101
|
Computational framework for predictive PBPK-PD-Tox simulations of opioids and antidotes. J Pharmacokinet Pharmacodyn 2019; 46:513-529. [PMID: 31396799 DOI: 10.1007/s10928-019-09648-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
The primary goal of this work was to develop a computational tool to enable personalized prediction of pharmacological disposition and associated responses for opioids and antidotes. Here we present a computational framework for physiologically-based pharmacokinetic (PBPK) modeling of an opioid (morphine) and an antidote (naloxone). At present, the model is solely personalized according to an individual's mass. These PK models are integrated with a minimal pharmacodynamic model of respiratory depression induction (associated with opioid administration) and reversal (associated with antidote administration). The model was developed and validated on human data for IV administration of morphine and naloxone. The model can be further extended to consider different routes of administration, as well as to study different combinations of opioid receptor agonists and antagonists. This work provides the framework for a tool that could be used in model-based management of pain, pharmacological treatment of opioid addiction, appropriate use of antidotes for opioid overdose and evaluation of abuse deterrent formulations.
Collapse
|
102
|
Aoki R, Shimoda M, Oda S, Imai M, Shigematsu H, Matsumae M. Clinical Significance of the CSF Pulsation Flow Sign in the Foramen of Monro on FLAIR in Patients with Aneurysmal SAH -Preliminary Report. Neurol Med Chir (Tokyo) 2019; 59:271-280. [PMID: 31068544 PMCID: PMC6635148 DOI: 10.2176/nmc.oa.2018-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is known that the cerebrospinal fluid (CSF) pulsation flow sign in the lateral ventricles directly above the foramen of Monro (CPF-M) on axial fluid attenuated inversion recovery (FLAIR) is a normal physiological finding as an artifact of FLAIR. In this study, whether CPF-M can be used as a neuroradiological finding related to pathological conditions in patients with acute aneurysmal subarachnoid hemorrhage (aSAH) was investigated. CPF-M-related clinical features were retrospectively evaluated in 147 aSAH patients who underwent adequate serial MRI examinations without massive intraventricular hemorrhage (IVH) of the lateral ventricle within 48 h of ictus. The frequency of the CPF-M in the control group was 32% (57/178), 33% (40/123), and 38% (45/117) for the normal control, chronic cerebral infarction, and deep white matter lesion (WML) groups, respectively. In aSAH patients, the overall prevalence of the CPF-M was 57% (84/147), significantly higher than in the three control groups. Multivariate analysis showed that age <70 years, lower IVH Hijdra score of the fourth ventricle, absence of T1-FLAIR mismatch, deep WMLs, old infarction, diffuse brain swelling, symptomatic delayed cerebral ischemia (DCI), shunt-dependent chronic hydrocephalus (SDCH), and favorable outcome were significantly associated with the CPF-M. Although limited to SAH patients without massive IVH of the lateral ventricles, one can conclude that, in acute aSAH, the presence of CPF-M on admission MRI suggests that the circulatory dynamics of the CSF from the basal cistern to the ventricles are approximately normal. Thus, this finding may appear to offer an indicator of a good outcome without DCI and SDCH.
Collapse
Affiliation(s)
- Rie Aoki
- Department of Neurosurgery, Tokai University Hachioji Hospital
| | - Masami Shimoda
- Department of Neurosurgery, Tokai University Hachioji Hospital
| | - Shinri Oda
- Department of Neurosurgery, Tokai University Hachioji Hospital
| | - Masaaki Imai
- Department of Neurosurgery, Tokai University Hachioji Hospital
| | | | | |
Collapse
|
103
|
Baghbani R. An Electrical Model of Hydrocephalus Shunt Incorporating the CSF Dynamics. Sci Rep 2019; 9:9751. [PMID: 31278327 PMCID: PMC6611941 DOI: 10.1038/s41598-019-46328-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/26/2019] [Indexed: 01/18/2023] Open
Abstract
The accumulation of cerebrospinal fluid (CSF) in brain ventricles and subarachnoid space is known as hydrocephalus. Hydrocephalus is a result of disturbances in the secretion or absorption process of CSF. A hydrocephalus shunt is an effective method for the treatment of hydrocephalus. In this paper, at first, the procedures of secretion, circulation, and absorption of CSF are studied and subsequently, the mathematical relations governing the pressures in different interacting compartments of the brain are considered. A mechanical-electrical model is suggested based on the brain physiology and blood circulation. In the proposed model, hydrocephalus is modeled with an incremental resistance (Ro) and hydrocephalus shunt, which is a low resistance path to drain the accumulated CSF in the brain ventricles, is modeled with a resistance in series with a diode. At the end, the simulation results are shown. The simulation results can be used to predict the shunt efficiency in reducing CSF pressure and before a real shunt implementation surgery is carried out in a patient's body.
Collapse
Affiliation(s)
- R Baghbani
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran.
| |
Collapse
|
104
|
Klarica M, Radoš M, Orešković D. The Movement of Cerebrospinal Fluid and Its Relationship with Substances Behavior in Cerebrospinal and Interstitial Fluid. Neuroscience 2019; 414:28-48. [PMID: 31279048 DOI: 10.1016/j.neuroscience.2019.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/04/2023]
Abstract
The cerebrospinal fluid (CSF) movement and its influence on substance distribution and elimination from the CSF system have been thoroughly analyzed and discussed in the light of the new hypothesis of CSF physiology. As a result, CSF movement is not presented as a circulation, but a permanent rhythmic systolic-diastolic pulsation in all directions. Such movement also represents the main force of substance distribution inside the CSF system. This distribution occurs in all directions, i.e., in the direction of the imagined circulation, as well as in the opposite direction, and depends on the application site and the resident time of tested substance, where longer resident time means longer distribution distance. Transport mechanisms situated on the microvessels inside the central nervous system (CNS) parenchyma play the key role in substance elimination from the CSF and interstitial fluid (ISF) compartments, which freely communicate. If a certain transport mechanism is not available at one site, the substance will be distributed by CSF movement along the CSF system and into the CNS region where that transport mechanism is available. Pharmacological manipulation suggests that the residence time and the substance travel distance along the CSF system depend on the capacity of transport mechanisms situated on CNS blood capillaries. Physiological absorption of the CSF into the venous sinuses and/or lymphatics, due to their small surface area, should be of minor importance in comparison with the huge absorptive surface area of the microvessel network.
Collapse
Affiliation(s)
- Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Milan Radoš
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Darko Orešković
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia.
| |
Collapse
|
105
|
Attier-Zmudka J, Sérot JM, Valluy J, Saffarini M, Macaret AS, Diouf M, Dao S, Douadi Y, Malinowski KP, Balédent O. Decreased Cerebrospinal Fluid Flow Is Associated With Cognitive Deficit in Elderly Patients. Front Aging Neurosci 2019; 11:87. [PMID: 31114494 PMCID: PMC6502902 DOI: 10.3389/fnagi.2019.00087] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Disruptions in cerebrospinal fluid (CSF) flow during aging could compromise protein clearance from the brain and contribute to the etiology of Alzheimer’s Disease (AD). Objective: To determine whether CSF flow is associated with cognitive deficit in elderly patients (>70 years). Methods: We studied 92 patients admitted to our geriatric unit for non-acute reasons using phase-contrast magnetic resonance imaging (PC-MRI) to calculate their ventricular and spinal CSF flow, and assessed their global cognitive status, memory, executive functions, and praxis. Multivariable regressions with backward selection (criterion p < 0.15) were performed to determine associations between cognitive tests and ventricular and spinal CSF flow, adjusting for depression, anxiety, and cardiovascular risk factors. Results: The cohort comprised 71 women (77%) and 21 (33%) men, aged 84.1 ± 5.2 years (range, 73–96). Net ventricular CSF flow was 52 ± 40 μL/cc (range, 0–210), and net spinal CSF flow was 500 ± 295 μL/cc (range, 0–1420). Ventricular CSF flow was associated with the number of BEC96 figures recognized (β = 0.18, CI, 0.02–0.33; p = 0.025). Spinal CSF flow was associated with the WAIS Digit Span Backward test (β = 0.06, CI, 0.01–0.12; p = 0.034), and categoric verbal fluency (β = 0.53, CI, 0.07–0.98; p = 0.024) and semantic verbal fluency (β = 0.55, CI, 0.07–1.02; p = 0.024). Conclusion: Patients with lower CSF flow had significantly worse memory, visuo-constructive capacities, and verbal fluency. Alterations in CSF flow could contribute to some of the cognitive deficit observed in patients with AD. Diagnosis and treatment of CSF flow alterations in geriatric patients with neurocognitive disorders could contribute to the prevention of their cognitive decline.
Collapse
Affiliation(s)
- Jadwiga Attier-Zmudka
- Department of Gerontology, Centre Hospitalier de Saint-Quentin, Saint-Quentin, France.,CHIMERE, EA 7516 Head and Neck Research Group, University of Picardie Jules Verne, Amiens, France
| | - Jean-Marie Sérot
- Department of Gerontology, Centre Hospitalier de Saint-Quentin, Saint-Quentin, France
| | | | | | - Anne-Sophie Macaret
- Department of Neurology, Centre Hospitalier de Saint-Quentin, Saint-Quentin, France
| | - Momar Diouf
- Department of Research, Amiens University Hospital, Amiens, France
| | - Salif Dao
- Department of Radiology, Centre Hospitalier de Saint-Quentin, Saint-Quentin, France
| | - Youcef Douadi
- Department of Neurology, Centre Hospitalier de Saint-Quentin, Saint-Quentin, France
| | - Krzysztof Piotr Malinowski
- Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Olivier Balédent
- CHIMERE, EA 7516 Head and Neck Research Group, University of Picardie Jules Verne, Amiens, France.,BioFlowImage, Image Processing Unit, University Hospital of Amiens, Amiens, France
| |
Collapse
|
106
|
Benninghaus A, Balédent O, Lokossou A, Castelar C, Leonhardt S, Radermacher K. Enhanced in vitro model of the CSF dynamics. Fluids Barriers CNS 2019; 16:11. [PMID: 31039805 PMCID: PMC6492379 DOI: 10.1186/s12987-019-0131-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Fluid dynamics of the craniospinal system are complex and still not completely understood. In vivo flow and pressure measurements of the cerebrospinal fluid (CSF) are limited. Whereas in silico modeling can be an adequate pathway for parameter studies, in vitro modeling of the craniospinal system is essential for testing and evaluation of therapeutic measures associated with innovative implants relating to, for example, normal pressure hydrocephalus and other fluid disorders. Previously-reported in vitro models focused on the investigation of only one hypothesis of the fluid dynamics rather than developing a modular set-up to allow changes in focus of the investigation. The aim of this study is to present an enhanced and validated in vitro model of the CSF system which enables the future embedding of implants, the validation of in silico models or phase-contrast magnetic resonance imaging (PC-MRI) measurements and a variety of sensitivity analyses regarding pathological behavior, such as reduced CSF compliances, higher resistances or altered blood dynamics. METHODS The in vitro model consists of a ventricular system which is connected via the aqueduct to the cranial and spinal subarachnoid spaces. Two compliance chambers are integrated to cushion the arteriovenous blood flow generated by a cam plate unit enabling the modeling of patient specific flow dynamics. The CSF dynamics are monitored using three cranial pressure sensors and a spinal ultrasound flow meter. Measurements of the in vitro spinal flow were compared to cervical flow data recorded with PC-MRI from nine healthy young volunteers, and pressure measurements were compared to the literature values reported for intracranial pressure (ICP) to validate the newly developed in vitro model. RESULTS The maximum spinal CSF flow recorded in the in vitro simulation was 133.60 ml/min in the caudal direction and 68.01 ml/min in the cranial direction, whereas the PC-MRI flow data of the subjects showed 122.82 ml/min in the caudal and 77.86 ml/min in the cranial direction. In addition, the mean ICP (in vitro) was 12.68 mmHg and the pressure wave amplitude, 4.86 mmHg, which is in the physiological range. CONCLUSIONS The in vitro pressure values were in the physiological range. The amplitudes of the flow results were in good agreement with PC-MRI data of young and healthy volunteers. However, the maximum cranial flow in the in vitro model occurred earlier than in the PC-MRI data, which might be due to a lack of an in vitro dynamic compliance. Implementing dynamic compliances and related sensitivity analyses are major aspects of our ongoing research.
Collapse
Affiliation(s)
- Anne Benninghaus
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Olivier Balédent
- Department of Image Processing, University Hospital, E.A 7516, CHIMERE, Jules Verne University of Picardy, 80054, Amiens cedex, France
| | - Armelle Lokossou
- Department of Image Processing, University Hospital, E.A 7516, CHIMERE, Jules Verne University of Picardy, 80054, Amiens cedex, France
| | - Carlos Castelar
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Klaus Radermacher
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| |
Collapse
|
107
|
Sato K, Awaji M, Inagawa S, Yoneoka Y, Yoshimura J, Yoshimura N, Aoyama H. Detectability of the choroid plexus of the third ventricle with magnetic resonance ventriculography. Jpn J Radiol 2019; 37:449-457. [PMID: 31016683 DOI: 10.1007/s11604-019-00834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE To clarify the detectability of the choroid plexus of the third ventricle (ChPl3V) with magnetic resonance ventriculography (MRVn) employing a steady-state free precession (SSFP) sequence in comparison to surgical endoscopic movies as a golden standard, as we encountered some clinical cases of total agenesis of corpus callosum (ACC) where we could not recognize the choroid plexus of the third ventricle and found no previous article addressing this problem. MATERIALS AND METHODS This retrospective study included consecutive patients from 2010 to 2016 for whom endoscopic evaluation of the third ventricle was conducted. The anterior portion of the right and left streaks of ChPl3V was evaluated in 8 patients on 16 sites, while the posterior portion of both streaks of ChPl3V was evaluated in 13 patients on 26 sites. Sensitivity of MRVn to visualize ChPl3V with endoscopic movies as the golden standard was calculated. RESULTS Sensitivity of MRVn in visualizing the anterior portion of ChPl3V was 0.813, and that for the posterior portion 0.692. The anterior portion of ChPl3V was visualized in all cases where no tumor contacted the foramen of Monro. CONCLUSION MRVn visualizes the anterior portion of ChPl3V with significant sensitivity and the posterior portion with lower one.
Collapse
Affiliation(s)
- Ken Sato
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimati-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan.
| | - Masanori Awaji
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimati-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Shoichi Inagawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimati-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Yuichiro Yoneoka
- Department of Neurosurgery, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Uonuma-shi, Niigata, 949-7302, Japan
| | - Junichi Yoshimura
- Department of Neurosurgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano-shi, Nagano, 380-8582, Japan
| | - Norihiko Yoshimura
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimati-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| | - Hidefumi Aoyama
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimati-dori, Chuo-ku, Niigata-shi, Niigata, 951-8510, Japan
| |
Collapse
|
108
|
Murakami Y, Kobayashi T, Naruse Y, Watanabe F, Ishino A, Kanai R, Goto T, Saito K. Exclusive Cerebellar and Leptomeningeal Metastases from Early Gastric Cancer 14 Months after Proximal Gastrectomy: An Autopsy Case Report. NMC Case Rep J 2019; 6:65-70. [PMID: 31016104 PMCID: PMC6476815 DOI: 10.2176/nmccrj.cr.2018-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
We report a rare autopsy case in which the patient received gastrectomy after an endoscopic diagnosis of early gastric cancer, and had deteriorated due to exclusive metastatic cerebellar tumors identified 14 months after surgery. A 65-year-old male was diagnosed as having a 0-IIc-type early gastric cancer on the posterior wall of the upper stomach by gastrointestinal endoscopy in search of a cause of epigastralgia, and thus received proximal gastrectomy and pyloroplasty. Although the tumor was in the early stages and limited within the mucosal layer, adjuvant chemotherapy was started by using S-1 80 mg daily due to evidence of metastasis into lymph node #3 at the lesser curvature. Evidence of both recurrence and metastases was not detected by CT scans of the chest, abdomen, and pelvis, and the chemotherapy was completed 12 months after surgery. However, the patient was admitted to hospital 14 months postoperatively due to dizziness and gait disturbance. Cranial MRI (Magnetic Resonance Imaging) revealed multiple tumors in the bilateral cerebellar hemispheres with additional leptomeningeal involvement. The patient died 2 weeks after admission. An autopsy revealed metastatic cerebellar tumors and leptomeningeal lesions from the early gastric cancer, and obstructive hydrocephalus due to metastatic cerebellar tumors. To our knowledge, this case is the first report of metastasis exclusive to the cerebellum and leptomeninges from early gastric cancer limited to the mucosal layer.
Collapse
Affiliation(s)
- Yuta Murakami
- Department of Neurosurgery, Hoshi General Hospital, Koriyama, Fukushima, Japan.,Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Toru Kobayashi
- Department of Neurosurgery, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Yu Naruse
- Department of Neurosurgery, Hoshi General Hospital, Koriyama, Fukushima, Japan.,Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Fumiaki Watanabe
- Department of Surgery, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Atsushi Ishino
- Department of Gastroenterological Medicine, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Risa Kanai
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Takeshi Goto
- Department of Neurosurgery, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
109
|
Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019; 16:9. [PMID: 30967147 PMCID: PMC6456952 DOI: 10.1186/s12987-019-0129-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023] Open
Abstract
The fine balance between the secretion, composition, volume and turnover of cerebrospinal fluid (CSF) is strictly regulated. However, during certain neurological diseases, this balance can be disrupted. A significant disruption to the normal CSF circulation can be life threatening, leading to increased intracranial pressure (ICP), and is implicated in hydrocephalus, idiopathic intracranial hypertension, brain trauma, brain tumours and stroke. Yet, the exact cellular, molecular and physiological mechanisms that contribute to altered hydrodynamic pathways in these diseases are poorly defined or hotly debated. The traditional views and concepts of CSF secretion, flow and drainage have been challenged, also due to recent findings suggesting more complex mechanisms of brain fluid dynamics than previously proposed. This review evaluates and summarises current hypotheses of CSF dynamics and presents evidence for the role of impaired CSF dynamics in elevated ICP, alongside discussion of the proteins that are potentially involved in altered CSF physiology during neurological disease. Undoubtedly CSF secretion, absorption and drainage are important aspects of brain fluid homeostasis in maintaining a stable ICP. Traditionally, pharmacological interventions or CSF drainage have been used to reduce ICP elevation due to over production of CSF. However, these drugs are used only as a temporary solution due to their undesirable side effects. Emerging evidence suggests that pharmacological targeting of aquaporins, transient receptor potential vanilloid type 4 (TRPV4), and the Na+-K+-2Cl- cotransporter (NKCC1) merit further investigation as potential targets in neurological diseases involving impaired brain fluid dynamics and elevated ICP.
Collapse
Affiliation(s)
- Steven William Bothwell
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
| | - Damir Janigro
- FloTBI Inc., Cleveland, OH USA
- Department of Physiology, Case Western Reserve University, Cleveland, OH USA
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Medical Sciences Building, University Drive, Callaghan, NSW 2308 Australia
- Hunter Medical Research Institute, Newcastle, NSW Australia
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
110
|
Li L, He Y, Chen X, Dong Y. The Role of Continuous Cerebrospinal Fluid Pulsation Stress in the Remodeling of Artificial Vertebral Laminae: A Comparison Experiment. Tissue Eng Part A 2019; 25:203-213. [DOI: 10.1089/ten.tea.2018.0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Linli Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Yiqun He
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Xujun Chen
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Youhai Dong
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
111
|
Iriondo A, Tainta M, Saldias J, Arriba M, Ochoa B, Goñi FM, Martinez-Lage P, Abad-García B. Isopropanol extraction for cerebrospinal fluid lipidomic profiling analysis. Talanta 2018; 195:619-627. [PMID: 30625592 DOI: 10.1016/j.talanta.2018.11.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/23/2023]
Abstract
The cerebrospinal fluid (CSF) lipidome is attracting increasing attention due to the importance of lipids in brain molecular signaling and their involvement in several neurological diseases. Different solvent systems have been used for the extraction of multiple lipid classes from CSF but no comparative study of the effectiveness of these protocols has been carried out. To optimize CSF lipid extraction for lipidomic measurements by untargeted ultra-high performance liquid chromatography - mass spectrometry, we evaluate and compare two sample preparation protocols, one involving protein precipitation with isopropanol (IPA) and other consisting of a liquid-liquid extraction with chloroform-methanol. For that purpose, human CSF from neurologically healthy and normolipidemic volunteers was used. The criteria established to compare these two methods were based on four critical aspects of sample preparation: simplicity, lipid coverage, reproducibility and recovery efficiencies. We found that both methods were highly reproducible techniques (>75% of the lipids with coefficient of variation (CV) <30%). In terms of recovery, the single-step IPA procedure yielded better values for most of the lipid classes and it was less toxic and simpler than the liquid-liquid extraction method. In relation to lipid coverage, variation in selectivity was observed between methods, providing evidence that IPA was more selective for polar lipids. Overall, IPA precipitation provides excellent results in terms of simplicity of execution, lipid coverage, reproducibility and recovery. We conclude that it is a choice procedure for large-scale, untargeted lipid profiling using UHPLC-MS in CSF analysis.
Collapse
Affiliation(s)
- Ane Iriondo
- Center for Research and Advanced Therapies. CITA-Alzheimer Foundation, Mikeletegi 71, 20009 Donostia-San Sebastian, Gipuzkoa, Spain.
| | - Mikel Tainta
- Center for Research and Advanced Therapies. CITA-Alzheimer Foundation, Mikeletegi 71, 20009 Donostia-San Sebastian, Gipuzkoa, Spain.
| | - Jon Saldias
- Center for Research and Advanced Therapies. CITA-Alzheimer Foundation, Mikeletegi 71, 20009 Donostia-San Sebastian, Gipuzkoa, Spain.
| | - Maria Arriba
- Center for Research and Advanced Therapies. CITA-Alzheimer Foundation, Mikeletegi 71, 20009 Donostia-San Sebastian, Gipuzkoa, Spain.
| | - Begoña Ochoa
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| | - Felix M Goñi
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) and Instituto Biofisika (CSIC), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| | - Pablo Martinez-Lage
- Center for Research and Advanced Therapies. CITA-Alzheimer Foundation, Mikeletegi 71, 20009 Donostia-San Sebastian, Gipuzkoa, Spain.
| | - Beatriz Abad-García
- Central Analysis Service, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain.
| |
Collapse
|
112
|
Controversies and Misconceptions Related to Cerebrospinal Fluid Circulation: A Review of the Literature from the Historical Pioneers' Theories to Current Models. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2928378. [PMID: 30598991 PMCID: PMC6287155 DOI: 10.1155/2018/2928378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Models of cerebrospinal fluid (CSF) circulation have been mainly proposed in the last century: CSF goes from the ventricles to the subarachnoidal space (SAS), passing through the aqueduct and the foramen of Luschka and Magendie. Indeed, new models, involving the Virchow-Robin space (VRS) and the perivascular space (PVS), have been proposed. We critically reviewed the literature, in order to clarify the “classical” errors and to discuss the “new” models that are evolving currently. Conclusions of past experiments are often not justified, due to lack of reproducibility and methodological issues. On the other hand, investigation on the microanatomy of Virchow-Robin spaces (VRS) and several new experiments showed a potential pathway for a more complex CSF “circulation,” with chaotic and unpredictable flows. It seems reasonable to elaborate a new model of CSF physiology, including new findings and questioning old certainties. However, proved data are still missing and it is hazardous to come to final conclusions. More studies are needed.
Collapse
|
113
|
Abstract
Alzheimer’s disease is the most common cause of dementia among the elderly. Te pathological changes characterize by the deposition of amyloid plaques and the formation of neurofybrillar tangles in the brain. Te most signifcant role in the pathogenesis of neurodegeneration development is deposition of β-amyloid, vascular risk factors, the presence of a genetic predisposition, and the dysregulation of the bloodbrain barrier. Recent studies have demonstrated the role of the glymphatic system in the clearance of betaamyloid through the perivascular spaces of Virchow-Robin.
Collapse
|
114
|
Orešković D, Maraković J, Varda R, Radoš M, Jurjević I, Klarica M. New Insight into the Mechanism of Mannitol Effects on Cerebrospinal Fluid Pressure Decrease and Craniospinal Fluid Redistribution. Neuroscience 2018; 392:164-171. [DOI: 10.1016/j.neuroscience.2018.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
|
115
|
Kim YK, Nam KI, Song J. The Glymphatic System in Diabetes-Induced Dementia. Front Neurol 2018; 9:867. [PMID: 30429819 PMCID: PMC6220044 DOI: 10.3389/fneur.2018.00867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
The glymphatic system has emerged as an important player in central nervous system (CNS) diseases, by regulating the vasculature impairment, effectively controlling the clearance of toxic peptides, modulating activity of astrocytes, and being involved in the circulation of neurotransmitters in the brain. Recently, several studies have indicated decreased activity of the glymphatic pathway under diabetes conditions such as in insulin resistance and hyperglycemia. Furthermore, diabetes leads to the disruption of the blood-brain barrier and decrease of apolipoprotein E (APOE) expression and the secretion of norepinephrine in the brain, involving the impairment of the glymphatic pathway and ultimately resulting in cognitive decline. Considering the increased prevalence of diabetes-induced dementia worldwide, the relationship between the glymphatic pathway and diabetes-induced dementia should be investigated and the mechanisms underlying their relationship should be discussed to promote the development of an effective therapeutic approach in the near future. Here, we have reviewed recent evidence for the relationship between glymphatic pathway dysfunction and diabetes. We highlight that the enhancement of the glymphatic system function during sleep may be beneficial to the attenuation of neuropathology in diabetes-induced dementia. Moreover, we suggest that improving glymphatic system activity may be a potential therapeutic strategy for the prevention of diabetes-induced dementia.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| | - Kwang Il Nam
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea.,Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
116
|
Giammattei L, Messerer M, Daniel RT. Contribution of Glymphatic System in Pathogenesis of Secondary Brain Injury and Its Modulation. World Neurosurg 2018; 117:473-474. [PMID: 30149434 DOI: 10.1016/j.wneu.2018.06.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Lorenzo Giammattei
- Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland.
| | - Mahmoud Messerer
- Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Roy T Daniel
- Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
117
|
Sathe G, Na CH, Renuse S, Madugundu A, Albert M, Moghekar A, Pandey A. Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 2018; 15:29. [PMID: 30220890 PMCID: PMC6136184 DOI: 10.1186/s12014-018-9205-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is an important source of potential biomarkers that affect the brain. Biomarkers for neurodegenerative disorders are needed to assist in diagnosis, monitoring disease progression and evaluating efficacy of therapies. Recent studies have demonstrated the involvement of tyrosine kinases in neuronal cell death. Thus, neurodegeneration in the brain is related to altered tyrosine phosphorylation of proteins in the brain and identification of abnormally phosphorylated tyrosine peptides in CSF has the potential to ascertain candidate biomarkers for neurodegenerative disorders. Methods In this study, we used an antibody-based tyrosine phosphopeptide enrichment method coupled with high resolution Orbitrap Fusion Tribrid Lumos Fourier transform mass spectrometer to catalog tyrosine phosphorylated peptides from cerebrospinal fluid. The subset of identified tyrosine phosphorylated peptides was also validated using parallel reaction monitoring (PRM)-based targeted approach. Results To date, there are no published studies on global profiling of phosphotyrosine modifications of CSF proteins. We carried out phosphotyrosine profiling of CSF using an anti-phosphotyrosine antibody-based enrichment and analysis using high resolution Orbitrap Fusion Lumos mass spectrometer. We identified 111 phosphotyrosine peptides mapping to 66 proteins, which included 24 proteins which have not been identified in CSF previously. We then validated a set of 5 tyrosine phosphorylated peptides in an independent set of CSF samples from cognitively normal subjects, using a PRM-based targeted approach. Conclusions The findings from this deep phosphotyrosine profiling of CSF samples have the potential to identify novel disease-related phosphotyrosine-containing peptides in CSF. Electronic supplementary material The online version of this article (10.1186/s12014-018-9205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gajanan Sathe
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,7Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Chan Hyun Na
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,6Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anil Madugundu
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,7Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Marilyn Albert
- 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Abhay Moghekar
- 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Akhilesh Pandey
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,5Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
118
|
Dorazehi F, Nabiuni M, Jalali H. Potential Use of Amniotic Membrane - Derived Scaffold for Cerebrospinal Fluid Applications. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:91-101. [PMID: 30276164 PMCID: PMC6148501 DOI: 10.22088/ijmcm.bums.7.2.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/14/2018] [Indexed: 01/23/2023]
Abstract
Scaffolds derived from decellularized tissues provide a natural microenvironment for cell culture. Embryonic cerebrospinal fluid (e-CSF) contains factors which play vital roles in the development of the nervous system. This research was aimed to survey the effect of Wistar rat e-CSF on neural differentiation of bone marrow derived mesenchymal stem cells (BM-MSCs) cultured on the human amniotic membrane (AM). BM-MSCs were collected from femurs and tibias, and were cultured in Dulbecco's Modified Eagle's Medium. The placenta was harvested from healthy women during cesarean section and AM was acellularized using EDTA and physical scrubbing. e- CSF was harvested from rat fetuses at E17. Adequate numbers of BM-MSCs were cultured on acellularized membrane, and were treated with E17 CSF for 7 days. MTT (3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) assay confirmed the survival and proliferation of BM-MSCs cultured on AM derived scaffold. Hematoxylin/eosin staining and scanning electron microscopy showed the morphological and the structural changes of BM-MSCs throughout the culture and treatment with e-CSF. The results of immunocytochemistry showed that microtubule associated protein 2 and beta-III tubulin were expressed in BM-MSCs cultured on acellular amnion scaffold and treated with e-CSF. Our results showed for the first time that the combination of acellular AM as a natural scaffold and e-CSF as a source of neurological factors could effectively improve the BM-MSCs cultivation and differentiation.
Collapse
Affiliation(s)
- Fereshteh Dorazehi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
119
|
Levman J, Vasung L, MacDonald P, Rowley S, Stewart N, Lim A, Ewenson B, Galaburda A, Takahashi E. Regional volumetric abnormalities in pediatric autism revealed by structural magnetic resonance imaging. Int J Dev Neurosci 2018; 71:34-45. [PMID: 30110650 DOI: 10.1016/j.ijdevneu.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 11/25/2022] Open
Abstract
Autism is a group of complex neurodevelopmental disorders characterized by impaired social interaction, restricted and repetitive behavior. We performed a large-scale retrospective analysis of 1,996 structural magnetic resonance imaging (MRI) examinations of the brain from 1,769 autistic and neurologically typically developing patients (aged 0-32 years), and extracted regional volumetric measurements distributed across 463 brain regions of each patient. The youngest autistic patients (<2.5 years) were diagnosed after imaging and identified retrospectively. Our study demonstrates corpus callosum volumetric abnormalities among autistic patients that are associated with brain overgrowth in early childhood (0-5 years old), followed by a shift towards known decreased volumes in later ages. Results confirm known increases in ventricular volumes among autistic populations and extends those findings to increased volumes of the choroid plexus. Our study also demonstrates distributed volumetric abnormalities among autistic patients that affect a variety of key regional white and grey matter areas of the brain potentially associated with known symptoms of autism.
Collapse
Affiliation(s)
- Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada.
| | - Lana Vasung
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Patrick MacDonald
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Sean Rowley
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Natalie Stewart
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Ashley Lim
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Bryan Ewenson
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Albert Galaburda
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave FD-225, Boston, MA, 02215, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
120
|
Current Perspectives in the Surgical Treatment of Severe Traumatic Brain Injury. World Neurosurg 2018; 116:322-328. [DOI: 10.1016/j.wneu.2018.05.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
|
121
|
Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N. Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 2018; 9:2167. [PMID: 29867199 PMCID: PMC5986890 DOI: 10.1038/s41467-018-04677-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) production occurs at a rate of 500 ml per day in the adult human. Conventional osmotic forces do not suffice to support such production rate and the molecular mechanisms underlying this fluid production remain elusive. Using ex vivo choroid plexus live imaging and isotope flux in combination with in vivo CSF production determination in mice, we identify a key component in the CSF production machinery. The Na+/K+/2Cl− cotransporter (NKCC1) expressed in the luminal membrane of choroid plexus contributes approximately half of the CSF production, via its unusual outward transport direction and its unique ability to directly couple water transport to ion translocation. We thereby establish the concept of cotransport of water as a missing link in the search for molecular pathways sustaining CSF production and redefine the current model of this pivotal physiological process. Our results provide a rational pharmacological target for pathologies involving disturbed brain fluid dynamics. Osmotic forces do not suffice to explain the rate of cerebrospinal fluid (CSF) production. Here, the authors show that the Na+/K+/2Cl− cotransporter in the choroid plexus contributes substantially to CSF production via its inherent ability to cotransport water.
Collapse
Affiliation(s)
- Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Anca Stoica
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Dagne Barbuskaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Noerre Allé 14, 2200, Copenhagen, Denmark.
| |
Collapse
|
122
|
Nakada T, Kwee IL. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist 2018; 25:155-166. [PMID: 29799313 PMCID: PMC6416706 DOI: 10.1177/1073858418775027] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The discovery of the water specific channel, aquaporin, and abundant expression
of its isoform, aquaporin-4 (AQP-4), on astrocyte endfeet brought about
significant advancements in the understanding of brain fluid dynamics. The brain
is protected by barriers preventing free access of systemic fluid. The same
barrier system, however, also isolates brain interstitial fluid from the
hydro-dynamic effect of the systemic circulation. The systolic force of the
heart, an essential factor for proper systemic interstitial fluid circulation,
cannot be propagated to the interstitial fluid compartment of the brain. Without
a proper alternative mechanism, brain interstitial fluid would stay stagnant.
Water influx into the peri-capillary Virchow-Robin space (VRS) through the
astrocyte AQP-4 system compensates for this hydrodynamic shortage essential for
interstitial flow, introducing the condition virtually identical to systemic
circulation, which by virtue of its fenestrated capillaries creates appropriate
interstitial fluid motion. Interstitial flow in peri-arterial VRS constitutes an
essential part of the clearance system for β-amyloid, whereas interstitial flow
in peri-venous VRS creates bulk interstitial fluid flow, which, together with
the choroid plexus, creates the necessary ventricular cerebrospinal fluid (CSF)
volume for proper CSF circulation.
Collapse
Affiliation(s)
- Tsutomu Nakada
- 1 Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L Kwee
- 2 Department of Neurology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
123
|
Xavier ALR, Hauglund NL, von Holstein-Rathlou S, Li Q, Sanggaard S, Lou N, Lundgaard I, Nedergaard M. Cannula Implantation into the Cisterna Magna of Rodents. J Vis Exp 2018. [PMID: 29889209 DOI: 10.3791/57378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB).
Collapse
Affiliation(s)
- Anna L R Xavier
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Copenhagen;
| | - Natalie Linea Hauglund
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Copenhagen
| | | | - Qianliang Li
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Copenhagen
| | - Simon Sanggaard
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Copenhagen; Department of Anesthesiology, Yale School of Medicine
| | - Nanhong Lou
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Rochester Medical Center
| | - Iben Lundgaard
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Rochester Medical Center; Department of Experimental Medical Science, Wallenberg Center for Molecular Medicine, Lund University
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Copenhagen; Center for Translational Neuromedicine, Division of Glial Therapeutics, University of Rochester Medical Center
| |
Collapse
|
124
|
Simats A, García-Berrocoso T, Ramiro L, Giralt D, Gill N, Penalba A, Bustamante A, Rosell A, Montaner J. Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology. Sci Rep 2018; 8:7899. [PMID: 29784938 PMCID: PMC5962600 DOI: 10.1038/s41598-018-26237-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022] Open
Abstract
The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of stroke.
Collapse
Affiliation(s)
- Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramiro
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Gill
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
125
|
Di Cristofori A, Gerosa A, Panzarasa G. Is Neurosurgery Ready for Cisternostomy in Traumatic Brain Injuries? World Neurosurg 2018; 111:427. [PMID: 29499598 DOI: 10.1016/j.wneu.2017.11.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Andrea Di Cristofori
- Division of Neurosurgery, University Hospital-Maggiore Hospital of Charity of Novara, Novara, Italy.
| | - Andrea Gerosa
- Division of Neurosurgery, University Hospital-Maggiore Hospital of Charity of Novara, Novara, Italy
| | - Gabriele Panzarasa
- Division of Neurosurgery, University Hospital-Maggiore Hospital of Charity of Novara, Novara, Italy
| |
Collapse
|
126
|
Giammattei L, Messerer M, Daniel RT. In Reply to "Is Neurosurgery Ready for Cisternostomy in Traumatic Brain Injuries?". World Neurosurg 2018; 111:428. [PMID: 29499599 DOI: 10.1016/j.wneu.2017.12.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Lorenzo Giammattei
- Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland.
| | - Mahmoud Messerer
- Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Roy T Daniel
- Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
127
|
Akai T, Hatta T, Shimada H, Mizuki K, Kudo N, Hatta T, Otani H. Extracranial outflow of particles solved in cerebrospinal fluid: Fluorescein injection study. Congenit Anom (Kyoto) 2018; 58:93-98. [PMID: 28976018 DOI: 10.1111/cga.12257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
Cerebrospinal fluid is thought to be mainly absorbed into arachnoid granules in the subarachnoid space and drained into the sagittal sinus. However, some observations such as late outbreak of arachnoid granules in fetus brain and recent cerebrospinal fluid movements study by magnetic resonance images, conflict with this hypothesis. In this study, we investigated the movement of cerebrospinal fluid in fetuses. Several kinds of fluorescent probes with different molecular weights were injected into the lateral ventricle or subarachnoid space in mouse fetuses at a gestational age of 13 days. The movements of the probes were monitored by live imaging under fluorescent microscope. Following intraventricular injection, the probes dispersed into the 3rd ventricle and aqueduct immediately, but did not move into the 4th ventricle and spinal canal. After injection of low and high molecular weight conjugated probes, both probes dispersed into the brain but only the low molecular weight probe dispersed into the whole body. Following intra-subarachnoid injection, both probes diffused into the spinal canal gradually. Neither probe dispersed into the brain and body. The probe injected into the lateral ventricle moved into the spinal central canal by the fetus head compression, and returned into the aqueduct by its release. We conclude this study as follows: (i) The movement of metabolites in cerebrospinal fluid in the ventricles will be restricted by molecular weight; (ii) Cerebrospinal fluid in the ventricle and in the subarachnoid space move differently; and (iii) Cerebrospinal fluid may not appear to circulate. In the event of high intracranial pressure, the fluid may move into the spinal canal.
Collapse
Affiliation(s)
- Takuya Akai
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Japan.,Department of Neurosurgery, Toyama University, Toyama, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| | - Hiroki Shimada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan
| | - Keiji Mizuki
- Department of Nanoscience, Sojo University, Kumamoto, Japan
| | - Nae Kudo
- Department of Nanoscience, Sojo University, Kumamoto, Japan
| | - Taizo Hatta
- Department of Nanoscience, Sojo University, Kumamoto, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Shimane University, Izumo, Japan
| |
Collapse
|
128
|
Khasawneh AH, Garling RJ, Harris CA. Cerebrospinal fluid circulation: What do we know and how do we know it? Brain Circ 2018; 4:14-18. [PMID: 30276331 PMCID: PMC6057699 DOI: 10.4103/bc.bc_3_18] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
The central nervous system's (CNS) complicated design is a double-edged sword. On the one hand, the complexity is what gives rise to higher order thinking; but on the other hand, damage to the CNS evokes its unforgiving nature. The cerebrospinal fluid (CSF) circulation system is an intricate system embedded in and around the CNS that has been the topic of debate since it was first described in the 18th century. It is underscored by the choroid plexus's distinct vascular network which has conventionally been seen as the most prominent structure in CSF production through a variety of active transporters and channels. Despite the ubiquity of this circulation system in vertebrates, some aspects remain understudied. Recent advances in scientific methodology and experimentation have proven to be effective tools for elucidating the mechanisms of the CSF circulation system and the pathological conditions associated with its malfunction. In this review, we capitulate the classical understanding of CSF physiology as well as a new, emerging theory on CSF production.
Collapse
Affiliation(s)
- Ahmad H Khasawneh
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA.,Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Richard J Garling
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Carolyn A Harris
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA.,Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| |
Collapse
|
129
|
Mørch MT, Sørensen SF, Khorooshi R, Asgari N, Owens T. Selective localization of IgG from cerebrospinal fluid to brain parenchyma. J Neuroinflammation 2018; 15:110. [PMID: 29665816 PMCID: PMC5904996 DOI: 10.1186/s12974-018-1159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022] Open
Abstract
Background Encounter of autoantibodies with specific antigens can lead to hypersensitivity reactions and pathology. In multiple sclerosis and neuromyelitis optica spectrum disease (NMOSD), immunoglobulin-G (IgG) deposition has been observed in pathological lesions in the central nervous system. The paradigmatic autoantibodies in NMOSD are specific for the water channel aquaporin-4, localized to astrocytic end-feet at the blood-brain barrier and ependymal cells at the cerebrospinal fluid-brain barrier. We have previously observed that IgG antibodies from NMO patients (NMO-IgG) access brain parenchyma from the cerebrospinal fluid and induce subpial and periventricular NMO-like lesions and blood-brain barrier breakdown, in a complement-dependent manner. Objective To investigate how IgG trafficking from cerebrospinal fluid to brain parenchyma can be influenced by injury. Methods IgG from healthy donors was intrathecally injected into the cerebrospinal fluid via cisterna magna at 1, 2, 4, or 7 days after a distal stereotactic sterile needle insertion to the striatum. Results Antibody deposition, detected by staining for human IgG, peaked 1 day after the intrathecal injection and was selectively seen close to the needle insertion. When NMO-IgG was intrathecally injected, we observed complement-dependent NMO-like pathology (loss of aquaporin-4 and glial fibrillary acidic protein) proximal to the insertion site, with similar kinetics. A fluorescent tracer did not show the same distribution indicating IgG-selective localization. Conclusion These findings suggest that IgG from cerebrospinal fluid localize selectively in brain parenchyma at the site of injury and pathogenic NMO-IgG induce astrocyte pathology at the same location.
Collapse
Affiliation(s)
- Marlene Thorsen Mørch
- Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, JB. Winsloewsvej 25, 5000, Odense, Denmark
| | - Sofie Forsberg Sørensen
- Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, JB. Winsloewsvej 25, 5000, Odense, Denmark
| | - Reza Khorooshi
- Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, JB. Winsloewsvej 25, 5000, Odense, Denmark
| | - Nasrin Asgari
- Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, JB. Winsloewsvej 25, 5000, Odense, Denmark.,Department of Neurology, Slagelse Hospital, Institute of Regional Health Research, Slagelse, Denmark
| | - Trevor Owens
- Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, JB. Winsloewsvej 25, 5000, Odense, Denmark.
| |
Collapse
|
130
|
Linninger AA, Xu C, Tangen K, Hartung G. Starling forces drive intracranial water exchange during normal and pathological states. Croat Med J 2018; 58:384-394. [PMID: 29308830 PMCID: PMC5778682 DOI: 10.3325/cmj.2017.58.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To quantify the exchange of water between cerebral compartments, specifically blood, tissue, perivascular pathways, and cerebrospinal fluid-filled spaces, on the basis of experimental data and to propose a dynamic global model of water flux through the entire brain to elucidate functionally relevant fluid exchange phenomena. METHODS The mechanistic computer model to predict brain water shifts is discretized by cerebral compartments into nodes. Water and species flux is calculated between these nodes across a network of arcs driven by Hagen-Poiseuille flow (blood), Darcy flow (interstitial fluid transport), and Starling's Law (transmembrane fluid exchange). Compartment compliance is accounted for using a pressure-volume relationship to enforce the Monro-Kellie doctrine. This nonlinear system of differential equations is solved implicitly using MATLAB software. RESULTS The model predictions of intraventricular osmotic injection caused a pressure rise from 10 to 22 mmHg, followed by a taper to 14 mmHg over 100 minutes. The computational results are compared to experimental data with R2=0.929. Moreover, simulated osmotic therapy of systemic (blood) injection reduced intracranial pressure from 25 to 10 mmHg. The modeled volume and intracranial pressure changes following cerebral edema agree with experimental trends observed in animal models with R2=0.997. CONCLUSION The model successfully predicted time course and the efficacy of osmotic therapy for clearing cerebral edema. Furthermore, the mathematical model implicated the perivascular pathways as a possible conduit for water and solute exchange. This was a first step to quantify fluid exchange throughout the brain.
Collapse
Affiliation(s)
- Andreas A Linninger
- Andreas A. Linninger, Department of Bioengineering, Neurosurgery, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607, USA,
| | | | | | | |
Collapse
|
131
|
Lee AG, Mader TH, Gibson CR, Brunstetter TJ, Tarver WJ. Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond) 2018. [PMID: 29527011 DOI: 10.1038/s41433-018-0070-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Interesting novel and somewhat perplexing physiologic and pathologic neuro-ocular findings have been documented in astronauts during and after long duration space flight (LDSF). These findings collectively have been termed the "space flight-associated neuro-ocular syndrome" (SANS). The National Aeronautics and Space Administration (NASA) in the United States has meticulously and prospectively documented the clinical, ultrasound, optical coherence tomography imaging, and radiographic findings of SANS including unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts (i.e., cotton wool spots). NASA and collaborating researchers continue to study SANS in preparation for future manned missions to space, including continued trips to the ISS, a return to the moon, or perhaps new voyages to the asteroid belt, or the planet, Mars.
Collapse
Affiliation(s)
- Andrew G Lee
- Department of Ophthalmology, Houston Methodist Hospital, Houston, TX, USA. .,Baylor College of Medicine, Houston, TX, USA. .,Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medical College, New York, NY, USA. .,Department of Ophthalmology, The University of Texas Medical Branch, Galveston, TX, USA. .,Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA. .,UT MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
132
|
Orbital Interstitial Fluid: Evidence of a Potential Pathway for Extracranial Cerebrospinal Fluid Absorption. J Comput Assist Tomogr 2018; 42:497-501. [PMID: 29489593 DOI: 10.1097/rct.0000000000000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The aim of the study was to describe the prevalence and characteristics of orbital interstitial fluid seen on magnetic resonance (MR) images of infants and young children. MATERIALS AND METHODS Fat-suppressed axial T2-weighted MR images of 100 consecutive infants and young children (<6 years) without orbital pathology were retrospectively reviewed by 2 neuroradiologists. The presence, location, and extent of high-signal orbital interstitial fluid were characterized and tabulated as a function of age. RESULTS Orbital interstitial fluid was detected in 90 (90%) of the 100 subjects overall, present in 100% (75/75) of infants and children younger than 3 years, 75% (12/16) of those aged 3 to 5 years, and 33% (3/9) of those aged 5 to 6 years. The fluid was bilateral and symmetric in all cases. Two morphologic patterns were distinguished, which often co-existed: (1) a focal discrete curvilinear band of fluid in the posterior-lateral orbit, more common in younger patients, and (2) an ill-defined, lace-like pattern primarily in the superior orbit seen in subjects of all ages. CONCLUSIONS Orbital interstitial fluid as detected by fat-suppressed T2-weighted MR imaging is a nearly universal finding in infants and young children and should not be considered pathologic. It may have either a focal or lace-like pattern or both. Orbital interstitial fluid decreases in size and prevalence as a function of age but is still present in nearly half of children aged 4 to 6 years. Possible explanations concerning the nature and origin of this fluid are presented, including the fascinating possibility that the fluid represents an extracranial pathway for outflow of cerebrospinal fluid.
Collapse
|
133
|
Vuillemenot BR, Korte S, Wright TL, Adams EL, Boyd RB, Butt MT. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic. Toxicol Sci 2018; 152:3-9. [PMID: 27354708 DOI: 10.1093/toxsci/kfw072] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many central nervous system (CNS) diseases are inadequately treated by systemically administered therapies due to the blood brain barrier (BBB), which prevents achieving adequate drug concentrations at sites of action. Due to the increasing prevalence of neurodegenerative diseases and the inability of most systemically administered therapies to cross the BBB, direct CNS delivery will likely play an increasing role in treatment. Administration of large molecules, cells, viral vectors, oligonucleotides, and other novel therapies directly to the CNS via the subarachnoid space, ventricular system, or parenchyma overcomes this obstacle. Clinical experience with direct CNS administration of small molecule therapies suggests that this approach may be efficacious for the treatment of neurodegenerative disorders using biological therapies. Risks of administration into the brain tissue or cerebrospinal fluid include local damage from implantation of the delivery system and/or administration of the therapeutic and reactions affecting the CNS. Preclinical safety studies on CNS administered compounds must differentiate between the effects of the test article, the delivery device, and/or the vehicle, and assess exacerbations of reactions due to combinations of effects. Animal models characterized for safety assessment of CNS administered therapeutics have enabled human trials, but interpretation can be challenging. This manuscript outlines the challenges of preclinical intrathecal/intracerebroventricular/intraparenchymal studies, evaluation of results, considerations for special endpoints, and translation of preclinical findings to enable first-in-human trials. Recommendations will be made based on the authors' collective experience with conducting these studies to enable clinical development of CNS-administered biologics.
Collapse
Affiliation(s)
| | - Sven Korte
- Covance Laboratories GmbH, Münster, Germany
| | | | - Eric L Adams
- Northern Biomedical Research, Muskegon, Michigan
| | | | | |
Collapse
|
134
|
Barten DM, Cadelina GW, Weed MR. Dosing, collection, and quality control issues in cerebrospinal fluid research using animal models. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:47-64. [PMID: 29110779 DOI: 10.1016/b978-0-12-804279-3.00004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebrospinal fluid (CSF) is a complex fluid filling the ventricular system and surrounding the brain and spinal cord. Although the bulk of CSF is created by the choroid plexus, a significant fraction derives from the interstitial fluid in the brain and spinal cord parenchyma. For this reason, CSF can often be used as a source of pharmacodynamic and prognostic biomarkers to reflect biochemical changes occurring within the brain. For instance, CSF biomarkers can be used to diagnose and track progression of disease as well as understand pharmacokinetic and pharmacodynamic relationships in clinical trials. To facilitate the use of these biomarkers in humans, studies in preclinical species are often valuable. This review summarizes methods for preclinical CSF collection for biomarkers from mice, rats, and nonhuman primates. In addition, dosing directly into CSF is increasingly being used to improve drug levels in the brain. Therefore, this review also summarizes the state of the art in CSF dosing in these preclinical species.
Collapse
Affiliation(s)
- Donna M Barten
- Genetically Defined Diseases, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Gregory W Cadelina
- Genetically Defined Diseases, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Michael R Weed
- Genetically Defined Diseases, Bristol-Myers Squibb, Wallingford, CT, United States; RxGen, Inc, New Haven, CT, United States.
| |
Collapse
|
135
|
Cerebrospinal Fluid Dynamics and Intrathecal Delivery. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
136
|
Orešković D, Radoš M, Klarica M. Cerebrospinal fluid secretion by the choroid plexus? Physiol Rev 2017; 96:1661-2. [PMID: 27630176 DOI: 10.1152/physrev.00021.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Darko Orešković
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia; and Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Milan Radoš
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia; and Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marijan Klarica
- Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia; and Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
137
|
Orešković D, Radoš M, Klarica M. The recent state of a hundred years old classic hypothesis of the cerebrospinal fluid physiology. Croat Med J 2017; 58:381-383. [PMID: 29308829 PMCID: PMC5778680 DOI: 10.3325/cmj.2017.58.381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Darko Orešković
- Darko Orešković, Ruđer Bošković Institute, Department of Molecular Biology, Zagreb, Croatia,
| | | | | |
Collapse
|
138
|
Shokohi R, Nabiuni M, Irian S, Miyan JA. In Vitro Effects of Wistar Rat Prenatal and Postnatal Cerebrospinal Fluid on Neural Differentiation and P roliferation of Mesenchymal Stromal Cells Derived from Bone Marrow. CELL JOURNAL 2017; 19:537-544. [PMID: 29105387 PMCID: PMC5672091 DOI: 10.22074/cellj.2018.4130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 10/16/2016] [Indexed: 11/18/2022]
Abstract
Objective Cerebrospinal fluid (CSF) plays an important role in cortical development during the fetal stages. Embryonic
CSF (E-CSF) consists of numerous neurotrophic and growth factors that regulate neurogenesis, differentiation, and
proliferation. Mesenchymal stem cells (MSCs) are multi-potential stem cells that can differentiate into mesenchymal
and non-mesenchymal cells, including neural cells. This study evaluates the prenatal and postnatal effects of CSF on
proliferation and neural differentiation of bone marrow MSCs (BM-MSCs) at gestational ages E19, E20, and the first
day after birth (P1).
Materials and Methods In this experimental study, we confirmed the mesenchymal nature of BM-MSCs according to
their adherence properties and surface markers (CD44, CD73 and CD45). The multi-potential characteristics of BM-
MSCs were verified by assessments of the osteogenic and adipogenic potentials of these cells. Under appropriate in
vitro conditions, the BM-MSCs cultures were incubated with and without additional pre- and postnatal CSF. The MTT
assay was used to quantify cellular proliferation and viability. Immunocytochemistry was used to study the expression
of MAP-2 and β-III tubulin in the BM-MSCs. We used ImageJ software to measure the length of the neurites in the
cultured cells.
Results BM-MSCs differentiated into neuronal cell types when exposed to basic fibroblast growth factor (b-FGF).
Viability and proliferation of the BM-MSCs conditioned with E19, E20, and P1 CSF increased compared to the control
group. We observed significantly elevated neural differentiation of the BM-MSCS cultured in the CSF-supplemented
medium from E19 compared to cultures conditioned with E20 and P1 CSF group.
Conclusion The results have confirmed that E19, E20, and P1 CSF could induce proliferation and differentiation of
BM-MSCs though they are age dependent factors. The presented data support a significant, conductive role of CSF
components in neuronal survival, proliferation, and differentiation.
Collapse
Affiliation(s)
- Rozmehr Shokohi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel A Miyan
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
139
|
Krishnamurthy S, Li J, Shen Y, Duncan TM, Jenrow KA, Haacke EM. Normal macromolecular clearance out of the ventricles is delayed in hydrocephalus. Brain Res 2017; 1678:337-355. [PMID: 29066366 DOI: 10.1016/j.brainres.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/04/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Satish Krishnamurthy
- Department of Neurosurgery, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Jie Li
- Department of Neurosurgery, Upstate Medical University, Syracuse, NY 13210, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA
| | - Thomas M Duncan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kenneth A Jenrow
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
140
|
Persistent Asymmetric Optic Disc Swelling After Long-Duration Space Flight: Implications for Pathogenesis. J Neuroophthalmol 2017; 37:133-139. [PMID: 27930421 DOI: 10.1097/wno.0000000000000467] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Several ophthalmic findings including optic disc swelling, globe flattening and choroidal folds have been observed in astronauts following long-duration space flight. The authors now report asymmetric choroidal expansion, disc swelling and optic disc morphologic changes in a 45-year-old astronaut which occurred during long-duration space flight and persisted following his space mission. METHODS Case study of ocular findings in an astronaut documented during and after a long-duration space flight of approximately 6 months. Before, during and after his spaceflight, he underwent complete eye examination, including fundus photography, ultrasound, and optical coherence tomography. RESULTS We documented asymmetric choroidal expansion inflight that largely resolved by 30 days postflight, asymmetric disc swelling observed inflight that persisted for over 180 days postflight, asymmetric optic disc morphologic changes documented inflight by OCT that persisted for 630 days postflight and asymmetric globe flattening that began inflight and continued 660 days postflight. Lumbar puncture opening pressures obtained at 7 and 365 days post-mission were 22 and 16 cm H20 respectively. CONCLUSION The persistent asymmetric findings noted above, coupled with the lumbar puncture opening pressures, suggest that prolonged microgravity exposure may have produced asymmetric pressure changes within the perioptic subarachnoid space.
Collapse
|
141
|
Shibukawa S, Miyati T, Niwa T, Matsumae M, Ogino T, Horie T, Imai Y, Muro I. Time-spatial Labeling Inversion Pulse (Time-SLIP) with Pencil Beam Pulse: A Selective Labeling Technique for Observing Cerebrospinal Fluid Flow Dynamics. Magn Reson Med Sci 2017; 17:259-264. [PMID: 28835572 PMCID: PMC6039785 DOI: 10.2463/mrms.tn.2017-0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We assessed labeling region selectivity on time-spatial labeling inversion pulse (Time-SLIP) with pencil beam pulse (PB Time-SLIP) for the use of visualizing cerebrospinal fluid (CSF) flow dynamics. We compared the selectivity of labeling to the third and fourth ventricles between PB Time-SLIP and conventional Time-SLIP (cTime-SLIP) in eight volunteers and one patient using a 1.5T MRI. PB Time-SLIP provided more selective labeling in CSF than cTime-SLIP, particularly in complex anatomical regions.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Department of Radiology, Tokai University Hospital.,Division of Health Sciences, Graduate School of Medical Science, Kanazawa University
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University
| | - Tetsu Niwa
- Department of Radiology, Tokai University School of Medicine
| | | | | | | | - Yutaka Imai
- Department of Radiology, Tokai University School of Medicine
| | - Isao Muro
- Department of Radiology, Tokai University Hospital
| |
Collapse
|
142
|
Cherian I, Beltran M, Landi A, Alafaci C, Torregrossa F, Grasso G. Introducing the concept of “CSF-shift edema” in traumatic brain injury. J Neurosci Res 2017; 96:744-752. [DOI: 10.1002/jnr.24145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Iype Cherian
- Department of Neurosurgery; College of Medical Sciences; Bharatpur Nepal
| | - Margarita Beltran
- Servicio de Radiología; Hospital Universitario Miguel Servet; Zaragoza España
| | - Alessandro Landi
- Department of Neurology and Psychiatry, Division of Neurosurgery; “Sapienza” University of Rome; Italy
| | - Concetta Alafaci
- Department of Neurosurgery; University of Messina; Messina Italy
| | - Fabio Torregrossa
- Neurosurgical Clinic, Department of Experimental Biomedicine & Clinical Neurosciences; University of Palermo; Italy
| | - Giovanni Grasso
- Neurosurgical Clinic, Department of Experimental Biomedicine & Clinical Neurosciences; University of Palermo; Italy
| |
Collapse
|
143
|
Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci 2017; 18:E1798. [PMID: 28820467 PMCID: PMC5578185 DOI: 10.3390/ijms18081798] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022] Open
Abstract
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Collapse
Affiliation(s)
- Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Ingrid L Kwee
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
- Department of Neurology, University of California, Davis, VANCHCS, Martinez, CA 94553, USA.
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| | - Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan.
| |
Collapse
|
144
|
Marshall-Goebel K, Terlević R, Gerlach DA, Kuehn S, Mulder E, Rittweger J. Lower body negative pressure reduces optic nerve sheath diameter during head-down tilt. J Appl Physiol (1985) 2017; 123:1139-1144. [PMID: 28818998 DOI: 10.1152/japplphysiol.00256.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023] Open
Abstract
The microgravity ocular syndrome (MOS) results in significant structural and functional ophthalmic changes during 6-mo spaceflight missions consistent with an increase in cerebrospinal fluid (CSF) pressure compared with the preflight upright position. A ground-based study was performed to assess two of the major hypothesized contributors to MOS, headward fluid shifting and increased ambient CO2, on intracranial and periorbital CSF. In addition, lower body negative pressure (LBNP) was assessed as a countermeasure to headward fluid shifting. Nine healthy male subjects participated in a crossover design study with five head-down tilt (HDT) conditions: -6, -12, and -18° HDT, -12° HDT with -20 mmHg LBNP, and -12° HDT with a 1% CO2 environment, each for 5 h total. A three-dimensional volumetric scan of the cranium and transverse slices of the orbita were collected with MRI, and intracranial CSF volume and optic nerve sheath diameter (ONSD) were measured after 4.5 h HDT. ONSD increased during -6° (P < 0.001), -12° (P < 0.001), and -18° HDT (P < 0.001) and intracranial CSF increased during -12° HDT (P = 0.01) compared with supine baseline. Notably, LBNP was able to reduce the increases in ONSD and intracranial CSF during HDT. The addition of 1% CO2 during HDT, however, had no further effect on ONSD, but rather ONSD increased from baseline in a similar magnitude to -12° HDT with ambient air (P = 0.001). These findings demonstrate the ability of LBNP, a technique that targets fluid distribution in the lower limbs, to directly influence CSF and may be a promising countermeasure to help reduce increases in CSF.NEW & NOTEWORTHY This is the first study to demonstrate the ability of lower body negative pressure to directly influence cerebrospinal fluid surrounding the optic nerve, indicating potential use as a countermeasure for increased cerebrospinal fluid on Earth or in space.
Collapse
Affiliation(s)
- Karina Marshall-Goebel
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; .,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Robert Terlević
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,International Space University, Illkirch-Graffenstaden, France; and
| | - Darius A Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Simone Kuehn
- University Clinic Hamburg-Eppendorf, Clinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
145
|
Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience 2017; 354:69-87. [DOI: 10.1016/j.neuroscience.2017.04.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
|
146
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
147
|
Metzger F, Mischek D, Stoffers F. The Connected Steady State Model and the Interdependence of the CSF Proteome and CSF Flow Characteristics. Front Neurosci 2017; 11:241. [PMID: 28579938 PMCID: PMC5437178 DOI: 10.3389/fnins.2017.00241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/12/2017] [Indexed: 11/14/2022] Open
Abstract
Here we show that the hydrodynamic radii-dependent entry of blood proteins into cerebrospinal fluid (CSF) can best be modeled with a diffusional system of consecutive interdependent steady states between barrier-restricted molecular flux and bulk flow of CSF. The connected steady state model fits precisely to experimental results and provides the theoretical backbone to calculate the in-vivo hydrodynamic radii of blood-derived proteins as well as individual barrier characteristics. As the experimental reference set we used a previously published large-scale patient cohort of CSF to serum quotient ratios of immunoglobulins in relation to the respective albumin quotients. We related the inter-individual variances of these quotient relationships to the individual CSF flow time and barrier characteristics. We claim that this new concept allows the diagnosis of inflammatory processes with Reibergrams derived from population-based thresholds to be shifted to individualized judgment, thereby improving diagnostic sensitivity. We further use the source-dependent gradient patterns of proteins in CSF as intrinsic tracers for CSF flow characteristics. We assume that the rostrocaudal gradient of blood-derived proteins is a consequence of CSF bulk flow, whereas the slope of the gradient is a consequence of the unidirectional bulk flow and bidirectional pulsatile flow of CSF. Unlike blood-derived proteins, the influence of CSF flow characteristics on brain-derived proteins in CSF has been insufficiently discussed to date. By critically reviewing existing experimental data and by reassessing their conformity to CSF flow assumptions we conclude that the biomarker potential of brain-derived proteins in CSF can be improved by considering individual subproteomic dynamics of the CSF system.
Collapse
Affiliation(s)
- Fabian Metzger
- Department of Neurology, Ulm University HospitalUlm, Germany
| | | | - Frédéric Stoffers
- Fakultät für Mathematik und Wirtschaftswissenschaften, Institute of Analysis, Universität UlmUlm, Germany
| |
Collapse
|
148
|
Ratner V, Gao Y, Lee H, Elkin R, Nedergaard M, Benveniste H, Tannenbaum A. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. Neuroimage 2017; 152:530-537. [PMID: 28323163 PMCID: PMC5490081 DOI: 10.1016/j.neuroimage.2017.03.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/26/2022] Open
Abstract
The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins.
Collapse
Affiliation(s)
- Vadim Ratner
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA
| | - Yi Gao
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11790, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Rena Elkin
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11790, USA
| | | | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11790, USA; Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
149
|
Abstract
BACKGROUND To describe the history, clinical findings, and possible pathogenic etiologies of the constellation of neuro-ophthalmic findings discovered in astronauts after long-duration space flight and to discuss the terrestrial implications of such findings. EVIDENCE ACQUISITION Retrospective review of published observational, longitudinal examination of neuro-ophthalmic findings in astronauts after long-duration space flight; analysis of postflight questionnaires regarding in-flight vision changes in approximately 300 additional astronauts; and hypothesis generating for developing possible future countermeasures and potential implications for neuro-ophthalmic disorders on Earth. Astronauts with neuro-ophthalmic findings, which were not present at the start of a space flight mission and only seen on return from long-duration space missions to the International Space Station, will be discussed. RESULTS After 6 months of space flight, 7 astronauts had ophthalmic findings consisting of optic disc edema in 5, globe flattening in 5, choroidal folds in 5, cotton-wool spots in 3, nerve fiber layer thickening detected by optical coherence tomography in 6, and decreased near vision in 6. Five of 7 astronauts with near vision complaints had a hyperopic shift ≥+0.50 diopters (D) between pre-/post-mission spherical equivalent refraction in 1 or both eyes (range, +0.50 to +1.75 D). These 5 astronauts showed globe flattening on magnetic resonance imaging. A total of 6 lumbar punctures have been performed to date (4 in the originally described cohort) and documented opening pressures of 18, 22, 21, 21.5, 28, and 28.5 cm H2O. These were performed at 8, 66, 19, 7, 12, and 57 days after mission, respectively. The 300 postflight questionnaires documented that approximately 29% and 60% of astronauts on short-duration and long-duration missions, respectively, experienced a degradation in distant and near visual acuity. Some of these vision changes remain unresolved for years after flight. Several possible pathogenic mechanisms, as well as potential countermeasures and discussion of possible terrestrial implications, are described. CONCLUSIONS We previously hypothesized that the optic nerve and ocular changes that we described in astronauts may be the result of orbital and cranial cephalad fluid shifts brought about by prolonged microgravity exposure. The findings we reported previously and continue to see in astronauts may represent parts of a spectrum of ocular and cerebral responses to extended microgravity exposure. Future investigations hopefully will lead to countermeasures that can be used to eliminate or lessen the magnitude of these potentially harmful findings before long-duration space flight including the possibility of a manned mission to Mars.
Collapse
|
150
|
Klarica M, Jukić T, Miše B, Kudelić N, Radoš M, Orešković D. Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development. Brain Pathol 2016; 26:701-712. [PMID: 26549012 PMCID: PMC8029224 DOI: 10.1111/bpa.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022] Open
Abstract
In our new experimental model of cervical stenosis without inflammation we have tested hypothesis that cranio-spinal communication impairment could lead to hydrocephalus development. Spinal and cranial cerebrospinal fluid (CSF) space separation was obtained with positioning of plastic semiring in epidural space at C2 level in cats. Brain ventricles planimetry, and CSF pressure recording in lateral ventricle (LV) and lumbar subarachnoid space (LSS) were performed in acute and subchronic experiments. In all experiments opening CSF pressures were normal. However, in acute experiments, an infusion of artificial CSF into the LV led to increase of CSF pressure and significant gradient pressure development between LV and LSS due to limited pressure transmission. After 3 or 6 weeks spinal cord atrophy was observed at the site of cervical stenosis, and pressure transmission from LV to LSS was improved as a consequence of spinal tissue atrophy. Planimetry of both the coronal brain slices and the ventricles' surface showed that control ventricular surface was 0.6 ± 0.1% (n = 5), and 1.6 ± 0.2% (n = 4) in animals with subchronic cervical stenosis (P < 0.002). These results support the mentioned hypothesis claiming that CSF volume cranio-spinal displacement impairment could start pathophysiological processes leading to development of hydrocephalus.
Collapse
Affiliation(s)
- Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain ResearchSchool of Medicine University of ZagrebZagrebCroatia
| | - Tomislav Jukić
- Department of OphthalmologyClinical Hospital Center Zagreb, School of Medicine, University of Zagreb
| | - Branko Miše
- University of Zagreb, School of Medicine, University Hospital for Infectious Diseases
| | - Nenad Kudelić
- Department of Pharmacology and Croatian Institute for Brain ResearchSchool of Medicine University of ZagrebZagrebCroatia
| | - Milan Radoš
- Croatian Institute for Brain Research, School of Medicine University of Zagreb
| | | |
Collapse
|