101
|
Oktar PA, Yildirim S, Balci D, Can A. Continual expression throughout the cell cycle and downregulation upon adipogenic differentiation makes nucleostemin a vital human MSC proliferation marker. Stem Cell Rev Rep 2011; 7:413-24. [PMID: 21063916 DOI: 10.1007/s12015-010-9201-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleostemin (NS) is a nucleolar protein expressed in stem and cancer cells. In combination with nuclear/nucleolar proteins, NS has been demonstrated to be involved in cell-cycle regulation and telomere maintenance. NS expression reflects the cell's proliferation state indicating that the cell is active in the cell cycle, whereas NS signals disappear upon differentiation. This study analyzes the spatio-temporal (nucleolar/nuclear localization during interphase and M-phase) NS remodeling in two distinct human mesenchymal stem cell (MSC) populations to discriminate the NS differences, if any, throughout their stem cell and differentiation states. Beside its prominent multilobular nucleolar localization in interphase cells, coexistence of NS with chromosome arms during mitosis was also observed. Disruption of mitotic microtubules induced dissociation of NS from the chromosome arms and scattered it into the cytoplasm. Compared to deciduous dental pulp MSCs, NS mRNA expression gradually decreased upon aging in umbilical cord stroma-derived MSCs as culture time increased. Following adipogenic differentiation of the latter, NS signals gradually disappeared in both dividing and non-dividing cells, even before the morphological and functional signs of adipogenic transformation appeared. Quantitative NS mRNA measurements showed that MSCs from two sources exhibit a strong nucleostemin expression similar to embryonic stem cells. In conclusion, apart from its novel chromosomal localization shown in this study, nucleolar NS can be considered as a marker that indicates the proliferation/differentiation states in human MSCs. Moreover, differences in the relative NS protein and mRNA levels may reflect the degree of proliferation and can be used to characterize in vitro expansion capabilities.
Collapse
Affiliation(s)
- Pinar Akpinar Oktar
- Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, 06100, Ankara, Turkey
| | | | | | | |
Collapse
|
102
|
Navarro M, Peñate X, Landeira D, López-Farfán D. Role of RPB7 in RNA pol I transcription in Trypanosoma brucei. Mol Biochem Parasitol 2011; 180:43-4. [PMID: 21816180 DOI: 10.1016/j.molbiopara.2011.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 10/18/2022]
|
103
|
Milligan-Myhre KC, Rooney PJ, Knoll LJ. Examination of a virulence mutant uncovers the ribosome biogenesis regulatory protein of Toxoplasma gondii. J Parasitol 2011; 97:1173-7. [PMID: 21736491 DOI: 10.1645/ge-2741.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several insertional mutants identified in a screen for Toxoplasma gondii that were defective in establishing a chronic infection had a common site of plasmid insertion. This insertion site was determined to be 43 bp upstream of the transcription initiation site of a gene whose predicted product has homology to ribosome biogenesis regulatory protein Rrs1p, an essential protein required for ribosome biogenesis in Saccharomyces cerevisiae. Northern blot analysis of this locus, termed TgRRS1 , showed that in the C3 mutant, the full-length transcript is down-regulated and at least 1 new smaller transcript is present. Restoration of the intact predicted promoter and locus to TgRRS1 insertional mutant strain C3 did not restore brain cyst formation to the levels of the parent strain. Epitope-tagged TgRRS1 was found to localize to the parasite nucleolus, in an area corresponding to the granular component region. TgRRS1 can serve as a marker for the sub-nucleolar granular component region of T. gondii.
Collapse
|
104
|
Abstract
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of nuclear substructures, such as the nuclear envelope, the nucleolus, and other nuclear bodies. Other smaller structural entities assemble on chromatin in response to required functions including RNA transcription, DNA replication, and DNA repair. Experiments in living cells over the last decade have revealed that many DNA binding proteins have very short residence times on chromatin. These observations have led to a model in which the assembly of nuclear macromolecular complexes is based on the transient binding of their components. While indeed most nuclear proteins are highly dynamic, we found after an extensive survey of the FRAP literature that an important subset of nuclear proteins shows either very slow turnover or complete immobility. These examples provide compelling evidence for the establishment of stable protein complexes in the nucleus over significant fractions of the cell cycle. Stable interactions in the nucleus may, therefore, contribute to the maintenance of genome integrity. Based on our compilation of FRAP data, we propose an extension of the existing model for nuclear organization which now incorporates stable interactions. Our new “induced stability” model suggests that self-organization, self-assembly, and assisted assembly contribute to nuclear architecture and function.
Collapse
|
105
|
Wittner M, Hamperl S, Stöckl U, Seufert W, Tschochner H, Milkereit P, Griesenbeck J. Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus. Cell 2011; 145:543-54. [DOI: 10.1016/j.cell.2011.03.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/17/2011] [Accepted: 03/18/2011] [Indexed: 11/15/2022]
|
106
|
Németh A, Längst G. Genome organization in and around the nucleolus. Trends Genet 2011; 27:149-56. [DOI: 10.1016/j.tig.2011.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
107
|
Stixová L, Bártová E, Matula P, Daněk O, Legartová S, Kozubek S. Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 2011; 4:5. [PMID: 21418567 PMCID: PMC3068931 DOI: 10.1186/1756-8935-4-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Background Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP) to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β) B lymphoma Mo-MLV insertion region 1 (BMI1), and telomeric-repeat binding factor 1 (TRF1) proteins, and nucleolus-related proteins, upstream binding factor (UBF) and RNA polymerase I large subunit (RPA194). We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC) inhibitors or after suppression of transcription by actinomycin D. Results We show that protein dynamics are influenced by many factors and events, including nuclear pattern and transcription activity. A slower recovery after photobleaching was found when proteins, such as HP1β, BMI1, TRF1, and others accumulated at specific foci. In identical cells, proteins that were evenly dispersed throughout the nucleoplasm recovered more rapidly. Distinct trajectories for HP1β, BMI1, and TRF1 were observed after hyperacetylation or suppression of transcription. The relationship between protein trajectory and transcription level was confirmed for telomeric protein TRF1, but not for HP1β or BMI1 proteins. Moreover, heterogeneity of foci movement was especially observed when we made distinctions between centrally and peripherally positioned foci. Conclusion Based on our results, we propose that protein kinetics are likely influenced by several factors, including chromatin condensation, differentiation, local protein density, protein binding efficiency, and nuclear pattern. These factors and events likely cooperate to dictate the mobility of particular proteins.
Collapse
Affiliation(s)
- Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
108
|
Abstract
When cells are observed by phase contrast microscopy, nucleoli are among the most conspicuous structures. The nucleolus was formally described between 1835 and 1839, but it was another century before it was discovered to be associated with a specific chromosomal locus, thus defining it as a cytogenetic entity. Nucleoli were first isolated in the 1950s, from starfish oocytes. Then, in the early 1960s, a boomlet of studies led to one of the epochal discoveries in the modern era of genetics and cell biology: that the nucleolus is the site of ribosomal RNA synthesis and nascent ribosome assembly. This epistemologically repositioned the nucleolus as not merely an aspect of nuclear anatomy but rather as a cytological manifestation of gene action-a major heuristic advance. Indeed, the finding that the nucleolus is the seat of ribosome production constitutes one of the most vivid confluences of form and function in the history of cell biology. This account presents the nucleolus in both historical and contemporary perspectives. The modern era has brought the unanticipated discovery that the nucleolus is plurifunctional, constituting a paradigm shift.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 01605, USA.
| |
Collapse
|
109
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
110
|
Beguelini M, Marchesin S, Azeredo-Oliveira M, Morielle-Versute E. Nucleolar behavior during meiosis in four species of phyllostomid bats (Chiroptera, Mammalia). GENETICS AND MOLECULAR RESEARCH 2011; 10:552-65. [DOI: 10.4238/vol10-2gmr1060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
111
|
van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 2010; 21:3735-48. [PMID: 20826608 PMCID: PMC2965689 DOI: 10.1091/mbc.e10-06-0508] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.
Collapse
Affiliation(s)
- Silvana van Koningsbruggen
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eukaryotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells, we analyzed the proteomic composition of the bovine nucleoli. The nucleoli were isolated from Madin Darby bovine kidney cells and subjected to proteomic analysis by LC-MS/MS after fractionation by SDS-PAGE and strong cation exchange chromatography. Analysis of the data using the Mascot database search and the GPM database search identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in the proteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggested that the bovine nucleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional, translational and post-translational regulation, transport, and structural organization.
Collapse
Affiliation(s)
- Amrutlal K. Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Doug Olson
- National Research Council, Plant Biotechnology Institute, University of Saskatchewan, Saskatoon, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
113
|
Franklin S, Zhang MJ, Chen H, Paulsson AK, Mitchell-Jordan SA, Li Y, Ping P, Vondriska TM. Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy. Mol Cell Proteomics 2010; 10:M110.000703. [PMID: 20807835 DOI: 10.1074/mcp.m110.000703] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As host to the genome, the nucleus plays a critical role as modulator of cellular phenotype. To understand the totality of proteins that regulate this organelle, we used proteomics to characterize the components of the cardiac nucleus. Following purification, cardiac nuclei were fractionated into biologically relevant fractions including acid-soluble proteins, chromatin-bound molecules and nucleoplasmic proteins. These distinct subproteomes were characterized by liquid chromatography-tandem MS. We report a cardiac nuclear proteome of 1048 proteins--only 146 of which are shared between the distinct subcompartments of this organelle. Analysis of genomic loci encoding these molecules gives insights into local hotspots for nuclear protein regulation. High mass accuracy and complementary analytical techniques allowed the discrimination of distinct protein isoforms, including 54 total histone variants, 17 of which were distinguished by unique peptide sequences and four of which have never been detected at the protein level. These studies are the first unbiased analysis of cardiac nuclear subcompartments and provide a foundation for exploration of this organelle's proteomes during disease.
Collapse
Affiliation(s)
- Sarah Franklin
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Kipp A, Banning A, van Schothorst EM, Méplan C, Schomburg L, Evelo C, Coort S, Gaj S, Keijer J, Hesketh J, Brigelius-Flohé R. Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutr Food Res 2010; 53:1561-72. [PMID: 19810021 DOI: 10.1002/mnfr.200900105] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Selenium is an essential micronutrient. Its recommended daily allowance is not attained by a significant proportion of the population in many countries and its intake has been suggested to affect colorectal carcinogenesis. Therefore, microarrays were used to determine how both selenoprotein and global gene expression patterns in the mouse colon were affected by marginal selenium deficiency comparable to variations in human dietary intakes. Two groups of 12 mice each were fed a selenium-deficient (0.086 mg Se/kg) or a selenium-adequate (0.15 mg Se/kg) diet. After 6 wk, plasma selenium level, liver, and colon glutathione peroxidase (GPx) activity in the deficient group was 12, 34, and 50%, respectively, of that of the adequate group. Differential gene expression was analysed with mouse 44K whole genome microarrays. Pathway analysis by GenMAPP identified the protein biosynthesis pathway as most significantly affected, followed by inflammation, Delta-Notch and Wnt pathways. Selected gene expression changes were confirmed by quantitative real-time PCR. GPx1 and the selenoproteins W, H, and M, responded significantly to selenium intake making them candidates as biomarkers for selenium status. Thus, feeding a marginal selenium-deficient diet resulted in distinct changes in global gene expression in the mouse colon. Modulation of cancer-related pathways may contribute to the higher susceptibility to colon carcinogenesis in low selenium status.
Collapse
Affiliation(s)
- Anna Kipp
- German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Sharma P, Murillas R, Zhang H, Kuehn MR. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:1227-34. [PMID: 20233849 DOI: 10.1242/jcs.060160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A number of proteins can be conjugated with both ubiquitin and the small ubiquitin-related modifier (SUMO), with crosstalk between these two post-translational modifications serving to regulate protein function and stability. We previously identified N4BP1 as a substrate for monoubiquitylation by the E3 ubiquitin ligase Nedd4. Here, we describe Nedd4-mediated polyubiquitylation and proteasomal degradation of N4BP1. In addition, we show that N4BP1 can be conjugated with SUMO1 and that this abrogates N4BP1 ubiquitylation. Consistent with this, endogenous N4BP1 is stabilized in primary embryonic fibroblasts from mutants of the desumoylating enzyme SENP1, which show increased steady-state sumoylation levels. We have localized endogenous N4BP1 predominantly to the nucleolus in primary cells. However, a small fraction is found at promyelocytic leukemia (PML) nuclear bodies (NBs). In cells deficient for SENP1 or in wild-type cells treated with the proteasome inhibitor MG132, there is considerable accumulation of N4BP1 at PML NBs. These findings suggest a dynamic interaction between subnuclear compartments, and a role for post-translational modification by ubiquitin and SUMO in the regulation of nucleolar protein turnover.
Collapse
Affiliation(s)
- Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
116
|
Matía I, González-Camacho F, Herranz R, Kiss JZ, Gasset G, van Loon JJWA, Marco R, Javier Medina F. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:184-93. [PMID: 19864040 DOI: 10.1016/j.jplph.2009.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 05/20/2023]
Abstract
Seeds of Arabidopsis thaliana were sent to space and germinated in orbit. Seedlings grew for 4d and were then fixed in-flight with paraformaldehyde. The experiment was replicated on the ground in a Random Positioning Machine, an effective simulator of microgravity. In addition, samples from a different space experiment, processed in a similar way but fixed in glutaraldehyde, including a control flight experiment in a 1g centrifuge, were also used. In all cases, comparisons were performed with ground controls at 1g. Seedlings grown in microgravity were significantly longer than the ground 1g controls. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation and cell growth. Proliferation rate was quantified by counting the number of cells per millimeter in the specific cell files, and was found to be higher in microgravity-grown samples than in the control 1g. Cell growth was appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus and by the levels of the nucleolar protein nucleolin. All these parameters showed a depletion of the rate of ribosome production in microgravity-grown samples versus samples grown at 1g. The results show that growth in microgravity induces alterations in essential cellular functions. Cell growth and proliferation, which are strictly associated functions under normal ground conditions, appeared divergent after gravity modification; proliferation was enhanced, whereas growth was depleted. We suggest that the cause of these changes could be an alteration in the cell cycle regulation, at the levels of checkpoints regulating cell cycle progression, leading to a shortened G2 period.
Collapse
Affiliation(s)
- Isabel Matía
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Taliansky ME, Brown JWS, Rajamäki ML, Valkonen JPT, Kalinina NO. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 2010; 77:119-58. [PMID: 20951872 PMCID: PMC7149663 DOI: 10.1016/b978-0-12-385034-8.00005-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleolus is a dynamic subnuclear body with roles in ribosome subunit biogenesis, mediation of cell-stress responses, and regulation of cell growth. An increasing number of reports reveal that similar to the proteins of animal viruses, many plant virus proteins localize in the nucleolus to divert host nucleolar proteins from their natural functions in order to exert novel role(s) in the virus infection cycle. This chapter will highlight studies showing how plant viruses recruit nucleolar functions to facilitate virus translation and replication, virus movement and assembly of virus-specific ribonucleoprotein (RNP) particles, and to counteract plant host defense responses. Plant viruses also provide a valuable tool to gain new insights into novel nucleolar functions and processes. Investigating the interactions between plant viruses and the nucleolus will facilitate the design of novel strategies to control plant virus infections.
Collapse
Affiliation(s)
- M E Taliansky
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
118
|
Lenser T, Weisshart K, Ulbricht T, Klement K, Hemmerich P. Fluorescence Fluctuation Microscopy to Reveal 3D Architecture and Function in the Cell Nucleus. Methods Cell Biol 2010; 98:2-33. [DOI: 10.1016/s0091-679x(10)98001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
119
|
Gaudin V, Andrey P, Devinoy E, Kress C, Kieu K, Beaujean N, Maurin Y, Debey P. Modeling the 3D functional architecture of the nucleus in animal and plant kingdoms. C R Biol 2009; 332:937-46. [PMID: 19909917 DOI: 10.1016/j.crvi.2009.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Compartmentalization is one of the fundamental principles which underly nuclear function. Numerous studies describe complex and sometimes conflicting relationships between nuclear gene positioning and transcription regulation. Therefore the question is whether topological landmarks and/or organization principles exist to describe the nuclear architecture and, if existing, whether these principles are identical in the animal and plant kingdoms. In the frame of an agroBI-INRA program on nuclear architecture, we set up a multidisciplinary approach combining biological studies, spatial statistics and 3D modeling to investigate spatial organization of a nuclear compartment in both plant and animal cells in their physiological contexts. In this article, we review the questions addressed in this program and the methodology of our work.
Collapse
Affiliation(s)
- Valérie Gaudin
- Laboratoire de biologie cellulaire, UR501, IJPB, route de Saint-Cyr, INRA, 78026 Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Growth control and ribosome biogenesis. Curr Opin Cell Biol 2009; 21:855-63. [PMID: 19796927 DOI: 10.1016/j.ceb.2009.09.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 12/27/2022]
Abstract
Ribosomes provide the basis for protein production and this drives cell growth. Recent studies, both in yeast and in higher eukaryotes, are beginning to reveal new mechanisms underlying the elaborate control of ribosome biogenesis, which requires coordinate regulation of all three RNA polymerases. Transcription of ribosomal RNA is finely tuned to cellular energy status and linked to the production of ribosomal proteins. Several autoregulatory mechanisms controlling various aspects of ribosome biogenesis have been uncovered and reveal new connections to cell-cycle and cell-size control. Ribosome biogenesis has now been clearly linked to disease, particularly to cancer and anemia, and also to aging. A challenge for future studies will be to elucidate further the molecular mechanisms underlying these connections.
Collapse
|
121
|
Kim SH, Koroleva OA, Lewandowska D, Pendle AF, Clark GP, Simpson CG, Shaw PJ, Brown JWS. Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the Arabidopsis nucleolus. THE PLANT CELL 2009; 21:2045-57. [PMID: 19602621 PMCID: PMC2729600 DOI: 10.1105/tpc.109.067736] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 05/19/2023]
Abstract
The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.
Collapse
Affiliation(s)
- Sang Hyon Kim
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Turner AJ, Knox AA, Prieto JL, McStay B, Watkins NJ. A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4. Mol Cell Biol 2009; 29:3007-17. [PMID: 19332556 PMCID: PMC2682003 DOI: 10.1128/mcb.00029-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/12/2009] [Accepted: 03/24/2009] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic 18S rRNA processing is mediated by the small subunit (SSU) processome, a machine comprised of the U3 small nucleolar RNP (U3 snoRNP), tUTP, bUTP, MPP10, and BMS1/RCL1 subcomplexes. We report that the human SSU processome is a dynamic structure with the recruitment and release of subcomplexes occurring during the early stages of ribosome biogenesis. A novel 50S U3 snoRNP accumulated when either pre-rRNA transcription was blocked or the tUTP proteins were depleted. This complex did not contain the tUTP, bUTP, MPP10, and BMS1/RCL1 subcomplexes but was associated with the RNA-binding proteins nucleolin and RRP5 and the RNA helicase DBP4. Our data suggest that the 50S U3 snoRNP is an SSU assembly intermediate that is likely recruited to the pre-rRNA through the RNA-binding proteins nucleolin and RRP5. We predict that nucleolin is only transiently associated with the SSU processome and likely leaves the complex not long after 50S U3 snoRNP recruitment. The nucleolin-binding site potentially overlaps that of several other key factors, and we propose that this protein must leave the SSU processome for pre-rRNA processing to occur.
Collapse
Affiliation(s)
- Amy Jane Turner
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
123
|
Patrushev LI, Minkevich IG. The problem of the eukaryotic genome size. BIOCHEMISTRY (MOSCOW) 2009; 73:1519-52. [PMID: 19216716 DOI: 10.1134/s0006297908130117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.
Collapse
Affiliation(s)
- L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
124
|
Jhingan GD, Panigrahi SK, Bhattacharya A, Bhattacharya S. The nucleolus in Entamoeba histolytica and Entamoeba invadens is located at the nuclear periphery. Mol Biochem Parasitol 2009; 167:72-80. [PMID: 19416742 DOI: 10.1016/j.molbiopara.2009.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/21/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
The ribosomal RNA genes in the human parasite Entamoeba histolytica and its reptilian counterpart Entamoeba invadens are located on extrachromosomal circles. The expression of rRNA genes generally takes place in a specialized nuclear compartment-the nucleolus. In Entamoeba species the nuclear space that may be called the nucleolus has yet to be defined. Previous studies showed that the rDNA circles are located at the nuclear periphery. Here we have raised antibodies against the E. histolytica homologue of fibrillarin, a highly conserved protein known to be a marker for nucleolus. These antibodies cross-reacted preferentially with the nuclear periphery, forming a peripheral ring. There was complete colocalization of fibrillarin with the signal obtained by antibodies against E. histolytica RNA polymerase I (but not polymerase II and III), strongly suggesting that the nucleolus in E. histolytica is indeed located at the nuclear periphery. The dynamic nature of the nucleolus was evident when cells were subjected to a variety of growth stresses. Although the peripheral nucleolar structure was retained, stress was accompanied by significant cytoplasmic localization of RNA polymerase I, and to some extent fibrillarin. The nucleolus in E. invadens was also located at the nuclear periphery. When these cells were induced to encyst the nucleolar ring structure was lost, giving way to small, fragmented foci. This study gives the first clear insight into nucleolar structure in Entamoeba.
Collapse
Affiliation(s)
- Gagan Deep Jhingan
- School of Environmental Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | | | | | | |
Collapse
|
125
|
Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, Jones IM, Brown JWS, Shaw PJ. Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. THE PLANT CELL 2009; 21:1592-606. [PMID: 19435936 PMCID: PMC2700535 DOI: 10.1105/tpc.108.060434] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.
Collapse
Affiliation(s)
- O A Koroleva
- Department of Cell Biology, John Ines Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
|
127
|
Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N, Komada M. Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci 2009; 122:678-86. [DOI: 10.1242/jcs.044461] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleolus is a subnuclear compartment and the site of ribosome biogenesis. Previous studies have implicated protein ubiquitylation in nucleolar activity. Here we show that USP36, a deubiquitylating enzyme of unknown function, regulates nucleolar activity in mammalian cells. USP36 localized to nucleoli via the C-terminal region, which contains basic amino acid stretches. Dominant-negative inhibition of USP36 caused the accumulation of ubiquitin-protein conjugates in nucleoli, suggesting that nucleoli are the site of USP36 action. USP36 deubiquitylated the nucleolar proteins nucleophosmin/B23 and fibrillarin, and stabilized them by counteracting ubiquitylation-mediated proteasomal degradation. RNAi-mediated depletion of cellular USP36 resulted in reduced levels of rRNA transcription and processing, a less-developed nucleolar morphology and a slight reduction in the cytoplasmic ribosome level, which eventually led to a reduced rate of cell proliferation. We conclude that by deubiquitylating various nucleolar substrate proteins including nucleophosmin/B23 and fibrillarin, USP36 plays a crucial role in regulating the structure and function of nucleoli.
Collapse
Affiliation(s)
- Akinori Endo
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshifumi Inada
- Department of Molecular Biology, Nagoya University, Nagoya 464-8602, Japan
| | - Akitsugu Yamamoto
- Department of Bio-science, Nagahama Institute of Bio-science and Technology, Nagahama 526-0829, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Naomi Kitamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
128
|
Ellery PM, Cindrova-Davies T, Jauniaux E, Ferguson-Smith AC, Burton GJ. Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta 2009; 30:329-34. [PMID: 19215981 PMCID: PMC3712185 DOI: 10.1016/j.placenta.2009.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/24/2022]
Abstract
The aim was to test for evidence of transcriptional activity within the nuclei of the syncytiotrophoblast of the human placenta. The syncytiotrophoblast forms the epithelial covering of the villous tree, and is a multinucleated, terminally-differentiated syncytium generated through fusion of the underlying progenitor cytotrophoblast cells. Its nuclei are heterogeneous with respect to chromatin condensation, and previous functional studies of 3H-uridine uptake in vitro have indicated that they are transcriptionally inactive. This observation is surprising given the key roles this tissue plays in active transport, hormone synthesis and metabolic regulation, and has widespread implications for trophoblast physiology and pathophysiology. We used three different approaches to look for evidence of transcriptional activity. First, immunofluorescence staining was performed on paraffin-embedded early pregnancy and term placental villi, using an antibody directed specifically against the actively transcribing form of RNA polymerase II. Second, a nucleoside incorporation assay was applied to placental villi maintained in short-term culture, with and without the transcription blocker α-amanitin. Third, histone modifications associated with active chromatin were identified by immunohistochemistry and immunofluorescence. Each of these methods showed transcription to be occurring in a proportion of syncytiotrophoblast nuclei, with qualitative evidence for transcription being more abundant in the first trimester than at term. These findings correlated with electron microscopical observations of prominent nucleoli within the nuclei, particularly during early pregnancy, signifying transcription of ribosomal RNA. Contrary to previous findings, these results confirm that a proportion of syncytiotrophoblast nuclei actively produce mRNA transcripts.
Collapse
Affiliation(s)
- P M Ellery
- Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | | | |
Collapse
|
129
|
Sivaramakrishnan G, Sun Y, Tan SK, Lin VCL. Dynamic localization of tripartite motif-containing 22 in nuclear and nucleolar bodies. Exp Cell Res 2009; 315:1521-32. [PMID: 19331816 DOI: 10.1016/j.yexcr.2009.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/21/2009] [Accepted: 01/29/2009] [Indexed: 01/08/2023]
Abstract
Tripartite motif-containing 22 (TRIM22) exhibits antiviral and growth inhibitory properties, but there has been no study on the localization and dynamics of the endogenous TRIM22 protein. We report here that TRIM22 is dramatically induced by progesterone in MDA-MB-231-derived ABC28 cells and T47D cells. This induction was associated with an increase in TRIM22 nuclear bodies (NB), and an even more prominent increase in nucleolar TRIM22 bodies. Distinct endogenous TRIM22 NB were also demonstrated in several other cell lines including MCF7 and HeLa cells. These TRIM22 NB resemble Cajal bodies, co-localized with these structures and co-immunoprecipitated with p80-coilin. However, IFNgamma-induced TRIM22 in HeLa and MCF7 cells did not form NB, implying the forms and distribution of TRIM22 are regulated by specific cellular signals. This notion is also supported by the observation that TRIM22 NB undergoes dynamic cell-cycle dependent changes in distribution such that TRIM22 NB started to form in early G0/G1 but became dispersed in the S-phase. In light of its potential antiviral and antitumor properties, the findings here provide an interesting gateway to study the relationship between the different forms and functions of TRIM22.
Collapse
Affiliation(s)
- Gayathri Sivaramakrishnan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
130
|
Ohyanagi H, Ikeo K, Gojobori T. The origin of nucleus: Rebuild from the prokaryotic ancestors of ribosome export factors. Gene 2008; 423:149-52. [DOI: 10.1016/j.gene.2008.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
131
|
Hubert T, Van Impe K, Vandekerckhove J, Gettemans J. The F-actin filament capping protein CapG is a bona fide nucleolar protein. Biochem Biophys Res Commun 2008; 377:699-704. [PMID: 18938132 DOI: 10.1016/j.bbrc.2008.10.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022]
Abstract
Actin works in concert with myosin I to regulate the transcription of ribosomal genes in the nucleolus. Recently, nucleolar actin has been shown to be active in its polymeric form raising the question how actin dynamics is regulated in the nucleolus. Here, we show that the actin capping protein CapG localizes in the nucleolus of cultured cells. CapG transport to the nucleolus is an active and ATP-dependent process. Association of CapG with the nucleolus requires active RNA Polymerase I transcription. In addition, we show that activated Ran GTPase, an interaction partner of CapG, is also transported to the nucleolus. A constitutively active Ran mutant promotes CapG accumulation in the nucleolus indicating that CapG transport to the nucleolus can be supported by Ran. Our results suggest that filamentous actin in the nucleolus might be regulated by actin binding proteins such as CapG.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Katrien Van Impe
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Joël Vandekerckhove
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Jan Gettemans
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; Department of Biochemistry, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
| |
Collapse
|
132
|
Chromatin: linking structure and function in the nucleolus. Chromosoma 2008; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
|
133
|
Ohyanagi H, Ikeo K, Gojobori T. Eukaryotic nuclear structure explains the evolutionary rate difference of ribosome export factors. Gene 2008; 421:7-13. [DOI: 10.1016/j.gene.2008.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 03/04/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
|
134
|
|
135
|
Pseudo-NORs: a novel model for studying nucleoli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2116-23. [PMID: 18687368 DOI: 10.1016/j.bbamcr.2008.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/21/2022]
Abstract
Nucleolar organiser regions (NORs) are comprised of tandem arrays of ribosomal gene (rDNA) repeats that are transcribed by RNA polymerase I (Pol I), ultimately resulting in formation of a nucleolus. Upstream binding factor (UBF), a DNA binding protein and component of the Pol I transcription machinery, binds extensively across the rDNA repeat in vivo. Pseudo-NORs are tandem arrays of a heterologous DNA sequence with high affinity for UBF introduced into human chromosomes. In this review we describe how analysis of pseudo-NORs has provided important insights into nucleolar formation. Pseudo-NORs mimic endogenous NORs in a number of important respects. On metaphase chromosomes both appear as secondary constrictions comprised of undercondensed chromatin. The transcriptional silence of pseudo-NORs provides a platform for studying the transcription independent recruitment of factors required for nucleolar formation by this specialised chromatin structure. During interphase, pseudo-NORs appear as distinct and novel sub-nuclear bodies. Analysis of these bodies and comparison to their endogenous counterpart has provided insights into nucleolar formation and structure.
Collapse
|
136
|
Montanaro L, Treré D, Derenzini M. Nucleolus, ribosomes, and cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:301-10. [PMID: 18583314 DOI: 10.2353/ajpath.2008.070752] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complex aspects linking the nucleolus and ribosome biogenesis to cancer are reviewed here. The available evidence indicates that the morphological and functional changes in the nucleolus, widely observed in cancer tissues, are a consequence of both the increased demand for ribosome biogenesis, which characterizes proliferating cells, and the changes in the mechanisms controlling cell proliferation. In fact, the loss or functional changes in the two major tumor suppressor proteins pRB and p53 cause an up-regulation of ribosome biogenesis in cancer tissues. In this context, the association in human carcinomas of nucleolar hypertrophy with bad prognoses is worthy of note. Further, an increasing amount of data coming from studies on both hepatitis virus-induced chronic liver diseases and a subset of rare inherited disorders, including X-linked dyskeratosis congenita, suggests an active role of the nucleolus in tumorigenesis. Both an up-regulation of ribosome production and changes in the ribosome structure might causally contribute to neoplastic transformation, by affecting the balance of protein translation, thus altering the synthesis of proteins that play an important role in the genesis of cancer.
Collapse
Affiliation(s)
- Lorenzo Montanaro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
137
|
Cvacková Z, Albring KF, Koberna K, Ligasová A, Huber O, Raska I, Stanek D. Pontin is localized in nucleolar fibrillar centers. Chromosoma 2008; 117:487-97. [PMID: 18548265 DOI: 10.1007/s00412-008-0170-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/26/2022]
Abstract
Pontin is a multifunctional protein having roles in various cellular processes including regulation of gene expression. Here, we addressed Pontin intracellular localization using two different monoclonal antibodies directed against different Pontin epitopes. For the first time, Pontin was directly visualized in nucleoli where it co-localizes with Upstream Binding Factor and RNA polymerase I. Nucleolar localization of Pontin was confirmed by its detection in nucleolar extracts and by electron microscopy, which revealed Pontin accumulation specifically in the nucleolar fibrillar centers. Pontin localization in the nucleolus was dynamic and Pontin accumulated in large nucleolar dots mainly during S-phase. Pontin concentration in the large nucleolar dots correlated with reduced transcriptional activity of nucleoli. In addition, Pontin was found to associate with RNA polymerase I and to interact in a complex with c-Myc with rDNA sequences indicating that Pontin is involved in the c-Myc-dependent regulation of rRNA synthesis.
Collapse
Affiliation(s)
- Zuzana Cvacková
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
In eukaryotic cells, the nucleus contains the genome and is the site of transcriptional regulation. The nucleus is the largest and stiffest organelle and is exposed to mechanical forces transmitted through the cytoskeleton from outside the cell and from force generation within the cell. Here, we discuss the effect of intra- and extracellular forces on nuclear shape and structure and how these force-induced changes could be implicated in nuclear mechanotransduction, ie, force-induced changes in cell signaling and gene transcription. We review mechanical studies of the nucleus and nuclear structural proteins, such as lamins. Dramatic changes in nuclear shape, organization, and stiffness are seen in cells where lamin proteins are mutated or absent, as in genetically engineered mice, RNA interference studies, or human disease. We examine the different mechanical pathways from the force-responsive cytoskeleton to the nucleus. We also highlight studies that link changes in nuclear shape with cell function during developmental, physiological, and pathological modifications. Together, these studies suggest that the nucleus itself may play an important role in the response of the cell to force.
Collapse
Affiliation(s)
- Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
139
|
Tang CW, Maya-Mendoza A, Martin C, Zeng K, Chen S, Feret D, Wilson SA, Jackson DA. The integrity of a lamin-B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. J Cell Sci 2008; 121:1014-24. [PMID: 18334554 DOI: 10.1242/jcs.020982] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatial organisation of nuclear compartments is an important regulator of chromatin function, yet the molecular principles that maintain nuclear architecture remain ill-defined. We have used RNA interference to deplete key structural nuclear proteins, the nuclear lamins. In HeLa cells, we show that reduced expression of lamin B1, but not lamin A/C, severely inhibits RNA synthesis--first by RNA polymerase II and later by RNA polymerase I. Declining levels of transcription correlate with different morphological changes in major nuclear compartments, nucleoli and nuclear speckles. Ultimately, nuclear changes linked to the loss of synthetic activity result in expansion of the inter-chromatin domain and corresponding changes in the structure and spatial organisation of chromosome territories, which relocate towards the nuclear periphery. These results show that a lamin B1-containing nucleoskeleton is required to maintain RNA synthesis and that ongoing synthesis is a fundamental determinant of global nuclear architecture in mammalian cells.
Collapse
Affiliation(s)
- Chi W Tang
- Faculty of Life Sciences, University of Manchester, MIB, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Tsai YT, Lin CI, Chen HK, Lee KM, Hsu CY, Yang SJ, Yeh NH. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription. J Biomed Sci 2008; 15:471-86. [PMID: 18253863 PMCID: PMC2440943 DOI: 10.1007/s11373-007-9226-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/23/2007] [Indexed: 11/29/2022] Open
Abstract
The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to alpha-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric alpha-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric alpha-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance.
Collapse
Affiliation(s)
- Yi-Tzang Tsai
- School of Life Science, Institute of Microbiology and Immunology, National Yang-Ming University, 155 Li-Nong Street Sec. 2, Taipei, 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
141
|
Iwamoto F, Stadler M, Chalupníková K, Oakeley E, Nagamine Y. Transcription-dependent nucleolar cap localization and possible nuclear function of DExH RNA helicase RHAU. Exp Cell Res 2008; 314:1378-91. [PMID: 18279852 DOI: 10.1016/j.yexcr.2008.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 12/31/2022]
Abstract
RHAU (RNA helicase associated with AU-rich element) is a DExH protein originally identified as a factor accelerating AU-rich element-mediated mRNA degradation. The discovery that RHAU is predominantly localized in the nucleus, despite mRNA degradation occurring in the cytoplasm, prompted us to consider the nuclear functions of RHAU. In HeLa cells, RHAU was found to be localized throughout the nucleoplasm with some concentrated in nuclear speckles. Transcriptional arrest altered the localization to nucleolar caps, where RHAU is closely localized with RNA helicases p68 and p72, suggesting that RHAU is involved in transcription-related RNA metabolism in the nucleus. To see whether RHAU affects global gene expression transcriptionally or posttranscriptionally, we performed microarray analysis using total RNA from RHAU-depleted HeLa cell lines, measuring both steady-state mRNA levels and mRNA half-lives by actinomycin D chase. There was no change in the half-lives of most transcripts whose steady-state levels were affected by RHAU knockdown, suggesting that these transcripts are subjected to transcriptional regulation. We propose that RHAU has a dual function, being involved in both the synthesis and degradation of mRNA in different subcellular compartments.
Collapse
Affiliation(s)
- Fumiko Iwamoto
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel, Switzerland
| | | | | | | | | |
Collapse
|
142
|
Schneider R, Grosschedl R. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 2008; 21:3027-43. [PMID: 18056419 DOI: 10.1101/gad.1604607] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The organization of the genome in the nucleus of a eukaryotic cell is fairly complex and dynamic. Various features of the nuclear architecture, including compartmentalization of molecular machines and the spatial arrangement of genomic sequences, help to carry out and regulate nuclear processes, such as DNA replication, DNA repair, gene transcription, RNA processing, and mRNA transport. Compartmentalized multiprotein complexes undergo extensive modifications or exchange of protein subunits, allowing for an exquisite dynamics of structural components and functional processes of the nucleus. The architecture of the interphase nucleus is linked to the spatial arrangement of genes and gene clusters, the structure of chromatin, and the accessibility of regulatory DNA elements. In this review, we discuss recent studies that have provided exciting insight into the interplay between nuclear architecture, genome organization, and gene expression.
Collapse
|
143
|
Abstract
The nucleolus is a multifunctional compartment of the eukaryotic nucleus. Besides its well-recognised role in transcription and processing of ribosomal RNA and the assembly of ribosomal subunits, the nucleolus has functions in the processing and assembly of a variety of RNPs and is involved in cell cycle control and senescence and as a sensor of stress. Historically, nucleoli have been tenuously linked to the biogenesis and, in particular, export of mRNAs in yeast and mammalian cells. Recently, data from plants have extended the functions in which the plant nucleolus is involved to include transcriptional gene silencing as well as mRNA surveillance and nonsense-mediated decay, and mRNA export. The nucleolus in plants may therefore have important roles in the biogenesis and quality control of mRNAs.
Collapse
Affiliation(s)
- Anireddy S. N. Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523 USA
| | - Maxim Golovkin
- Department of Microbiology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
144
|
Abstract
We describe a method for isolating nuclei from cultured Arabidopsis cells. The same method can be used to further isolate nucleoli. Cell walls are first digested to yield protoplasts, which are purified by flotation on a Percoll gradient. Mechanical homogenisation is used to release nuclei, or with more homogenisation, nucleoli. These fractions are most easily purified by gentle centrifugation. The method has been used for proteomic analysis of nucleoli, as well as for biochemical studies. We also describe a method for immunological labelling of isolated nuclei.
Collapse
|
145
|
Nucleolar trafficking of nucleostemin family proteins: common versus protein-specific mechanisms. Mol Cell Biol 2007; 27:8670-82. [PMID: 17923687 DOI: 10.1128/mcb.00635-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins.
Collapse
|
146
|
Elling AA, Davis EL, Hussey RS, Baum TJ. Active uptake of cyst nematode parasitism proteins into the plant cell nucleus. Int J Parasitol 2007; 37:1269-79. [PMID: 17517414 DOI: 10.1016/j.ijpara.2007.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/11/2007] [Accepted: 03/13/2007] [Indexed: 01/07/2023]
Abstract
Cyst nematodes produce parasitism proteins that contain putative nuclear localisation signals (NLSs) and, therefore, are predicted to be imported into the nucleus of the host plant cell. The in planta localisation patterns of eight soybean cyst nematode (Heterodera glycines) parasitism proteins with putative NLSs were determined by producing these proteins as translational fusions with the GFP and GUS reporter proteins. Two parasitism proteins were found to be imported into the nuclei of onion epidermal cells as well as Arabidopsis protoplasts. One of these two parasitism proteins was further transported into the nucleoli. Mutations introduced into the NLS domains of these two proteins abolished nuclear import and caused a cytoplasmic accumulation. Furthermore, we observed active nuclear uptake for three additional parasitism proteins, however, only when these proteins were synthesised as truncated forms. Two of these proteins were further transported into nucleoli. We hypothesise that nuclear uptake and nucleolar localisation are important mechanisms for H. glycines to modulate the nuclear biology of parasitised cells of its host plant.
Collapse
Affiliation(s)
- Axel A Elling
- Interdepartmental Genetics Program and Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
147
|
Fakan S, van Driel R. The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 2007; 18:676-81. [PMID: 17920313 DOI: 10.1016/j.semcdb.2007.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/29/2022]
Abstract
The perichromatin region has emerged as an important functional domain of the interphase nucleus. Major nuclear functions, such as DNA replication and transcription, as well as different RNA processing factors, occur within this domain. In this review, we summarize in situ observations regarding chromatin structure analysed by transmission electron microscopy and compare results to data obtained by other methods. In particular, we address the functional architecture of the perichromatin region and the way chromatin may be folded within this nucleoplasmic domain.
Collapse
Affiliation(s)
- Stanislav Fakan
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, CH-1005 Lausanne, Switzerland.
| | | |
Collapse
|
148
|
Prieto JL, McStay B. Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 2007; 21:2041-54. [PMID: 17699751 PMCID: PMC1948859 DOI: 10.1101/gad.436707] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/06/2007] [Indexed: 11/24/2022]
Abstract
Efficient ribosome biogenesis requires coordination of a highly complex series of events. Early events include pre-RNA transcription, processing, and modification. Analysis in yeast has demonstrated that t-UTPs, components of the U3 snoRNA-containing pre-rRNA processing complex, are required for efficient transcription of ribosomal genes (rDNA) by RNA polymerase I (pol I). Here, we characterize human t-UTPs and establish that their ability to link transcription and pre-rRNA processing is evolutionarily conserved. The pol I transcription factor UBF binds extensively across rDNA throughout the cell cycle, resulting in a specialized form of chromatin that is the hallmark of active nucleolar organizer regions (NORs). Transcriptionally silent pseudo-NORs are ectopic, chromosomally integrated, artificial arrays that mimic this specialized chromatin structure. Pseudo-NORs sequester t-UTPs and factors linking transcription with pre-rRNA modification (Nopp140 and Treacle). Recruitment is independent of transcription, the underlying DNA sequence, and location within the nucleolus. Previously, we have demonstrated that pseudo-NORs sequester every component of the pol I transcription machinery. Taken together, these results highlight the importance of the specialized chromatin structure at active NORs in coordinating early events in ribosome biogenesis and nucleolar formation.
Collapse
Affiliation(s)
- José-Luis Prieto
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY Scotland, United Kingdom
| | - Brian McStay
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY Scotland, United Kingdom
| |
Collapse
|
149
|
Schuemie M, Chichester C, Lisacek F, Coute Y, Roes PJ, Sanchez JC, Kors J, Mons B. Assignment of protein function and discovery of novel nucleolar proteins based on automatic analysis of MEDLINE. Proteomics 2007; 7:921-31. [PMID: 17370270 DOI: 10.1002/pmic.200600693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Attribution of the most probable functions to proteins identified by proteomics is a significant challenge that requires extensive literature analysis. We have developed a system for automated prediction of implicit and explicit biologically meaningful functions for a proteomics study of the nucleolus. This approach uses a set of vocabulary terms to map and integrate the information from the entire MEDLINE database. Based on a combination of cross-species sequence homology searches and the corresponding literature, our approach facilitated the direct association between sequence data and information from biological texts describing function. Comparison of our automated functional assignment to manual annotation demonstrated our method to be highly effective. To establish the sensitivity, we defined the functional subtleties within a family containing a highly conserved sequence. Clustering of the DEAD-box protein family of RNA helicases confirmed that these proteins shared similar morphology although functional subfamilies were accurately identified by our approach. We visualized the nucleolar proteome in terms of protein functions using multi-dimensional scaling, showing functional associations between nucleolar proteins that were not previously realized. Finally, by clustering the functional properties of the established nucleolar proteins, we predicted novel nucleolar proteins. Subsequently, nonproteomics studies confirmed the predictions of previously unidentified nucleolar proteins.
Collapse
Affiliation(s)
- Martijn Schuemie
- Biosemantics Group, Medical Informatics Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Navarro M, Peñate X, Landeira D. Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol 2007; 15:263-70. [PMID: 17481901 DOI: 10.1016/j.tim.2007.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/26/2007] [Accepted: 04/16/2007] [Indexed: 11/24/2022]
Abstract
The influence of nuclear architecture on the regulation of developmental gene expression has recently become evident in many organisms ranging from yeast to humans. During interphase, chromosomes and nuclear structures are in constant motion; therefore, correct temporal association is needed to meet the requirements of gene expression. Trypanosoma brucei is an excellent model system in which to analyze nuclear spatial implications in the regulation of gene expression because the two main surface-protein genes (procyclin and VSG) are transcribed by the highly compartmentalized RNA polymerase I and undergo distinct transcriptional activation or downregulation during developmental differentiation. Furthermore, the infective bloodstream form of the parasite undergoes antigenic variation, displaying sequentially different types of VSG by allelic exclusion. Here, we discuss recent advances in understanding the role of chromosomal nuclear positioning in the regulation of gene expression in T. brucei.
Collapse
Affiliation(s)
- Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| | | | | |
Collapse
|