101
|
Rogers GB, Narkewicz MR, Hoffman LR. The CF gastrointestinal microbiome: Structure and clinical impact. Pediatr Pulmonol 2016; 51:S35-S44. [PMID: 27662102 PMCID: PMC5303757 DOI: 10.1002/ppul.23544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) microbiome is shaped by host diet, immunity, and other physicochemical characteristics of the GI tract, and perturbations such as antibiotic treatments can lead to persistent changes in microbial constituency and function. These GI microbes also play critical roles in host nutrition and health. A growing body of evidence suggests that the GI microbiome in people with CF is altered, and that these dysbioses contribute to disease manifestations in many organs, both within and beyond the GI tract. Therapies that people with CF receive, even those targeting the respiratory tract, may impact the CF GI microbiome in ways that can influence the outcome of treatment. These new perspectives on the microbial contents of the CF intestine offer new opportunities for preventing a variety of CF-associated disorders. Pediatr Pulmonol. 2016;51:S35-S44. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Geraint B Rogers
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Michael R Narkewicz
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado
| | - Lucas R Hoffman
- Departments of Pediatrics and Microbiology, University of Washington, Seattle, Washington. .,Seattle Children's Hospital, Seattle, Washington.
| |
Collapse
|
102
|
Bacci G, Paganin P, Lopez L, Vanni C, Dalmastri C, Cantale C, Daddiego L, Perrotta G, Dolce D, Morelli P, Tuccio V, De Alessandri A, Fiscarelli EV, Taccetti G, Lucidi V, Bevivino A, Mengoni A. Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline. PLoS One 2016; 11:e0156807. [PMID: 27355625 PMCID: PMC4927098 DOI: 10.1371/journal.pone.0156807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Paganin
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loredana Lopez
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Chiara Vanni
- Department of Biology, University of Florence, Florence, Italy
| | - Claudia Dalmastri
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Cristina Cantale
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loretta Daddiego
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Gaetano Perrotta
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Daniela Dolce
- Department of Pediatrics, Cystic Fibrosis Center, Meyer Hospital, Florence, Italy
| | - Patrizia Morelli
- Department of Pediatrics, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - Vanessa Tuccio
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | | | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | - Giovanni Taccetti
- Department of Pediatrics, Cystic Fibrosis Center, Meyer Hospital, Florence, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
103
|
Culture-Based and Culture-Independent Bacteriologic Analysis of Cystic Fibrosis Respiratory Specimens. J Clin Microbiol 2015; 54:613-9. [PMID: 26699705 DOI: 10.1128/jcm.02299-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/17/2015] [Indexed: 01/10/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic infection and inflammation of the airways. In vitro culture of select bacterial species from respiratory specimens has been used to guide antimicrobial therapy in CF for the past few decades. More recently, DNA sequence-based, culture-independent approaches have been used to assess CF airway microbiology, although the role that these methods will (or should) have in routine microbiologic analysis of CF respiratory specimens is unclear. We performed DNA sequence analyses to detect bacterial species in 945 CF sputum samples that had been previously analyzed by selective CF culture. We determined the concordance of results based on culture and sequence analysis, highlighting the comparison of the results for the most prevalent genera. Although overall prevalence rates were comparable between the two methods, results varied by genus. While sequence analysis was more likely to detect Achromobacter, Stenotrophomonas, and Burkholderia, it was less likely to detect Staphylococcus. Streptococcus spp. were rarely reported in culture results but were the most frequently detected species by sequence analysis. A variety of obligate and facultative anaerobic species, not reported by culture, was also detected with high prevalence by sequence analysis. Sequence analysis indicated that in a considerable proportion of samples, taxa not reported by selective culture constituted a relatively high proportion of the total bacterial load, suggesting that routine CF culture may underrepresent significant segments of the bacterial communities inhabiting CF airways.
Collapse
|