101
|
Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40:294-309. [PMID: 20965423 PMCID: PMC3143508 DOI: 10.1016/j.molcel.2010.09.022] [Citation(s) in RCA: 1711] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/20/2010] [Accepted: 09/21/2010] [Indexed: 02/06/2023]
Abstract
Oxygen (O(2)) is an essential nutrient that serves as a key substrate in cellular metabolism and bioenergetics. In a variety of physiological and pathological states, organisms encounter insufficient O(2) availability, or hypoxia. In order to cope with this stress, evolutionarily conserved responses are engaged. In mammals, the primary transcriptional response to hypoxic stress is mediated by the hypoxia-inducible factors (HIFs). While canonically regulated by prolyl hydroxylase domain-containing enzymes (PHDs), the HIFα subunits are intricately responsive to numerous other factors, including factor-inhibiting HIF1α (FIH1), sirtuins, and metabolites. These transcription factors function in normal tissue homeostasis and impinge on critical aspects of disease progression and recovery. Insights from basic HIF biology are being translated into pharmaceuticals targeting the HIF pathway.
Collapse
Affiliation(s)
- Amar J Majmundar
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
102
|
Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb Vasc Biol 2010; 30:2331-6. [PMID: 20966400 DOI: 10.1161/atvbaha.110.214106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The accepted model of vessel branching distinguishes several endothelial cell fates. At the forefront of a vessel sprout, "tip cells" guide the sprouting vessel toward an angiogenic stimulus. Behind the tip, "stalk cells" proliferate to elongate the vessel branch and create a lumen. In mature vessels, endothelial cells acquire a streamlined shape to optimally conduct blood flow. For this purpose, endothelial cells switch to the "phalanx" cell fate, which is characterized by quiescent and nonproliferating cells aligned in a tight cobblestonelike layer. Vessel maturation also requires the recruitment of mural cells (ie, smooth muscle cells and pericytes). These cell fates are often altered in pathological conditions, most prominently during the formation of tumor vasculature. Given the essential role of hypoxia as the driving force for initiating angiogenesis, it is not surprising that the hypoxia-sensing machinery controls key steps in physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Cathy Coulon
- Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
103
|
Hyvärinen J, Parikka M, Sormunen R, Rämet M, Tryggvason K, Kivirikko KI, Myllyharju J, Koivunen P. Deficiency of a transmembrane prolyl 4-hydroxylase in the zebrafish leads to basement membrane defects and compromised kidney function. J Biol Chem 2010; 285:42023-32. [PMID: 20952382 DOI: 10.1074/jbc.m110.145904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) catalyze the hydroxylation of collagens and hypoxia-inducible factor (HIF)-α subunits. We studied the zebrafish homologue of the recently characterized human transmembrane P4H (P4H-TM) that can hydroxylate HIF-α, but not collagens, in vitro and influence HIF-α levels in cellulo. The zebrafish P4H-TM mRNA had its highest expression in the eye and brain and lower levels in other tissues, including the kidney. Morpholino knockdown of P4H-TM in embryos resulted in a reduction in the size of the eye and head and morphological alterations in the head from 2 days postfertilization onward. In addition, pericardial edema, regarded as a sign of kidney dysfunction, developed from 3 days postfertilization onward. The phenotype was dependent on the P4H-TM catalytic activity because similar results were obtained with morpholinos targeting either translation initiation or catalytic residues of the enzyme. Structural and functional analyses of the morphant pronephric kidneys revealed fragmented glomerular basement membranes (BMs), disorganized podocyte foot processes, and severely compromised pronephric kidney function leading to proteinuria. The opacity of the eye lens was increased due to the presence of extra nuclei and deposits, and the structure of the lens capsule BM was altered. Our data suggest that P4H-TM catalytic activity is required for the proper development of the glomerular and lens capsule BMs. Many HIF target genes were induced in the P4H-TM-deficient morphants, but the observed phenotype is not likely to be mediated at least solely via the HIF pathway, and thus P4H-TM probably has additional, as yet unknown, substrates.
Collapse
Affiliation(s)
- Jaana Hyvärinen
- Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL) causes the most common form of kidney cancer. pVHL is part of a complex that polyubiquitinates the alpha subunit of the heterodimeric transcription factor HIF. In the presence of oxygen, HIF1α is prolyl hydroxylated by EglN1 (also called PHD2); this modification recruits pVHL, which then targets HIF1α for proteasomal degradation. In hypoxic or pVHL-defective cells, HIF1α accumulates, binds to HIF1β, and transcriptionally activates genes such as VEGF. VEGF inhibitors and mTOR inhibitors, which indirectly affect HIF, are now approved for the treatment of kidney cancer. EglN1 is a 2-oxoglutarate-dependent dioxygenase; such enzymes can be inhibited with drug-like small molecules and EglN1 inhibitors are currently being tested for the treatment of anemia. EglN2 (PHD1) and EglN3 (PHD3), which are EglN1 paralogs, appear to play HIF-independent roles in cell proliferation and apoptosis, respectively, and are garnering interest as potential cancer targets. A number of JmjC-containing proteins, including RBP2 and PLU-1, are 2-oxoglutarate-dependent dioxygenases that demethylate histones. Preclinical data suggest that inhibition of RBP2 or PLU-1 would suppress tumor growth.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
105
|
Prolyl-4-hydroxylase PHD2- and hypoxia-inducible factor 2-dependent regulation of amphiregulin contributes to breast tumorigenesis. Oncogene 2010; 30:548-60. [PMID: 20856199 DOI: 10.1038/onc.2010.433] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-elicited adaptations of tumor cells are essential for tumor growth and cancer progression. Although ample evidence exists for a positive correlation between hypoxia-inducible factors (HIFs) and tumor formation, metastasis and bad prognosis, the function of the HIF-α protein stability regulating prolyl-4-hydroxylase domain enzyme PHD2 in carcinogenesis is less well understood. In this study, we demonstrate that downregulation of PHD2 leads to increased tumor growth in a hormone-dependent mammary carcinoma mouse model. Tissue microarray analysis of PHD2 protein expression in 281 clinical samples of human breast cancer showed significantly shorter survival times of patients with low-level PHD2 tumors over a period of 10 years. An angiogenesis-related antibody array identified, amongst others, amphiregulin to be increased in the absence of PHD2 and normalized after PHD2 reconstitution. Cultivation of endothelial cells in conditioned media derived from PHD2-downregulated cells resulted in enhanced tube formation that was blocked by the addition of neutralizing anti-amphiregulin antibodies. Functionally, amphiregulin was regulated on the transcriptional level specifically by HIF-2 but not HIF-1. Our data suggest that PHD2/HIF-2/amphiregulin signaling has a critical role in the regulation of breast tumor progression and propose PHD2 as a potential tumor suppressor in breast cancer.
Collapse
|
106
|
Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. Eur J Cancer 2010; 46:2399-407. [DOI: 10.1016/j.ejca.2010.05.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/01/2010] [Accepted: 05/07/2010] [Indexed: 01/09/2023]
|
107
|
Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Jim Xiao ZX, Kaelin WG, Harper JW, Wei W. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 2010; 18:147-59. [PMID: 20708156 PMCID: PMC2923652 DOI: 10.1016/j.ccr.2010.06.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 01/20/2010] [Accepted: 06/28/2010] [Indexed: 01/10/2023]
Abstract
Mdm2 is the major negative regulator of the p53 pathway. Here, we report that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of Mdm2 by casein kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCF(beta-TRCP). Inactivation of either beta-TRCP or CKI results in accumulation of Mdm2 and decreased p53 activity, and resistance to apoptosis induced by DNA damaging agents. Moreover, SCF(beta-TRCP)-dependent Mdm2 turnover also contributes to the control of repeated p53 pulses in response to persistent DNA damage. Our results provide insight into the signaling pathways controlling Mdm2 destruction and further suggest that compromised regulation of Mdm2 results in attenuated p53 activity, thereby facilitating tumor progression.
Collapse
Affiliation(s)
- Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Alan Tseng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Xiaolu L. Ang
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Caroline Mock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Haoqiang Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Biochemistry, Boston University Medical Center, Boston, MA 02118
| | - Jayne M. Stommel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - John Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Zhi-Xiong Jim Xiao
- Department of Biochemistry, Boston University Medical Center, Boston, MA 02118
| | - William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
- To whom correspondence should be addressed: Wenyi Wei, Ph.D., Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, Phone: (617)-735-2495;
| |
Collapse
|
108
|
Abstract
Differentiation status influences the prognosis for localized prostate cancer. In this issue of Cancer Cell, Mak and coworkers describe a signaling pathway involving estrogen receptor beta (ERbeta) that governs whether prostate carcinoma cells maintain an epithelial phenotype or undergo epithelial-mesenchymal transition, suggesting that ERbeta would have prognostic or therapeutic value.
Collapse
Affiliation(s)
- Massimo Loda
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
109
|
HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. J Mol Med (Berl) 2010; 88:839-49. [PMID: 20383689 DOI: 10.1007/s00109-010-0627-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Many solid tumors consist of large regions of poorly perfused cells, resulting in areas of low oxygen (hypoxia) throughout the cell mass. Cells subjected to hypoxia turn on a complex set of responses that alter their metabolism, rebalance their survival mechanisms, increase their invasive capacity, and stimulate angiogenesis. This allows them to at least temporarily escape the nutrient starvation and cell death resulting from this hostile environment. Accordingly, the hypoxic regions of tumors are often sources of the most aggressive and therapy-resistant cells, and therefore those cells that drive tumorigenesis. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are enzymes that are functionally inactivated in hypoxia, as they use both oxygen and alpha-ketoglutarate as substrates to hydroxylate target prolyl residues. Although HIF1alpha, the most highly characterized PHD target, orchestrates many of the cellular responses to hypoxia observed in tumors, PHDs themselves have previously been shown to regulate some hypoxia responses, including apoptosis, in a HIF-independent mechanism. We have previously shown that PHDs can be reactivated under hypoxia and that this results in a metabolic defect, both in vitro and in vivo. This led us to investigate whether chronic reactivation of these enzymes may inhibit tumor progression. We show here that esterified alpha-ketoglutarate given daily will induce apoptosis and inhibit tumor growth, in vivo. The effects are independent of HIF1alpha but dependent on the presence of PHD3. These data suggest that PHD3 may be a valid target in vivo for anti-tumor therapy.
Collapse
|
110
|
Quaegebeur A, Carmeliet P. Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr Top Microbiol Immunol 2010; 345:71-103. [PMID: 20582529 DOI: 10.1007/82_2010_83] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prolyl hydroxylase domain (PHD) proteins are cellular oxygen sensors that orchestrate an adaptive response to hypoxia and oxidative stress, executed by hypoxia-inducible factors (HIFs). By increasing oxygen supply, reducing oxygen consumption, and reprogramming metabolism, the PHD/HIF pathway confers tolerance towards hypoxic and oxidative stress. This review discusses the involvement of the PHD/HIF response in two, at first sight, entirely distinct pathologies with opposite outcome, i.e. cancer leading to cellular growth and neurodegeneration resulting in cell death. However, these disorders share common mechanisms of sensing oxygen and oxidative stress. We will focus on how PHD/HIF signaling is pathogenetically implicated in metabolic and vessel alterations in these diseases and how manipulation of this pathway might offer novel treatment opportunities.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Vesalius Research Center (VRC), VIB, K.U. Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium
| | | |
Collapse
|
111
|
Dang CV. Edging toward new therapeutics with cyclin D1 Egl'ng on cancer. Cancer Cell 2009; 16:361-2. [PMID: 19878865 DOI: 10.1016/j.ccr.2009.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this issue of Cancer Cell, Zhang et al. reports that the iron-dependent 2-oxoglutarate dioxygenase or prolyl hydroxylase EglN2 induces Cyclin D1 levels, egging on breast tumorigenesis. Their observations through loss of function studies suggest the potential for drug-like molecules inhibiting EglN to serve as new cancer therapeutics.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|