101
|
Xu M, Zhu C, Zhao X, Chen C, Zhang H, Yuan H, Deng R, Dou J, Wang Y, Huang J, Chen Q, Jiang B, Yu J. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget 2015; 6:979-94. [PMID: 25460509 PMCID: PMC4359269 DOI: 10.18632/oncotarget.2825] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a critical role in the development of tumor metastases by enhancing migration/invasion. One of the hallmarks of EMT is loss of E-cadherin and gain of N-cadherin expression, which are regulated by the core EMT-inducing transcription factors (EMT-TFs), such as Zeb1/2, Snai1/2 and Twist1. Here, we find that EMT-TFs can be dynamically degraded by an atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 (SPFFbxo45) through the ubiquitin proteasome system (UPS). The key step is recognition of EMT-TFs by Fbxo45 through its SPRY domain for Zeb2, or F-box domain for the other three EMT-TFs Snai1, Snai2 and Twist1, respectively. The K48-linkaged ubiquitination capability on Zeb2 relies on its functional SBD domain. In addition, miR-27a* can directly down-regulate the expression of Fbxo45, preventing degradation of EMT-TFs and thus ensuring EMT phenotype. We suggest that Fbxo45 is a key node of the miR-27a*/Fbxo45/EMT-TFs signaling axis.
Collapse
Affiliation(s)
- Ming Xu
- Institute of Oncology & Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changhong Zhu
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chen
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihua Yuan
- Institute of Oncology & Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Jiang
- Institute of Oncology & Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
102
|
Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X. An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and Multi-step Transition between Epithelial and Mesenchymal States. PLoS Comput Biol 2015; 11:e1004569. [PMID: 26554584 PMCID: PMC4640575 DOI: 10.1371/journal.pcbi.1004569] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Reversible epithelial-to-mesenchymal transition (EMT) is central to tissue development, epithelial stemness, and cancer metastasis. While many regulatory elements have been identified to induce EMT, the complex process underlying such cellular plasticity remains poorly understood. Utilizing a systems biology approach integrating modeling and experiments, we found multiple intermediate states contributing to EMT and that the robustness of the transitions is modulated by transcriptional factor Ovol2. In particular, we obtained evidence for a mutual inhibition relationship between Ovol2 and EMT inducer Zeb1, and observed that adding this regulation generates a novel four-state system consisting of two distinct intermediate phenotypes that differ in differentiation propensities and are favored in different environmental conditions. We identified epithelial cells that naturally exist in an intermediate state with bidirectional differentiation potential, and found the balance between EMT-promoting and -inhibiting factors to be critical in achieving and selecting between intermediate states. Our analysis suggests a new design principle in controlling cellular plasticity through multiple intermediate cell fates and underscores the critical involvement of Ovol2 and its associated molecular regulations. Cumulative evidence reveals remarkable lineage plasticity of somatic cells. Epithelial-to-mesenchymal transition (EMT) represents a prime example of such plasticity where an epithelial cell is converted into a mesenchymal cell. This process is used in normal development to generate crucial cell types, and is hijacked by cancer cells for invasion and metastasis. Recent studies also suggest the importance of EMT in generating stem cell properties. The reversibility of EMT and its sensitivity to varying environmental stimuli pose interesting challenges to understand the intricate regulatory networks that direct cellular state transitions and their dynamics. Here we use a systems biology approach to probe into the complexity of the EMT process. We report a new molecular regulation that expands the known regulatory network, and show that this new network is capable of generating multiple intermediate states, which we provide experimental evidence for. We present modeling and experimental results to highlight the significance of a delicate balance between EMT-promoting and -inhibiting factors for achieving and/or selecting an intermediate state, and to suggest the biological significance of the multiple intermediate states. This work further elucidates the complex strategies that control epithelial cell behavior and cancer/stem cell plasticity.
Collapse
Affiliation(s)
- Tian Hong
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Kazuhide Watanabe
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Catherine Ha Ta
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Alvaro Villarreal-Ponce
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (QN); (XD)
| | - Xing Dai
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (QN); (XD)
| |
Collapse
|
103
|
Azmi AS, Muqbil I, Wu J, Aboukameel A, Senapedis W, Baloglu E, Bollig-Fischer A, Dyson G, Kauffman M, Landesman Y, Shacham S, Philip PA, Mohammad RM. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition. Sci Rep 2015; 5:16077. [PMID: 26536918 PMCID: PMC4633607 DOI: 10.1038/srep16077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (-ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore.
Collapse
Affiliation(s)
- Asfar S. Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Jack Wu
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | | | | | | | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | | | | | | | - Philip A. Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Ramzi M. Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
- iTRI Hamad Medical Corporation, Doha Qatar
| |
Collapse
|
104
|
Khan MI, Hamid A, Adhami VM, Lall RK, Mukhtar H. Role of epithelial mesenchymal transition in prostate tumorigenesis. Curr Pharm Des 2015; 21:1240-8. [PMID: 25506896 DOI: 10.2174/1381612821666141211120326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Globally, the cancer associated deaths are generally attributed to the spread of cancerous cells or their features to the nearby or distant secondary organs by a process known as metastasis. Among other factors, the metastatic dissemination of cancer cells is attributed to the reactivation of an evolutionary conserved developmental program known as epithelial to mesenchymal transition (EMT). During EMT, fully differentiated epithelial cells undergo a series of dramatic changes in their morphology, along with loss of cell to cell contact and matrix remodeling into less differentiated and invasive mesenchymal cells. Many studies provide evidence for the existence of EMT like states in prostate cancer (PCa) and suggest its possible involvement in PCa progression and metastasis. At the same time, the lack of conclusive evidence regarding the presence of full EMT in human PCa samples has somewhat dampened the interest in the field. However, ongoing EMT research provides new perspectives and unveils the enormous potential of this field in tailoring new therapeutic regimens for PCa management. This review summarizes the role of many transcription factors and other molecules that drive EMT during prostate tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Medical Science Center, Rm B-25, 1300 University Avenue, Madison, WI 53706.
| |
Collapse
|
105
|
Ingthorsson S, Hilmarsdottir B, Kricker J, Magnusson MK, Gudjonsson T. Context-Dependent Function of Myoepithelial Cells in Breast Morphogenesis and Neoplasia. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:168-174. [PMID: 28680803 PMCID: PMC5487766 DOI: 10.1007/s40610-015-0027-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Myoepithelial cells (MEPs) are specialized cells derived from epithelial progenitor cells, yet they also express the contractile machinery of smooth muscle cells. MEPs are prominent in glandular tissues where their function is to help expel secretions generated by the glandular epithelial cells. In the breast, MEPs are part of the bi-layered breast epithelium that line ducts and alveoli positioned perpendicular to the luminal epithelial cells (LEPs), separated from the surrounding stroma by the basement membrane. Researchers have recognized MEPs as important regulators of structural and functional behavior of LEPs, namely having role in polarization of LEPs, and regulating milk production. Furthermore, they have also been proposed to act as tumor suppressors as their presence inhibits invasion of cancer cells into the surrounding stroma. There is, however, accumulating evidence that MEPs in normal breast, carcinoma in situ and in invasive breast cancer differ significantly in terms of marker expression and this may truly interfere with their ability to behave as tumor suppressors. The term myoepithelial cell is often used synonymously with basal cell. While all MEPs, due to their position, can be referred to as basal cells, some basal cells do not fulfill the criteria of being MEPs. Synonymous use of these terms may hold true under normal conditions but careful interpretation of these terms should be used in breast cancer. In recent years, partial myoepithelial differentiation and epithelial to mesenchymal transition (EMT) have been shown to be associated with, and in some cases, necessary for cancer invasion and metastasis. In this review, we will discuss the context-dependent role of MEPs in breast morphogenesis, tumor suppression, and also the appearance of basal or partial myoepithelial differentiation in aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, Reykjavik, Iceland
| | - Jennifer Kricker
- Stem Cell Research Unit, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, Reykjavik, Iceland
| | - Magnus Karl Magnusson
- Stem Cell Research Unit, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspítali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
106
|
Zuo Y, Berdeaux R, Frost JA. The RhoGEF Net1 is required for normal mammary gland development. Mol Endocrinol 2015; 28:1948-60. [PMID: 25321414 DOI: 10.1210/me.2014-1128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily-specific guanine nucleotide exchange factor that is overexpressed in human breast cancer and is required for breast cancer cell migration and invasion. However, the role of Net1 in normal mammary gland development or function has never been assessed. To understand the role of Net1 in the mammary gland, we have created a conditional Net1 knockout mouse model. Whole-body deletion of Net1 results in delayed mammary gland development during puberty characterized by slowed of ductal extension and reduced ductal branching. Epithelial cells within the developing ducts show reduced proliferation that is accompanied by diminished estrogen receptor-α expression and activity. Net1-deficient mammary glands also exhibit reduced phosphorylation of regulatory subunits of myosin light chain and myosin light-chain phosphatase, indicating that RhoA-dependent actomyosin contraction is compromised. Net1 deficiency also leads to disorganization of myoepithelial and ductal epithelial cells and increased periductal collagen deposition. Mammary epithelial cell transplantation experiments indicate that reduced ductal branching and disorganization are cell autonomous. These data identify for the first time a role for NET1 in vivo and indicate that NET1 expression is essential for the proliferation and differentiation of mammary epithelial cells in the developing mammary gland.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | | | | |
Collapse
|
107
|
Yu F, Yang H, Zhang Z, Wang Z, Xiong J. DAL-1/4.1B contributes to epithelial-mesenchymal transition via regulation of transforming growth factor-β in lung cancer cell lines. Mol Med Rep 2015; 12:6072-8. [PMID: 26300315 DOI: 10.3892/mmr.2015.4217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/08/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effects of the tumor suppressor gene differentially expressed in adenocarcinoma of the lung 1 (DAL‑1)/4.1B on early‑stage adenocarcinoma of the lung. The role of DAL‑1/4.1B in the epithelial‑mesenchymal transition (EMT), which is implicated in cancer metastasis, was examined using DAL‑1 knockdown and overexpression, followed by polymerase chain reaction and western blot analysis of EMT markers, as well as cell counting and cell migration/invasion assays. The results showed that DAL‑1/4.1B has a role in transforming growth factor (TGF)‑β‑induced EMT in non‑small cell lung cancer cells. Silencing of DAL‑1/4.1B with inhibitory RNAs altered the expression of numerous EMT markers, including E‑cadherin and β‑catenin, whereas overexpression of DAL‑1/4.1B had the opposite effect. In addition, DAL‑1/4.1B expression was induced following TGF‑β treatment at the protein and mRNA level. DAL‑1/4.1B deficiency impaired TGF‑β‑induced EMT and increased cell migration and invasion. These results suggested that DAL‑1/4.1B contributed to the EMT and may be important for tumor metastasis in lung cancer. Together with the results of a previous study by our group, the present study suggested that DAL‑1/4.1B acts as a tumor suppressor in the early transformation process in lung cancer, while in later stages, it functions as an oncogene affecting the biological features of human lung carcinoma cells. The results of the present study provided evidence for the feasibility of utilizing DAL‑1/4.1B as a target for lung cancer gene therapy.
Collapse
Affiliation(s)
- Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Yang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhanmin Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhijun Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
108
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
109
|
Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RYJ, Thiery JP. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 2015; 6:1279-93. [PMID: 25214461 PMCID: PMC4287932 DOI: 10.15252/emmm.201404208] [Citation(s) in RCA: 504] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible and dynamic process hypothesized to be co-opted by carcinoma during invasion and metastasis. Yet, there is still no quantitative measure to assess the interplay between EMT and cancer progression. Here, we derived a method for universal EMT scoring from cancer-specific transcriptomic EMT signatures of ovarian, breast, bladder, lung, colorectal and gastric cancers. We show that EMT scoring exhibits good correlation with previously published, cancer-specific EMT signatures. This universal and quantitative EMT scoring was used to establish an EMT spectrum across various cancers, with good correlation noted between cell lines and tumours. We show correlations between EMT and poorer disease-free survival in ovarian and colorectal, but not breast, carcinomas, despite previous notions. Importantly, we found distinct responses between epithelial- and mesenchymal-like ovarian cancers to therapeutic regimes administered with or without paclitaxelin vivo and demonstrated that mesenchymal-like tumours do not always show resistance to chemotherapy. EMT scoring is thus a promising, versatile tool for the objective and systematic investigation of EMT roles and dynamics in cancer progression, treatment response and survival.
Collapse
Affiliation(s)
- Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Qing Hao Miow
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Yoshio Miki
- Cancer Institute of Japanese Foundation for Cancer Research, Kyoto, Japan
| | - Tetsuo Noda
- Cancer Institute of Japanese Foundation for Cancer Research, Kyoto, Japan
| | - Seiichi Mori
- Cancer Institute of Japanese Foundation for Cancer Research, Kyoto, Japan
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore Institute of Molecular and Cell Biology, A*STAR, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
110
|
Menon V, Eberth JF, Goodwin RL, Potts JD. Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development. J Cardiovasc Dev Dis 2015; 2:108-124. [PMID: 26878022 PMCID: PMC4751060 DOI: 10.3390/jcdd2020108] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiac valve structure and function are primarily determined during early development. Consequently, abnormally-formed heart valves are the most common type of congenital heart defects. Several adult valve diseases can be backtracked to abnormal valve development, making it imperative to completely understand the process and regulation of heart valve development. Epithelial-to-mesenchymal transition (EMT) plays an important role in the development of heart valves. Though hemodynamics is vital to valve development, its role in regulating EMT is still unknown. In this study, intracardiac hemodynamics were altered by constricting the outflow tract (OFT)/ventricle junction (OVJ) of HH16–17 (Hamilton and Hamburger (HH) Stage 16–17) chicken embryos, ex ovo for 24 h. The constriction created an increase in peak and time-averaged centerline velocity along the OFT without changes to volumetric flow or heart rate. Computational fluid dynamics was used to estimate the level of increased spatially-averaged wall shear stresses on the OFT cushion from AMIRA reconstructions. OFT constriction led to a significant decrease in OFT cushion volume and the number of invaded mesenchyme in the OFT cushion. qPCR analysis revealed altered mRNA expression of a representative panel of genes, vital to valve development, in the OFT cushions from banded hearts. This study indicates the importance of hemodynamics in valve development.
Collapse
Affiliation(s)
- Vinal Menon
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; E-Mails: (V.M.); (J.F.E.)
| | - John F. Eberth
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; E-Mails: (V.M.); (J.F.E.)
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Richard L. Goodwin
- Biomedical Sciences, School of Medicine, University of South Carolina, Greenville, SC 29605, USA; E-Mail:
| | - Jay D. Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; E-Mails: (V.M.); (J.F.E.)
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-803-216-3820; Fax: +1-803-216-3846
| |
Collapse
|
111
|
Hepatocyte fate upon TGF-β challenge is determined by the matrix environment. Differentiation 2015; 89:105-16. [PMID: 25982745 DOI: 10.1016/j.diff.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/25/2015] [Accepted: 04/14/2015] [Indexed: 01/04/2023]
Abstract
Primary hepatocytes are a versatile tool to investigate all aspects of liver function, and frequently used in drug development and testing. Upon TGF-β challenge, hepatocytes either undergo an epithelial to mesenchymal transition (EMT) or apoptosis: culture on stiff collagen (monolayer) results in EMT whereas hepatocytes in a soft collagen matrix (sandwich) undergo programmed cell death. In this study, we analyzed the transcriptional programs triggered by TGF-β under different culture conditions. Our results indicate that TGF-β initiates an identical transcription profile in hepatocytes irrespective of the cellular environment. The fact that we nevertheless observe two vastly different phenotypes indicates that the matrix environment rather than the TGF-β induced expression signature is the major determinant of the hepatocellular response. To confirm the impact of the surrounding matrix environment on the hepatocytes׳ phenotype in response to TGF-β signaling, we studied the effect of Snail overexpression and knockout in both culture conditions. Neither genetic manipulation showed an impact on hepatocytes' fate upon TGF-β treatment, confirming the crucial role of the surrounding matrix. Our findings provide novel insights into the hepatocellular basis of the fate decision between EMT and apoptotic cell death, and might explain why liver cells can react in very different manners to identical stimuli when tissue remodeling has changed the matrix environment, as occurs in a fibrotic liver.
Collapse
|
112
|
Catalano M, D'Alessandro G, Lepore F, Corazzari M, Caldarola S, Valacca C, Faienza F, Esposito V, Limatola C, Cecconi F, Di Bartolomeo S. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol Oncol 2015; 9:1612-25. [PMID: 26022108 DOI: 10.1016/j.molonc.2015.04.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion are highly regulated processes involved in both physiological and pathological conditions. Here we show that autophagy modulation regulates the migration and invasion capabilities of glioblastoma (GBM) cells. We observed that during autophagy occurrence, obtained by nutrient deprivation or by pharmacological inhibition of the mTOR complexes, GBM migration and chemokine-mediated invasion were both impaired. We also observed that SNAIL and SLUG, two master regulators of the epithelial-mesenchymal transition (EMT process), were down-regulated upon autophagy stimulation and, as a consequence, we found a transcriptional and translational up-regulation of N- and R-cadherins. Conversely, in BECLIN 1-silenced GBM cells, an increased migration capability and an up-regulation of SNAIL and SLUG was observed, with a resulting decrease in N- and R-cadherin mRNAs. ATG5 and ATG7 down-regulation also resulted in an increased migration and invasion of GBM cells combined to an up-regulation of the two EMT regulators. Finally, experiments performed in primary GBM cells from patients largely confirmed the results obtained in established cell cultures. Overall, our results indicate that autophagy modulation triggers a molecular switch from a mesenchymal phenotype to an epithelial-like one in GBM cellular models. Since the aggressiveness and lethality of GBM is defined by local invasion and resistance to chemotherapy, we believe that our evidence provides a further rationale for including autophagy/mTOR-based targets in the current therapeutical regimen of GBM patients.
Collapse
Affiliation(s)
- Myriam Catalano
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| | - Giuseppina D'Alessandro
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| | - Francesca Lepore
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Corazzari
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS L. Spallanzani, Rome, Italy
| | - Sara Caldarola
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Valacca
- Department of Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Cristina Limatola
- Istituto Pasteur-Fondazione Cenci Bolognetti and Department of Physiology and Pharmacology, Sapienza University of Rome, Italy; Neuromed IRCCS, Via Atinese, Pozzilli, Italy
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Department of Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy; Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Sabrina Di Bartolomeo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Department of Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
113
|
Sheng G. Epiblast morphogenesis before gastrulation. Dev Biol 2015; 401:17-24. [DOI: 10.1016/j.ydbio.2014.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 12/21/2022]
|
114
|
Tang C, Mei L, Pan L, Xiong W, Zhu H, Ruan H, Zou C, Tang L, Iguchi T, Wu X. Hedgehog signaling through GLI1 and GLI2 is required for epithelial-mesenchymal transition in human trophoblasts. Biochim Biophys Acta Gen Subj 2015; 1850:1438-48. [PMID: 25888497 DOI: 10.1016/j.bbagen.2015.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) is critical for human placental development, trophoblastic differentiation, and pregnancy-associated diseases. Here, we investigated the effects of hedgehog (HH) signaling on EMT in human trophoblasts, and further explored the underlying mechanism. METHODS Human primary cytotrophoblasts and trophoblast-like JEG-3 cells were used as in vitro models. Quantitative real-time RT-PCR and Western blot analysis were performed to examine mRNA and protein levels, respectively. Lentiviruses expressing short hairpin RNA were used to knock down the target genes. Reporter assays and chromatin immunoprecipitation were performed to determine the transactivity. Cell migration, invasion and colony formation were accessed by wound healing, Matrigel-coated transwell, and colony formation assays, respectively. RESULTS Activation of HH signaling induced the transdifferentiation of cytotrophoblasts and trophoblast-like JEG-3 cells from epithelial to mesenchymal phenotypes, exhibiting the decreases in E-Cadherin expression as well as the increases in vimentin expression, invasion, migration and colony formation. Knockdown of GLI1 and GLI2 but not GLI3 attenuated HH-induced transdifferentiation, whereas GLI1 was responsible for the expression of HH-induced key EMT regulators including Snail1, Slug, and Twist, and both GLI1 and GLI2 acted directly as transcriptional repressor of CDH1 gene encoding E-Cadherin. CONCLUSION HH through GLI1 and GLI2 acts as critical signals in supporting the physiological function of mature placenta. GENERAL SIGNIFICANCE HH signaling through GLI1 and GLI2 could be required for the maintenance of human pregnancy.
Collapse
Affiliation(s)
- Chao Tang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liu Mei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyu Pan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenyi Xiong
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibin Zhu
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongfeng Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaochun Zou
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanfang Tang
- The Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Takuma Iguchi
- Department of Toxicology, Osaka University, Suita, Osaka, Japan
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
115
|
Huang X, Yan X, Zhang Z, Li X. Seeding of recipient-originated epithelial cells attenuates epithelial to mesenchymal transition in rat tracheal allotransplantation. Otolaryngol Head Neck Surg 2015; 152:1068-74. [PMID: 25820583 DOI: 10.1177/0194599815577102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The specific role and mechanism of epithelium in the progression of obliterative airway disease (OAD) after tracheal allotransplantation remain poorly understood. In this study, we used rat heterotopic tracheal transplantation to investigate the mechanism of epithelial cell seeding during the process of OAD. STUDY DESIGN Prospective, basic science. SETTING Research laboratory. SUBJECTS AND METHODS In total, 120 Sprague Dawley (SD) rats and 90 Wistar rats were used. Tracheas from SD rats were implanted into SD rats (syngeneic, n = 30) or Wistar rats (allogeneic, n = 30), and SD rat tracheas (seeded with Wistar rat-derived epithelial cells 6 days after transplantation) were transplanted into Wistar rats (seeded allogeneic, n = 30). Grafts were harvested at 7, 14, or 30 days after transplantation for histologic, quantitative reverse transcriptional polymerase chain reaction or Western blot analyses. RESULTS Syngrafts retained normal histologic structures, while the corresponding allografts demonstrated less ciliated epithelia and more lumenal occlusion. Seeding of epithelial cells ameliorated the histologic changes, reduced the expression of epithelial to mesenchymal transition (EMT)-related transcriptional factors and mesenchymal markers, and dampened the expression of transforming growth factor β1 (TGF-β1) and phosphorylation of smad3. CONCLUSION Seeding of recipient epithelial cells inhibits the progression of OAD by attenuating EMT via TGF-β-Smad signaling in rat heterotopic tracheal allografts. Clinically, the injection of recipient-originated epithelial cells might provide new insights into the treatment for OAD after tracheal allotransplantation.
Collapse
Affiliation(s)
- Xun Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
116
|
Carneiro K, de Brito JM, Rossi MID. Development by three-dimensional approaches and four-dimensional imaging: to the knowledge frontier and beyond. ACTA ACUST UNITED AC 2015; 105:1-8. [PMID: 25789860 DOI: 10.1002/bdrc.21089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three-dimensional (3D) organization and allow quantitative analysis of images over time (four-dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time-lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant.
Collapse
Affiliation(s)
- Katia Carneiro
- Biomedical Institute of Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
117
|
Lu M, Jolly MK, Onuchic J, Ben-Jacob E. Toward decoding the principles of cancer metastasis circuits. Cancer Res 2015; 74:4574-87. [PMID: 25183783 DOI: 10.1158/0008-5472.can-13-3367] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding epithelial-mesenchymal transitions (EMT) during cancer metastasis remains a major challenge in modern biology. Recent observations of cell behavior together with progress in mapping the underlying regulatory genetic networks led to new understandings of carcinoma metastasis. It is now established that the genetic network that regulates the EMT also enables an epithelial-mesenchymal hybrid phenotype. These hybrid cells possess mixed carcinoma epithelial and mesenchymal characteristics that enable specialized capabilities such as collective cell migration. On the gene network perspective, a four-component decision unit composed of two highly interconnected chimeric modules--the miR34/SNAIL and the miR200/ZEB mutual-inhibition feedback circuits--regulates the coexistence of and transitions between the different phenotypes. Here, we present a new tractable theoretical framework to model and decode the underlying principles governing the operation of the regulatory unit. Our approach connects the knowledge about intracellular pathways with observations of cellular behavior and advances toward understanding the logic of cancer decision-making. We found that the miR34/SNAIL module acts as an integrator while the miR200/ZEB module acts as a three-way switch. Consequently, the combined unit can give rise to three phenotypes (stable states): (i) a high miR200 and low ZEB, or (1, 0) state; (ii) a low miR200 and high ZEB, or (0, 1) state; and (iii) a medium miR200 and medium ZEB, or (½, ½) state. We associate these states with the epithelial, mesenchymal, and hybrid phenotypes, respectively. We reflect on the consistency between our theoretical predictions and recent observations in several types of carcinomas and suggest new testable predictions. See all articles in this Cancer Research section,
Collapse
Affiliation(s)
- Mingyang Lu
- Center for Theoretical Biological Physics, Departments of
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Departments of Bioengineering
| | - Jose' Onuchic
- Center for Theoretical Biological Physics, Departments of Physics and Astronomy, Chemistry, and Biochemistry and Cell Biology, Rice University, Houston, Texas;
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Departments of Biochemistry and Cell Biology, Rice University, Houston, Texas; School of Physics and Astronomy; and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
118
|
Abstract
We found that the secreted protein periostin (Postn) is highly induced after partial pancreatectomy in regenerating areas containing mesenchymal stroma and tubular complexes. Importantly, after partial pancreatectomy, Postn-deficient mice exhibit impaired mesenchymal formation and reduced regeneration specifically within the pancreatic β-cell compartment. Furthermore, Postn-deficient mice demonstrate an increased sensitivity to streptozotocin. Notably, injection of Postn directly into the pancreas stimulated proliferation of vimentin-expressing cells within 24 hours, and by 3 days, a mesenchymal stroma was present containing proliferating duct-like cells expressing the progenitor markers Ngn3 and Pdx1. Intraperitoneal injection of Postn resulted in increased numbers of islets and long-term glucoregulatory benefits with no adverse effects found in other tissues. Delivery of Postn throughout the pancreas via the common bile duct resulted in increased numbers of small insulin-expressing clusters and a significant improvement in glucose tolerance. Therefore, Postn is novel molecule capable of potentiating pancreatic β-cell regeneration.
Collapse
Affiliation(s)
- Johnathan K Smid
- Sprott Center for Stem Cell Research (J.K.S., S.F., M.A.R.), Ottawa Hospital Research Institute, Regenerative Medicine Program, and University of Ottawa (J.K.S., M.A.R.), Cellular and Molecular Medicine, Faculty of Medicine, Ottawa, Ontario, Canada K1H 8L6
| | | | | |
Collapse
|
119
|
Guo F, Liu X, Qing Q, Sang Y, Feng C, Li X, Jiang L, Su P, Wang Y. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells. Biochem Biophys Res Commun 2015; 459:398-404. [PMID: 25735977 DOI: 10.1016/j.bbrc.2015.02.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/20/2015] [Indexed: 02/05/2023]
Abstract
The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation.
Collapse
Affiliation(s)
- Fuchun Guo
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoke Liu
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Qin Qing
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Yaxiong Sang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Chengjun Feng
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Xiaoyu Li
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Li Jiang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Pei Su
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
120
|
Hardwick LJA, Philpott A. An oncologist׳s friend: How Xenopus contributes to cancer research. Dev Biol 2015; 408:180-7. [PMID: 25704511 PMCID: PMC4684227 DOI: 10.1016/j.ydbio.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
One of the most striking features of the Xenopus system is the versatility in providing a unique range of both in vitro and in vivo models that are rapid, accessible and easily manipulated. Here we present an overview of the diverse contribution that Xenopus has made to advance our understanding of tumour biology and behaviour; a contribution that goes beyond the traditional view of Xenopus as a developmental model organism. From the utility of the egg and oocyte extract system to the use of whole embryos as developmental or induced tumour models, the Xenopus system has been fundamental to investigation of cell cycle mechanisms, cell metabolism, cell signalling and cell behaviour, and has allowed an increasing appreciation of the parallels between early development and the pathogenesis of tumour progression and metastasis. Although not the prototypical oncological model system, we propose that Xenopus is an adaptable and multifunctional tool in the oncologist׳s arsenal.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
121
|
Cao F, Miao Y, Xu K, Liu P. Lethal (2) giant larvae: an indispensable regulator of cell polarity and cancer development. Int J Biol Sci 2015; 11:380-9. [PMID: 25798058 PMCID: PMC4366637 DOI: 10.7150/ijbs.11243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 01/04/2023] Open
Abstract
Cell polarity is one of the most basic properties of all normal cells and is essential for regulating numerous biological processes. Loss of polarity is considered a hallmark for cancer. Multiple polarity proteins are implicated in maintenance of cell polarity. Lethal (2) giant larvae (Lgl) is one of polarity proteins that plays an important role in regulating cell polarity, asymmetric division as well as tumorigenesis. Lgl proteins in different species have similar structures and conserved functions. Lgl acts as an indispensable regulator of cell biological function, including cell polarity and asymmetric division, through interplaying with other polarity proteins, regulating exocytosis, mediating cytoskeleton and being involved in signaling pathways. Furthermore, Lgl plays a role of a tumor suppressor, and the aberrant expression of Hugl, a human homologue of Lgl, contributes to multiple cancers. However, the exact functions of Lgl and the underlying mechanisms remain enigmatic. In this review, we will give an overview of the Lgl functions in cell polarity and cancer development, discuss the potential mechanisms underlying these functions, and raise our conclusion of previous studies and points of view about the future studies.
Collapse
Affiliation(s)
- Fang Cao
- 1. Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, College of Medicine, Xi'an, China
| | - Yi Miao
- 1. Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, College of Medicine, Xi'an, China
| | - Kedong Xu
- 2. Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, College of Medicine, Xi'an, China
| | - Peijun Liu
- 1. Center for Translational Medicine, The First Affiliated Hospital of Xian Jiaotong University, College of Medicine, Xi'an, China
| |
Collapse
|
122
|
Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol 2015; 112:273-300. [PMID: 25733143 DOI: 10.1016/bs.ctdb.2014.11.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental cellular process occurring during early embryo development, including gastrulation and neural crest cell migration. It can be broken down in distinct functional steps: (1) loss of baso-apical polarization characterized by cytoskeleton, tight junctions, and hemidesmosomes remodeling; (2) individualization of cells, including a decrease in cell-cell adhesion forces, (3) emergence of motility, and (4) invasive properties, including passing through the subepithelial basement membrane. These phases occur in an uninterrupted process, without requiring mitosis, in an order and with a degree of completion dictated by the microenvironment. The whole process reflects the activation of specific transcription factor families, called EMT transcription factors. Several mechanisms can combine to induce EMT. Some are reversible, involving growth factors and cytokines and/or environmental signals including extracellular matrix and local physical conditions. Others are irreversible, such as genomic alterations during carcinoma progression, along a selective and irreversible clonal drift. In carcinomas, these signals can converge to initiate a metastable phenotype. In this state, similarly to activated keratinocytes during re-epithelialization, cells can initiate a cohort migration and engage into a transient and reversible EMT controlled by the local environment prior to efficient intravasation and metastasis. EMT transcription factors also participate in cancer progression by inducing apoptosis resistance and maintaining stem-like properties exposed in tumor recurrences. These properties, very important on a clinical point of view, are not intrinsically linked to EMT, but can share common pathways.
Collapse
Affiliation(s)
- Pierre Savagner
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Institut régional du cancer Université Montpellier1, Montpellier, France.
| |
Collapse
|
123
|
Gopurappilly R, Bhonde R. Transcriptional profiling and functional network analyses of islet-like clusters (ILCs) generated from pancreatic stem cells in vitro. Genomics 2015; 105:211-9. [PMID: 25622784 DOI: 10.1016/j.ygeno.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
We have earlier reported the generation of islet-like clusters (ILCs) from mesenchymal stromal cell (MSC)-like cells present in murine pancreas. Here we compare these ILCs to native primary islets by transcriptome screening. Genes were categorized into functional clusters and network analysis was done by Ingenuity Pathway Analysis (IPA). The fold changes for a selected panel of molecules were validated with quantitative real time PCR. A differential expression of 6516 genes (p-value ≤ 0.05, 1.5 fold change) with upregulated expression of numerous inflammatory and 'Epithelial to Mesenchymal Transition' molecules (EMT) was seen. A significant increase in the early β-cell marker expression in the ILCs indicated their progenitor status. Although not fully mature, ILCs offer certain advantages including the large number of easily inducible initiator MSCs. These 'naïve' cells may aid to devise protocols for generating functional islet equivalents. Moreover their maturation upon transplantation under local microenvironmental niche is highly possible.
Collapse
Affiliation(s)
| | - Ramesh Bhonde
- School of Regenerative Medicine (SORM), Manipal University, Bangalore 560065, India.
| |
Collapse
|
124
|
|
125
|
|
126
|
Meseure D, Drak Alsibai K, Nicolas A. Pivotal role of pervasive neoplastic and stromal cells reprogramming in circulating tumor cells dissemination and metastatic colonization. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2014; 7:95-115. [PMID: 25523234 PMCID: PMC4275542 DOI: 10.1007/s12307-014-0158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023]
Abstract
Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of cancer cells acquire new properties associating plasticity, stem-like phenotype, unfolded protein response, metabolic reprogramming and autophagy, production of exosomes, survival to anoikis, invasion, immunosuppression and therapeutic resistance. Moreover, by inducing vascular transdifferentiation of cancer cells and recruiting endothelial cells and pericytes, the tumorigenic microenvironment induces development of tumor-associated vessels that allow invasive cells to gain access to the tumor vessels and to intravasate. Circulating cancer cells can survive in the blood stream by interacting with the intravascular microenvironment, extravasate through the microvasculature and interact with the metastatic microenvironment of target organs. In this review, we will focus on many recent paradigms involved in the field of tumor progression.
Collapse
Affiliation(s)
- Didier Meseure
- Platform of Investigative Pathology and Department of Biopathology, Curie Institute, 26 rue d'Ulm, 75248, Paris, Cedex 05, France,
| | | | | |
Collapse
|
127
|
Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 2014; 87:297-307. [PMID: 25162398 DOI: 10.1038/ki.2014.287] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/13/2023]
Abstract
Renal fibrosis is a major hallmark of chronic kidney disease that is considered to be a common end point of various types of renal disease. To date, the biological meaning of fibrosis during the progression of chronic kidney diseases is unknown and possibly depends on the cell type contributing to extracellular matrix production. During the past decade, the origin of myofibroblasts in the kidney has been intensively investigated. Determining the origins of renal myofibroblasts is important because these might account for the heterogeneous characteristics and behaviors of myofibroblasts. Current data strongly suggest that collagen-producing myofibroblasts in the kidney can be derived from various cellular sources. Resident renal fibroblasts and cells of hematopoietic origin migrating into the kidney seem to be the most important ancestors of myofibroblasts. It is likely that both cell types communicate with each other and also with other cell types in the kidney. In this review, we will discuss the current knowledge on the origin of scar-producing myofibroblasts and cellular events triggering fibrosis.
Collapse
|
128
|
Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, Dai X. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 2014; 29:59-74. [PMID: 24735879 DOI: 10.1016/j.devcel.2014.03.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-β from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael L Salmans
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
129
|
Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition? Semin Cancer Biol 2014; 27:39-45. [PMID: 24954011 DOI: 10.1016/j.semcancer.2014.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) play central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while exportin 1 (Xpo1) also known as chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling.
Collapse
|
130
|
Cellular contractility changes are sufficient to drive epithelial scattering. Exp Cell Res 2014; 326:187-200. [PMID: 24780819 DOI: 10.1016/j.yexcr.2014.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022]
Abstract
Epithelial scattering occurs when cells disassemble cell-cell junctions, allowing individual epithelial cells to act in a solitary manner. Epithelial scattering occurs frequently in development, where it accompanies epithelial-mesenchymal transitions and is required for individual cells to migrate and invade. While migration and invasion have received extensive research focus, how cell-cell junctions are detached remains poorly understood. An open debate has been whether disruption of cell-cell interactions occurs by remodeling of cell-cell adhesions, increased traction forces through cell substrate adhesions, or some combination of both processes. Here we seek to examine how changes in adhesion and contractility are coupled to drive detachment of individual epithelial cells during hepatocyte growth factor (HGF)/scatter factor-induced EMT. We find that HGF signaling does not alter the strength of cell-cell adhesion between cells in suspension, suggesting that changes in cell-cell adhesion strength might not accompany epithelial scattering. Instead, cell-substrate adhesion seems to play a bigger role, as cell-substrate adhesions are stronger in cells treated with HGF and since rapid scattering in cells treated with HGF and TGFβ is associated with a dramatic increase in focal adhesions. Increases in the pliability of the substratum, reducing cells ability to generate traction on the substrate, alter cells׳ ability to scatter. Further consistent with changes in substrate adhesion being required for cell-cell detachment during EMT, scattering is impaired in cells expressing both active and inactive RhoA mutants, though in different ways. In addition to its roles in driving assembly of both stress fibers and focal adhesions, RhoA also generates myosin-based contractility in cells. We therefore sought to examine how RhoA-dependent contractility contributes to cell-cell detachment. Inhibition of Rho kinase or myosin II induces the same effect on cells, namely an inhibition of cell scattering following HGF treatment. Interestingly, restoration of myosin-based contractility in blebbistatin-treated cells results in cell scattering, including global actin rearrangements. Scattering is reminiscent of HGF-induced epithelial scattering without a concomitant increase in cell migration or decrease in adhesion strength. This scattering is dependent on RhoA, as blebbistatin-induced scattering is reduced in cells expressing dominant-negative RhoA mutants. This suggests that induction of myosin-based cellular contractility may be sufficient for cell-cell detachment during epithelial scattering.
Collapse
|
131
|
Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR. Traversing the basement membrane in vivo: a diversity of strategies. ACTA ACUST UNITED AC 2014; 204:291-302. [PMID: 24493586 PMCID: PMC3912525 DOI: 10.1083/jcb.201311112] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The basement membrane is a dense, highly cross-linked, sheet-like extracellular matrix that underlies all epithelia and endothelia in multicellular animals. During development, leukocyte trafficking, and metastatic disease, cells cross the basement membrane to disperse and enter new tissues. Based largely on in vitro studies, cells have been thought to use proteases to dissolve and traverse this formidable obstacle. Surprisingly, recent in vivo studies have uncovered a remarkably diverse range of cellular- and tissue-level strategies beyond proteolysis that cells use to navigate through the basement membrane. These fascinating and unexpected mechanisms have increased our understanding of how cells cross this matrix barrier in physiological and disease settings.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
132
|
Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231:273-89. [PMID: 24006178 DOI: 10.1002/path.4253] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Fibrosis and scar formation results from chronic progressive injury in virtually every tissue and affects a growing number of people around the world. Myofibroblasts drive fibrosis, and recent work has demonstrated that mesenchymal cells, including pericytes and perivascular fibroblasts, are their main progenitors. Understanding the cellular mechanisms of pericyte/fibroblast-to-myofibroblast transition, myofibroblast proliferation and the key signalling pathways that regulate these processes is essential to develop novel targeted therapeutics for the growing patient population suffering from solid organ fibrosis. In this review, we summarize the current knowledge about different progenitor cells of myofibroblasts, discuss major pathways that regulate their transdifferentiation and discuss the current status of novel targeted anti-fibrotic therapeutics in development.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | |
Collapse
|
133
|
MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A 2013; 110:18144-9. [PMID: 24154725 DOI: 10.1073/pnas.1318192110] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Forward and backward transitions between epithelial and mesenchymal phenotypes play crucial roles in embryonic development and tissue repair. Aberrantly regulated transitions are also a hallmark of cancer metastasis. The genetic network that regulates these transitions appears to allow for the existence of a hybrid phenotype (epithelial/mesenchymal). Hybrid cells are endowed with mixed epithelial and mesenchymal characteristics, enabling specialized capabilities such as collective cell migration. Cell-fate determination between the three phenotypes is in fact regulated by a circuit composed of two highly interconnected chimeric modules--the miR-34/SNAIL and the miR-200/ZEB mutual-inhibition feedback circuits. Here, we used detailed modeling of microRNA-based regulation to study this core unit. More specifically, we investigated the functions of the two isolated modules and subsequently of the combined unit when the two modules are integrated into the full regulatory circuit. We found that miR-200/ZEB forms a tristable circuit that acts as a ternary switch, driven by miR-34/SNAIL, that is a monostable module that acts as a noise-buffering integrator of internal and external signals. We propose to associate the three stable states--(1,0), (high miR-200)/(low ZEB); (0,1), (low miR-200)/(high ZEB); and (1/2,1/2), (medium miR-200)/(medium ZEB)--with the epithelial, mesenchymal, and hybrid phenotypes, respectively. Our (1/2,1/2) state hypothesis is consistent with recent experimental studies (e.g., ZEB expression measurements in collectively migrating cells) and explains the lack of observed mesenchymal-to-hybrid transitions in metastatic cells and in induced pluripotent stem cells. Testable predictions of dynamic gene expression during complete and partial transitions are presented.
Collapse
|
134
|
Nakaya Y, Sukowati EW, Sheng G. Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex. ACTA ACUST UNITED AC 2013; 202:637-51. [PMID: 23940118 PMCID: PMC3747297 DOI: 10.1083/jcb.201302075] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amniote epiblast cells differentiate into mesoderm and endoderm lineages during gastrulation through a process called epithelial-to-mesenchymal transition (EMT). Molecular regulation of gastrulation EMT is poorly understood. Here we show that epiblast epithelial status was maintained by anchoring microtubules to the basal cortex via CLIP-associated protein (CLASP), a microtubule plus-end tracking protein, and Dystroglycan, a transmembrane protein that bridges the cytoskeleton and basement membrane (BM). Mesoderm formation required down-regulation of CLASP and Dystroglycan, and reducing CLASP activity in pregastrulation epiblast cells caused ectopic BM breakdown and disrupted epiblast integrity. These effects were mediated through the CLASP-binding partner LL5. Live-imaging using EB1-enhanced GFP (eGFP) revealed that reducing CLASP and LL5 levels in the epiblast destabilized basal microtubules. We further show that Dystroglycan is localized to basolateral membrane in epiblast cells. Basal but not lateral localization of Dystroglycan was regulated by CLASP. We propose that epiblast-BM interaction requires CLASP- and Dystroglycan-mediated cortical microtubule anchoring, the disruption of which initiates gastrulation EMT.
Collapse
Affiliation(s)
- Yukiko Nakaya
- Laboratory for Early Embryogenesis, Institute of Physical and Chemical Research RIKEN Center for Developmental Biology, Chuo-Ku Kobe, Hyogo 650-0047, Japan
| | | | | |
Collapse
|