treatment in clinical practice. This article summarizes the related research progress on predictive biomarkers of NAC for gastric cancer. Among the many investigated biomarkers, metabolic enzymes for cytotoxic agents, nucleotide excision repair, and microsatellite instability, have shown promising results and should be assessed in prospective clinical trials. Noninvasive liquid biopsy detection, including miRNA and exosome detection, is also a promising strategy.
Collapse
|
121
|
Ahmadpour F, Igder S, Babaahmadi-Rezaei H, Khalili E, Kanani M, Soleimani V, Mohammadzadeh G. Methylation-mediated silencing of miR-125a-5p facilitates breast cancer progression by inducing autophagy. Mol Biol Rep 2022; 49:6325-6339. [PMID: 35486286 DOI: 10.1007/s11033-022-07440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND microRNA-125a-5p (miR-125a) is a tumor suppressor gene whose role in autophagy remains poorly understood. In the current study, we aimed to investigate the methylation status of miR-125a, its transfection into SK-BR3 cells, and its effects on autophagy. METHODS Sixty samples of tumor and non-tumor adjacent tissue were collected and the methylation status of miR-125a was evaluated by methylation-specific PCR (MSP). The effect of 5-Aza-dC on miR-125a expression was investigated in the SK-BR3 cells. Cells were also transfected with miR-125a mimic/antimiR. The expression of miR-125a and its target genes was evaluated by Real-Time PCR. Protein levels of ATG5 and LC3 were assessed by Western blotting. HER2 expression was investigated by immunocytochemistry (ICC). RESULTS The data showed that the miR-125a promoter CpG Island was significantly hypermethylated in breast cancer tissues (p < 0.01) and in SK-BR3 cells. The 5-Aza-dC could significantly increase miR-125a expression by decreasing its methylation (p < 0.05). In addition, Western blot analysis indicated the expression of ATG5 and LC3 II/ LC3I, as autophagy biomarkers, was significantly reduced in SK-BR3 cells transfected with miR-125a (p < 0.05). CONCLUSIONS Our data showed miR-125a expression was significantly decreased in tumor tissues due to its promoter hypermethylation. Overexpression of miR-125a was associated with a reduction in autophagy, which could provide a new therapeutic avenue for advanced-stage breast cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Ahmadpour
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Malek Kanani
- Department of Pathology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Soleimani
- Department of Pathology, Cancer Institute, Imam Khomeini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Mohammadzadeh
- Department of Clinical Biochemistry, School of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
122
|
Marin J, Journe F, Ghanem GE, Awada A, Kindt N. Cytokine Landscape in Central Nervous System Metastases. Biomedicines 2022; 10:biomedicines10071537. [PMID: 35884845 PMCID: PMC9313120 DOI: 10.3390/biomedicines10071537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood–brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut–brain axis on cytokine release during this process will also be addressed.
Collapse
Affiliation(s)
- Julie Marin
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Laboratory of Human Anatomy and Experimental Oncology, Institut Santé, Université de Mons (UMons), 7000 Mons, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Nadège Kindt
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Correspondence:
| |
Collapse
|
123
|
Liu Y, Chen P, Qi D, Chen L. Glaucocalyxin A Inhibits the Malignancies of Gastric Cancer Cells by Downregulating MDM2 and RNF6 via MiR-3658 and the SMG1-UPF mRNA Decay Pathway. Front Oncol 2022; 12:871169. [PMID: 35814430 PMCID: PMC9258495 DOI: 10.3389/fonc.2022.871169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) ranks as the most common gastrointestinal cancer and is among the leading causes of cancer death worldwide. Glaucocalyxin A (GLA), an entkauranoid diterpene isolated from Rab-dosia japonica var., possesses various bioactivities. To date, the data on the effect of GLA on GC are still minimal, and the molecular mechanisms remain largely unknown. Herein, we found that GLA could significantly inhibit the proliferation, cell adhesion, and invasion of HGT-1, SNU-1, SNU-6, and NCI-N87 GC cells in a dose-dependent manner. GLA enhanced the apoptosis of the GC cells as evidenced by the increased caspase-3 activity and the elevated levels of cleaved caspase-3 and cleaved PARP in GC cells in the presence of GLA. We then showed that the downregulation of Murine Double Minute Clone 2 (MDM2) and Ring Finger Protein 6 (RNF6) by GLA was implicated in the GLA-induced inhibition of the GC cells. Furthermore, MDM2 and RNF6 were identified as the targets of miR-3658 that was downregulated in the GC cells and upregulated by GLA. Moreover, it was shown that miR-3658 was hypermethylated in the GC cells, and GLA could rescue the expression of miR-3658 via demethylation by abrogating EZH2-mediated epigenetic silencing. In addition to the miR-3658-MDM2/RNF6 regulatory axis, activation of the SMG1-UPF mRNA decay pathway contributed to the downregulation of MDM2 and RNF6 by GLA in the GC cells. The inhibitory effect of GLA on gastric cancer and the expression of MDM2 and RNF6 was also validated in in vivo study. Our findings suggest that has the therapeutic potential for GC by downregulating oncogenes via posttranscriptional regulation.
Collapse
Affiliation(s)
- Yanqi Liu
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Chen
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Ping Chen,
| | - Daqing Qi
- Department of Medical Affairs, Hangzhou Huqingyu Hall Pharmaceutical Co., Ltd., Hangzhou, China
| | - Linhui Chen
- Department of Medical Affairs, Hangzhou Huqingyu Hall Pharmaceutical Co., Ltd., Hangzhou, China
| |
Collapse
|
124
|
Bi W, Yang M, Xing P, Huang T. MicroRNA miR-331-3p suppresses osteosarcoma progression via the Bcl-2/Bax and Wnt/β-Catenin signaling pathways and the epithelial-mesenchymal transition by targeting N-acetylglucosaminyltransferase I (MGAT1). Bioengineered 2022; 13:14159-14174. [PMID: 35758024 PMCID: PMC9342255 DOI: 10.1080/21655979.2022.2083855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteosarcoma (OS) is a high-grade malignant disease that is a prevalent primary malignant sarcoma of the bone. The purpose of this investigation was to therefore elucidate the association between miR-331-3p and OS development and to identify a potential underlying mechanism. Key genes involved in OS were selected using GSE65071 dataset from the Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interactive Analysis (GEPIA). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted to detect miR-331-3p, MGAT1, the epithelial-mesenchymal transition (EMT), Bcl-2/Bax and Wnt/β-Catenin signaling pathways related proteins. Dual-luciferase reporter assay and TargetScan were used for validating interaction between MGAT1 mRNA and miR-331-3p. Biological effects of miR-331-3p and MGAT1 on OS cells were detected employing MTT, Transwell, wound healing and flow cytometry, respectively. MiR-331-3p was under-expressed in OS, and up-regulation or inhibition of its expression could significantly inhibit or promote the malignant phenotypes of OS cells. Furthermore, we found that MGAT1, a target of miR-331-3p, had elevated expression in OS. Interestingly, MGAT1 could partially alleviate the effect of miR-331-3p in vitro. Collectively, miR-331-3p acts as an critical tumor suppressor through inhibiting MGAT1, results in suppressed Wnt/β-Catenin pathway and decreased proliferation of OS cells; leads to increased apoptosis via Bcl-2/Bax pathway and inhibited migration and invasion ability via the EMT.
Collapse
Affiliation(s)
- Wen Bi
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Mengyue Yang
- Department of Cardiovascular, The First Hospital of China Medical University, Shenyang, China
| | - Pengfei Xing
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Tao Huang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
125
|
Bovine Pancreatic RNase A: An Insight into the Mechanism of Antitumor Activity In Vitro and In Vivo. Pharmaceutics 2022; 14:pharmaceutics14061173. [PMID: 35745743 PMCID: PMC9229056 DOI: 10.3390/pharmaceutics14061173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
In this investigation, we extensively studied the mechanism of antitumor activity of bovine pancreatic RNase A. Using confocal microscopy, we show that after RNase A penetration into HeLa and B16 cells, a part of the enzyme remains unbound with the ribonuclease inhibitor (RI), resulting in the decrease in cytosolic RNAs in both types of cells and rRNAs in the nucleoli of HeLa cells. Molecular docking indicates the ability of RNase A to form a complex with Ku70/Ku80 heterodimer, and microscopy data confirm its localization mostly inside the nucleus, which may underlie the mechanism of RNase A penetration into cells and its intracellular traffic. RNase A reduced migration and invasion of tumor cells in vitro. In vivo, in the metastatic model of melanoma, RNase A suppressed metastases in the lungs and changed the expression of EMT markers in the tissue adjacent to metastatic foci; this increased Cdh1 and decreased Tjp1, Fn and Vim, disrupting the favorable tumor microenvironment. A similar pattern was observed for all genes except for Fn in metastatic foci, indicating a decrease in the invasive potential of tumor cells. Bioinformatic analysis of RNase-A-susceptible miRNAs and their regulatory networks showed that the main processes modulated by RNase A in the tumor microenvironment are the regulation of cell adhesion and junction, cell cycle regulation and pathways associated with EMT and tumor progression.
Collapse
|
126
|
Joint Effects of Cigarette Smoking and Green Tea Consumption with miR-29b and DNMT3B mRNA Expression in the Development of Lung Cancer. Genes (Basel) 2022; 13:genes13050836. [PMID: 35627221 PMCID: PMC9141651 DOI: 10.3390/genes13050836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
In tumor development, increased expression of DNA methyltransferase (DNMT) has been observed. In particular, cigarette smoke and tea polyphenols may influence DNMT3B mRNA expression by regulating microRNA (miR)-29b expression. Herein, we designed a case−control study to evaluate the joint effects of smoking and green tea consumption, with miR-29b and DNMT3B mRNA expression, in lung cancer development. A total of 132 lung cancer patients and 132 healthy controls were recruited to measure miR-29b and DNMT3B mRNA expression in whole blood. Results revealed that lung cancer patients had lower miR-29b expression (57.2 vs. 81.6; p = 0.02) and higher DNMT3B mRNA expression (37.2 vs. 25.8; p < 0.001) than healthy controls. Compared to non-smokers with both higher miR-29b and lower DNMT3B mRNA expression, smokers with both low miR-29b and higher DNMT3B mRNA expression had an elevated risk of lung cancer development (OR 5.12, 95% CI 2.64−9.91). Interactions of smoking with miR-29b or DNMT3B mRNA expression in lung cancer were significant. Interaction of green tea consumption with miR-29b expression and DNMT3B mRNA expression in lung cancer was also significant. Our study suggests that smokers and green tea nondrinkers with lower miR-29b expression and higher DNMT3B mRNA expression are more susceptible to lung cancer development.
Collapse
|
127
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Jamal HH, Taheri M, Hajiesmaeili M. A Comprehensive Review on Function of miR-15b-5p in Malignant and Non-Malignant Disorders. Front Oncol 2022; 12:870996. [PMID: 35586497 PMCID: PMC9108330 DOI: 10.3389/fonc.2022.870996] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
miR-15b-5p is encoded by MIR15B gene. This gene is located on cytogenetic band 3q25.33. This miRNA participates in the pathogenesis of several cancers as well as non-malignant conditions, such as abdominal aortic aneurysm, Alzheimer’s and Parkinson’s diseases, cerebral ischemia reperfusion injury, coronary artery disease, dexamethasone induced steatosis, diabetic complications and doxorubicin-induced cardiotoxicity. In malignant conditions, both oncogenic and tumor suppressor impacts have been described for miR-15b-5p. Dysregulation of miR-15b-5p in clinical samples has been associated with poor outcome in different kinds of cancers. In this review, we discuss the role of miR-15b-5p in malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Hazha Hadayat Jamal
- Department of Biology, College of Education, Salahaddin University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Fellowship, Department of Anesthesiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Mohammadreza Hajiesmaeili,
| |
Collapse
|
128
|
Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in Medicine. Int J Mol Sci 2022; 23:ijms23073996. [PMID: 35409354 PMCID: PMC8999557 DOI: 10.3390/ijms23073996] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating microRNAs (c-microRNAs, c-miRNAs), which are present in almost all biological fluids, are promising sensitive biomarkers for various diseases (oncological and cardiovascular diseases, neurodegenerative pathologies, etc.), and their signatures accurately reflect the state of the body. Studies of the expression of microRNA markers show that they can enable a wide range of diseases to be diagnosed before clinical symptoms are manifested, and they can help to assess a patient’s response to therapy in order to correct and personalize treatments. This review discusses the latest trends in the uses of miRNAs for diagnosing and treating various diseases, viral and non-viral. It is concluded that exogenous microRNAs can be used as high-precision therapeutic agents for these purposes.
Collapse
Affiliation(s)
- Tetiana Pozniak
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
- Correspondence: (T.P.); (D.S.)
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
- Correspondence: (T.P.); (D.S.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
129
|
Sayad A, Najafi S, Hussen BM, Abdullah ST, Movahedpour A, Taheri M, Hajiesmaeili M. The Emerging Roles of the β-Secretase BACE1 and the Long Non-coding RNA BACE1-AS in Human Diseases: A Focus on Neurodegenerative Diseases and Cancer. Front Aging Neurosci 2022; 14:853180. [PMID: 35386116 PMCID: PMC8978056 DOI: 10.3389/fnagi.2022.853180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023] Open
Abstract
The β-Secretase (BACE1) is widely studied to be particularly involved in amyloid deposition, a process known as the pathogenic pathway in neurodegenerative diseases. Therefore, BACE1 expression is frequently reported to be upregulated in brain samples of the patients with Alzheimer’s disease (AD). BACE1 expression is regulated by BACE1-AS, a long non-coding RNA (lncRNA), which is transcribed in the opposite direction to its locus. BACE1-AS positively regulates the BACE1 expression, and their expression levels are regulated in physiological processes, such as brain and vascular homeostasis, although their roles in the regulation of amyloidogenic process have been studied further. BACE1-AS dysregulation is reported consistent with BACE1 in a number of human diseases, such as AD, Parkinson’s disease (PD), heart failure (HF), and mild cognitive impairment. BACE1 or less BACE1-AS inhibition has shown therapeutic potentials particularly in decreasing manifestations of amyloid-linked neurodegenerative diseases. Here, we have reviewed the role of lncRNA BACE1 and BACE1-AS in a number of human diseases focusing on neurodegenerative disorders, particularly, AD.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammadreza Hajiesmaeili,
| |
Collapse
|
130
|
Kadkhoda S, Ghafouri-Fard S. The importance of miRNA-630 in human diseases with an especial focus on cancers. Cancer Cell Int 2022; 22:105. [PMID: 35248081 PMCID: PMC8897855 DOI: 10.1186/s12935-022-02531-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
miR-630 is encoded by MIR630 gene (NC_000015.10) on 15q24.1. This miRNA is mostly associated with cytokine signaling in immune system. Several neoplastic as well as non-neoplastic conditions have been linked with dysregulation of miR-630. It is an oncogenic miRNA in renal cell carcinoma, multiple myeloma, colorectal cancer, acute lymphoblastic leukemia, ovarian cancer and prostate cancer. On the other hand, it is a putative tumor suppressor miRNA in lung, cervical, breast, thyroid and esophageal tissues. In a number of other tissues, data regarding the role of miR-630 in the carcinogenesis is conflicting. Expression levels of miR-630 can be used as markers for prediction of cancer course. Moreover, miR-630 can influence response to chemoradiotherapy. This miRNA is also involved in the pathoetiology of IgA nephropathy, obstructive sleep apnea, age-related nuclear cataract and vitiligo. In the present review, we discuss the role of miR-630 in these conditions.
Collapse
|
131
|
Liu G, Mao H, Liu Y, Zhang Z, Ha S, Zhang X. miR-148b-3p, as a tumor suppressor, targets son of sevenless homolog 1 to regulate the malignant progression in human osteosarcoma. Bioengineered 2022; 13:4271-4284. [PMID: 35152853 PMCID: PMC8974129 DOI: 10.1080/21655979.2022.2031389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Guodong Liu
- Department of Orthopedics, Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia, People’s Republic of China
| | - Honggang Mao
- Department of Orthopedics, Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia, People’s Republic of China
| | - Yan Liu
- Department of Orthopedics, Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia, People’s Republic of China
| | - Zun Zhang
- Department of Orthopedics, Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia, People’s Republic of China
| | - Si Ha
- Department of Orthopedics, Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia, People’s Republic of China
| | - Xiaoyan Zhang
- Department of Orthopedics, Baogang Hospital (The Third Affiliated Hospital of Inner Mongolia Medical University), Baotou, Inner Mongolia, People’s Republic of China
| |
Collapse
|
132
|
Wang C, Song H, Zhao X, Liu R, Lv Y. Multiplex DNA Walking Machines for Lung Cancer-Associated miRNAs. Anal Chem 2022; 94:1787-1794. [PMID: 35018772 DOI: 10.1021/acs.analchem.1c04557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomimetic DNA walking machines have gained great success in scrutinizing the microscopic world and sensitive biosensing of disease biomarkers. Despite superb achievements, the research on DNA walking machines for simultaneous detection of multiple analytes is still rare, while the design and realization of multiplexing are considered as an important bottleneck. The multiplex detection of biomarkers can not only improve the specificity of bioassays but also avoid the squander of valuable biological specimens. Herein, we reported multiplex three-dimensional (3D) DNA walking machines based on high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) for lung cancer-associated miRNA detection. In the presence of lung cancer-associated target miRNAs (miR-21, miR-141, and miR-125b), DNA walking machines were stimulated and operated to liberate a large number of lanthanide elements (Tb, Ho, and Tm), and then the signals were collected simultaneously by HR-ICPMS. The recovery test of target miRNAs in human serum and the simultaneous monitoring experiment of three miRNAs in human lung cancer cell line (A549) and normal cell line (HBE) specimens display satisfactory analysis capabilities for complex biological samples. Thanks to the vast potential of lanthanide tags and the modular design, the proposed bioassay might flexibly detect different miRNA combinations with corresponding sets of DNA walking machines to meet the requirements of various tasks.
Collapse
Affiliation(s)
- Chaoqun Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu 7th People's Hospital, Chengdu 610041, Sichuan, P. R. China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.,Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
133
|
Zheng T, Zhang X, Wang Y, Wang A. SPOCD1 regulated by miR-133a-3p promotes hepatocellular carcinoma invasion and metastasis. J Int Med Res 2022. [PMCID: PMC8733378 DOI: 10.1177/03000605211053717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the tumorigenic role of spen paralogue and orthologue C-terminal domain-containing 1 (SPOCD1) in hepatocellular carcinoma (HCC) and identify the upstream regulatory mechanism. Methods We analyzed SPOCD1 and miR-133-3p expression in normal and HCC tissues from the Cancer Genome Atlas and UALCAN databases, and in normal hepatocytes and HCC cell lines by real-time quantitative polymerase chain reaction and western blot. We identified the miR-133a-3p-binding site on the SPOCD1 3ʹ-untranslated region using TargetScan. Hierarchical regulation was confirmed by luciferase assay and miR-133a-3p overexpression/silencing. Cell proliferation, migration, invasion, and colony formation were assessed by MTT, scratch, transwell, and clonogenic assays, respectively. Results SPOCD1 was highly expressed in HCC tissues and cell lines, while miR-133a-3p expression was significantly downregulated. Kaplan–Meier analysis indicated that high SPOCD1 expression was significantly associated with poor survival. TargetScan and luciferase reporter assay revealed that SPOCD1 was the downstream target of miR-133a-3p. Overexpression of miR-133a-3p significantly inhibited the expression of SPOCD1, while miR-133a-3p knockdown significantly increased SPOCD1 expression. Conclusion SPOCD1, regulated by miR-133a-3p, promotes HCC cell proliferation, migration, invasion, and colony formation. This study provides the first evidence for the role of the miR-133a-3p/SPOCD1 axis in HCC tumorigenesis.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonggang Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aijun Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
134
|
A Review on the Role of miR-149-5p in the Carcinogenesis. Int J Mol Sci 2021; 23:ijms23010415. [PMID: 35008841 PMCID: PMC8745060 DOI: 10.3390/ijms23010415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
miR-149 is an miRNA with essential roles in carcinogenesis. This miRNA is encoded by the MIR149 gene on 2q37.3. The miR-149 hairpin produces miR-149-5p and miR-149-3p, which are the “guide” and the sister “passenger” strands, respectively. Deep sequencing experiments have shown higher prevalence of miR-149-5p compared with miR-149-3p. Notably, both oncogenic and tumor suppressive roles have been reported for miR-149-5p. In this review, we summarize the impact of miR-149-5p in the tumorigenesis and elaborate mechanisms of its involvement in this process in a variety of neoplastic conditions based on three lines of evidence, i.e., in vitro, in vivo and clinical settings.
Collapse
|
135
|
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical Cancer, Papillomavirus, and miRNA Dysfunction. Front Mol Biosci 2021; 8:758337. [PMID: 34957212 PMCID: PMC8703027 DOI: 10.3389/fmolb.2021.758337] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is the leading cause of death by cancer in women from developing countries. Persistent infection with high-risk human papillomavirus (HPV) types 16 and 18 is a major risk factor for cervical carcinogenesis. Nevertheless, only a few women with morphologic expression of HPV infection progress into invasive disease suggesting the involvement of other factors in cervical carcinogenesis. MicroRNAs (miRNAs) are conserved small non-coding RNAs that negatively regulate gene expression including genes involved in fundamental biological processes and human cancer. Dysregulation of miRNAs has been widely reported in cervical cancer. This work focuses on reviewing the miRNAs affected during the HPV infection process, as well relevant miRNAs that contribute to the development and maintenance of malignant cervical tumor cells. Finally, we recapitulate on miRNAs that may be used to distinguish between healthy individuals from patients with precancerous lesions or cervical tumors.
Collapse
Affiliation(s)
- Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - María Fernanda Pérez-yPérez
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| |
Collapse
|
136
|
Bi X, Zhang Y, Yu Y, Yuan J, Xu S, Liu F, Ye J, Liu P. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int 2021; 46:288-299. [PMID: 34854520 DOI: 10.1002/cbin.11731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO). The hypertrophic responses were monitored by measuring the cell surface area and expression of hypertrophic markers including β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF). Bioinformatic prediction tools and dual-luciferase reporter assay were performed to identify the target gene of miR-339-5p. Quantitative real-time polymerase chain reaction and western blot analysis were used to determine the levels of miR-339-5p and its downstream effectors. Our data showed that miR-339-5p was upregulated during cardiomyocyte hypertrophy triggered by ISO. MiR-339-5p overexpression resulted in enlargement of cell size and increased the levels of hypertrophic markers. In contrast, inhibition of miR-339-5p significantly attenuated ISO-induced hypertrophic responses of NRCMs. Valosin-containing protein (VCP), a suppressor of cardiac hypertrophy via inhibiting mechanistic target of rapamycin (mTOR) signaling, was validated as a target of miR-339-5p. MiR-339-5p suppressed VCP protein expression, leading to elevated phosphorylation of mTOR and ribosomal protein S6 kinase (S6K). VCP depletion activated the mTOR/S6K cascade and could compromise the anti-hypertrophic effects of miR-339-5p inhibitor. Additionally, the hypertrophic responses caused by miR-339-5p was alleviated in the presence of mTOR inhibitor rapamycin. In conclusion, our research revealed that miR-339-5p promoted ISO-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling, suggesting a promising therapeutic intervention by interfering miR-339-5p.
Collapse
Affiliation(s)
- Xueying Bi
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Youhui Yu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jing Yuan
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Siting Xu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
137
|
Dokhanchi M, Pakravan K, Zareian S, Hussen BM, Farid M, Razmara E, Mossahebi-Mohammadi M, Cho WC, Babashah S. Colorectal cancer cell-derived extracellular vesicles transfer miR-221-3p to promote endothelial cell angiogenesis via targeting suppressor of cytokine signaling 3. Life Sci 2021; 285:119937. [PMID: 34508764 DOI: 10.1016/j.lfs.2021.119937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Secreted microRNAs (miRNAs) can serve as promising diagnostic markers for colorectal cancer (CRC). Herein, we evaluated the potential clinical significance of a signature of four circulating serum-derived miRNAs in CRC. We also demonstrated that extracellular vesicles (EVs) containing miR-221-3p could facilitate endothelial cell angiogenesis. METHODS The expressions of four circulating serum-derived miRNAs (miR-19a-3p, miR-203-3p, miR-221-3p, and let-7f-5p) were measured by real-time quantitative PCR, and their associations with lymph node metastasis were determined in CRC patients. Receiver operating characteristic curve analysis was used to determine their diagnostic accuracy. EVs were isolated and characterized from the conditioned media of human CRC cells (HCT116 and Caco2). Cell proliferation, transwell migration, and tube formation assays were performed to investigate the pro-angiogenic effect of miR-221-3p transferred by CRC-EVs into the endothelial cells. In silico analysis was used to show the regulatory functions of miR-221-3p on SOCS3, validated by luciferase and Western blotting assays. RESULTS The expression levels of serum-derived miR-19a-3p, miR-203-3p, miR-221-3p, and let-7f-5p were significantly higher in CRC than in healthy individuals. The expression of miR-19a-3p, miR-203-3p, and miR-221-3p were positively correlated with the lymph node metastasis status. Moreover, SOCS3 was identified as a direct target of miR-221-3p and the secreted miR-221-3p shuttled by CRC-EVs regulated STAT3/VEGFR-2 signaling axis by targeting SOCS3 in endothelial cells. CRC-EVs promoted endothelial cell proliferation, migration, and the formation of vessel-like structures. The proangiogenic effect of CRC-EVs on the cells was recapitulated by miR-221-3p overexpression, showing the importance of EVs-derived miR-221-3p in promoting endothelial cell angiogenesis. CONCLUSION We introduced a signature of four-circulating miRNAs (miR-19a-3p, miR-203-3p, miR-221-3p, and let-7f-5p) as a novel diagnostic biomarker for CRC. Besides, we revealed that miR-221-3p induces endothelial cell angiogenesis in vitro by targeting SOCS3.
Collapse
Affiliation(s)
- Maryam Dokhanchi
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Zareian
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mahsa Farid
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- School of Pharmaceutical Sciences and International Collaborative Center on Growth Factor Research, Wenzhou Medical University, Wenzhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
138
|
Mahmoudian M, Razmara E, Mahmud Hussen B, Simiyari M, Lotfizadeh N, Motaghed H, Khazraei Monfared A, Montazeri M, Babashah S. Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. J Clin Lab Anal 2021; 35:e24010. [PMID: 34528314 PMCID: PMC8605139 DOI: 10.1002/jcla.24010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is by far the most common malignancy among women. Epigenetic modulators, microRNAs in particular, may set stages for BC development and its progression. Herein, we aimed to assess the diagnostic potentiality of a signature of six miRNAs (i.e., hsa-miR-25-3p, -29a-5p, -105-3p, -181b1-5p, -335-5p, and -339-5p) in BC and adjacent non-tumor tissues. METHODS A pair of 50 tumor and adjacent non-tumor samples were taken from BC patients. The expression of each candidate miRNA was measured using quantitative reverse transcription PCR. To investigate the possible roles of each miRNA and their impressions on BC prognosis, in silico tools were used. Receiver operating characteristic (ROC) curves were performed to determine the diagnostic accuracy of each miRNA and the possible association of their expression with clinicopathological characteristics was analyzed. RESULTS Our findings showed the upregulation of hsa-miR-25-3p, -29a-5p, -105-3p, and -181b1-5p, and the downregulation of hsa-miR-335-5p and -339-5p in BC tumor compared to corresponding adjacent tissues. Except for hsa-miR-339-5p, the up-/down-regulation of the candidate miRNAs was associated with TNM stages. Except for hsa-miR-105-3p, each candidate miRNA was correlated with HER-2 status. ROC curve analysis showed that the signature of six-miRNA is a potential biomarker distinguishing between tumor and non-tumor breast tissue samples. CONCLUSION We showed that the dysregulation of a novel signature of six-miRNA can be used as a potential biomarker for BC diagnosis.
Collapse
Affiliation(s)
- Mojdeh Mahmoudian
- Department of GeneticsFaculty of SciencesScience and Research BranchIslamic Azad UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Mandana Simiyari
- Department of Veterinary MedicineFaculty of Veterinary MedicineTabriz BranchIslamic Azad UniversityTabrizIran
| | - Nazanin Lotfizadeh
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Hoda Motaghed
- Department of BiologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Arefeh Khazraei Monfared
- Department of BiologyFaculty of Biological SciencesIslamic Azad University‐Tehran North BranchTehranIran
| | - Maryam Montazeri
- Department of Medical BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
139
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
140
|
Wang Q, Chen Y, Shen X, Chen J, Li Y. Intra-Articular Injection of miR-29a-3p of BMSCs Promotes Cartilage Self-Repairing and Alleviates Pain in the Rat Osteoarthritis. Tissue Eng Regen Med 2021; 18:1045-1055. [PMID: 34542842 DOI: 10.1007/s13770-021-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Stem cells intra-articular injection stagey indicated a potential therapeutic effect on improving the pathological progress of osteoarthritis (OA). However, the long-term effect of stem cells intra-articular injection on the cartilage regeneration remains unclear. miR-29a-3p is predicted to be a critical target for inhibiting insulin-like growth factor-1 expression and may aggravate the progression of OA. METHODS In this study, we investigated the therapeutic efficacy of intra-articular injection of bone marrow mesenchymal stem cells (BMSCs) transfected with miR-29a-3p inhibitor in OA. RESULTS miR-29a-3p inhibitor transfection did not influence cell viability of BMSCs, while the chondrogenic differentiation potential of BMSCs was significantly improved. Interestingly, intra-articular injection of BMSCs with miR-29a-3p inhibition significantly prevented articular cartilage degeneration by up-regulating the expression of Sox 9, Col-2a1, aggrecan and down-regulating the expression of matrix metalloproteinase, as well as relieved pain in OA. CONCLUSION The double effects on cartilage protection and pain relief indicated a great potential of intra-articular injection of miR-29a-3p inhibitor-transfected BMSCs for the treatment of OA.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Yong Chen
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Xiaofeng Shen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China
| | - Ji Chen
- Department of Orthopedics, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.,Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Yuwei Li
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| |
Collapse
|