101
|
Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K. Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 2019; 37:1246-1262. [PMID: 30604468 DOI: 10.1002/jor.24212] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/13/2018] [Indexed: 02/04/2023]
Abstract
Adult skeletal muscle can regenerate effectively after mild physical or chemical insult. Muscle trauma or disease can overwhelm this innate capacity for regeneration and result in heightened inflammation and fibrotic tissue deposition resulting in loss of structure and function. Recent studies have focused on biomaterial and stem cell-based therapies to promote skeletal muscle regeneration following injury and disease. Many stem cell populations besides satellite cells are implicated in muscle regeneration. These stem cells include but are not limited to mesenchymal stem cells, adipose-derived stem cells, hematopoietic stem cells, pericytes, fibroadipogenic progenitors, side population cells, and CD133+ stem cells. However, several challenges associated with their isolation, availability, delivery, survival, engraftment, and differentiation have been reported in recent studies. While acellular scaffolds offer a relatively safe and potentially off-the-shelf solution to cell-based therapies, they are often unable to stimulate host cell migration and activity to a level that would result in clinically meaningful regeneration of traumatized muscle. Combining stem cells and biomaterials may offer a viable therapeutic strategy that may overcome the limitations associated with these therapies when they are used in isolation. In this article, we review the stem cell populations that can stimulate muscle regeneration in vitro and in vivo. We also discuss the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1246-1262, 2019.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Krishna Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
102
|
Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S. Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 2019; 12:1756286419833478. [PMID: 31105767 PMCID: PMC6501480 DOI: 10.1177/1756286419833478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Duchenne and Becker muscular dystrophies are the most common muscle diseases and are both currently incurable. They are caused by mutations in the dystrophin gene, which lead to the absence or reduction/truncation of the encoded protein, with progressive muscle degeneration that clinically manifests in muscle weakness, cardiac and respiratory involvement and early death. The limits of animal models to exactly reproduce human muscle disease and to predict clinically relevant treatment effects has prompted the development of more accurate in vitro skeletal muscle models. However, the challenge of effectively obtaining mature skeletal muscle cells or satellite stem cells as primary cultures has hampered the development of in vitro models. Here, we discuss the recently developed technologies that enable the differentiation of skeletal muscle from human induced pluripotent stem cells (iPSCs) of Duchenne and Becker patients. These systems recapitulate key disease features including inflammation and scarce regenerative myogenic capacity that are partially rescued by genetic and pharmacological therapies and can provide a useful platform to study and realize future therapeutic treatments. Implementation of this model also takes advantage of the developing genome editing field, which is a promising approach not only for correcting dystrophin, but also for modulating the underlying mechanisms of skeletal muscle development, regeneration and disease. These data prove the possibility of creating an accurate Duchenne and Becker in vitro model starting from iPSCs, to be used for pathogenetic studies and for drug screening to identify strategies capable of stopping or reversing muscular dystrophinopathies and other muscle diseases.
Collapse
Affiliation(s)
- Daniela Piga
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Magri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Mauri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
103
|
Li WJ, Jiao H, Walczak BE. Emerging opportunities for induced pluripotent stem cells in orthopaedics. J Orthop Translat 2019; 17:73-81. [PMID: 31194067 PMCID: PMC6551359 DOI: 10.1016/j.jot.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) has revolutionized biomedicine. Although the potential of iPSCs for tissue regeneration, disease modeling and drug screening has been largely recognized, findings of iPSC research to date are mostly focused on neurology, cardiology and haematology. For orthopaedics, growing interest in the unique cell type has prompted more researchers to get involved in iPSC research. In this article, we introduce the brief history of cellular reprogramming and different reprogramming methods that have been developed, discuss the biology of iPSCs and review previously reported findings of iPSC studies in orthopaedics. The Translational potential of this article Stem cell therapies hold great promise for treating orthopaedic diseases, manifested in recent study findings and results of clinical trials. iPSCs are a unique stem cell type derived from a patient’s own cells while still possessing the embryonic stem cell-featured pluripotency for generation of all tissues in the body. The distinctive properties make iPSCs much desirable to fulfill the promise of regenerative medicine for clinical orthopaedics.
Collapse
Affiliation(s)
- Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - Hongli Jiao
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| | - Brian E Walczak
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
104
|
Jelinkova S, Fojtik P, Kohutova A, Vilotic A, Marková L, Pesl M, Jurakova T, Kruta M, Vrbsky J, Gaillyova R, Valášková I, Frák I, Lacampagne A, Forte G, Dvorak P, Meli AC, Rotrekl V. Dystrophin Deficiency Leads to Genomic Instability in Human Pluripotent Stem Cells via NO Synthase-Induced Oxidative Stress. Cells 2019; 8:cells8010053. [PMID: 30650618 PMCID: PMC6356905 DOI: 10.3390/cells8010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
Recent data on Duchenne muscular dystrophy (DMD) show myocyte progenitor's involvement in the disease pathology often leading to the DMD patient's death. The molecular mechanism underlying stem cell impairment in DMD has not been described. We created dystrophin-deficient human pluripotent stem cell (hPSC) lines by reprogramming cells from two DMD patients, and also by introducing dystrophin mutation into human embryonic stem cells via CRISPR/Cas9. While dystrophin is expressed in healthy hPSC, its deficiency in DMD hPSC lines induces the release of reactive oxygen species (ROS) through dysregulated activity of all three isoforms of nitric oxide synthase (further abrev. as, NOS). NOS-induced ROS release leads to DNA damage and genomic instability in DMD hPSC. We were able to reduce both the ROS release as well as DNA damage to the level of wild-type hPSC by inhibiting NOS activity.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Fojtik
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Aneta Kohutova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Lenka Marková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
- 1st department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, 602 00 Brno, Czech Republic.
| | - Tereza Jurakova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miriama Kruta
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jan Vrbsky
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Renata Gaillyova
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Iveta Valášková
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- Department of Clinical Genetics, University hospital Brno, 613 00 Brno, Czech Republic.
| | - Ivan Frák
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
| | - Alain Lacampagne
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Giancarlo Forte
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- PhyMedExp, INSERM, University of Montpellier, CNRS, 342 95 Montpellier CEDEX 5, France.
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic.
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, 602 00 Brno, Czech Republic.
| |
Collapse
|
105
|
Ortiz-Vitali JL, Darabi R. iPSCs as a Platform for Disease Modeling, Drug Screening, and Personalized Therapy in Muscular Dystrophies. Cells 2019; 8:cells8010020. [PMID: 30609814 PMCID: PMC6356384 DOI: 10.3390/cells8010020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are the foundation of modern stem cell-based regenerative medicine, especially in the case of degenerative disorders, such as muscular dystrophies (MDs). Since their introduction in 2006, many studies have used iPSCs for disease modeling and identification of involved mechanisms, drug screening, as well as gene correction studies. In the case of muscular dystrophies, these studies commenced in 2008 and continue to address important issues, such as defining the main pathologic mechanisms in different types of MDs, drug screening to improve skeletal/cardiac muscle cell survival and to slow down disease progression, and evaluation of the efficiency of different gene correction approaches, such as exon skipping, Transcription activator-like effector nucleases (TALENs), Zinc finger nucleases (ZFNs) and RNA-guided endonuclease Cas9 (CRISPR/Cas9). In the current short review, we have summarized chronological progress of these studies and their key findings along with a perspective on the future road to successful iPSC-based cell therapy for MDs and the potential hurdles in this field.
Collapse
Affiliation(s)
- Jose L Ortiz-Vitali
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
106
|
Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Therapy. Cells 2018; 7:cells7120253. [PMID: 30544588 PMCID: PMC6315586 DOI: 10.3390/cells7120253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder, caused by mutation of the DMD gene which encodes the protein dystrophin. This dystrophin defect leads to the progressive degeneration of skeletal and cardiac muscles. Currently, there is no effective therapy for this disorder. However, the technology of cell reprogramming, with subsequent controlled differentiation to skeletal muscle cells or cardiomyocytes, may provide a unique tool for the study, modeling, and treatment of Duchenne muscular dystrophy. In the present review, we describe current methods of induced pluripotent stem cell generation and discuss their implications for the study, modeling, and development of cell-based therapies for Duchenne muscular dystrophy.
Collapse
|
107
|
Castiglioni I, Caccia R, Garcia-Manteiga JM, Ferri G, Caretti G, Molineris I, Nishioka K, Gabellini D. The Trithorax protein Ash1L promotes myoblast fusion by activating Cdon expression. Nat Commun 2018; 9:5026. [PMID: 30487570 PMCID: PMC6262021 DOI: 10.1038/s41467-018-07313-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Myoblast fusion (MF) is required for muscle growth and repair, and its alteration contributes to muscle diseases. The mechanisms governing this process are incompletely understood, and no epigenetic regulator has been previously described. Ash1L is an epigenetic activator belonging to the Trithorax group of proteins and is involved in FSHD muscular dystrophy, autism and cancer. Its physiological role in skeletal muscle is unknown. Here we report that Ash1L expression is positively correlated with MF and reduced in Duchenne muscular dystrophy. In vivo, ex vivo and in vitro experiments support a selective and evolutionary conserved requirement for Ash1L in MF. RNA- and ChIP-sequencing indicate that Ash1L is required to counteract Polycomb repressive activity to allow activation of selected myogenesis genes, in particular the key MF gene Cdon. Our results promote Ash1L as an important epigenetic regulator of MF and suggest that its activity could be targeted to improve cell therapy for muscle diseases. Myoblast fusion in skeletal muscle is a complex process but how this is regulated is unclear. Here, the authors identify Ash1L, a histone methyltransferase, as modulating myoblast fusion via activation of the myogenesis gene Cdon, and observe decreased Ash1L expression in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Ilaria Castiglioni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Roberta Caccia
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Translational Genomics and BioInformatics, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Giulia Ferri
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Giuseppina Caretti
- Department of Biosciences, University of Milan, via Celoria 26, Milano, 20133, Italy
| | - Ivan Molineris
- Center for Translational Genomics and BioInformatics, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy
| | - Kenichi Nishioka
- Department of Biomolecular Sciences, Division of Molecular Genetics and Epigenetics, Faculty of Medicine, Saga University, Saga, Japan.,Laboratory for Developmental Genetics, RIKEN IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milano, 20132, Italy.
| |
Collapse
|
108
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
109
|
Amilon KR, Cortes-Araya Y, Moore B, Lee S, Lillico S, Breton A, Esteves CL, Donadeu FX. Generation of Functional Myocytes from Equine Induced Pluripotent Stem Cells. Cell Reprogram 2018; 20:275-281. [PMID: 30207795 PMCID: PMC6166488 DOI: 10.1089/cell.2018.0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized human biomedicine through their use in disease modeling and therapy. In comparison, little progress has been made toward the application of iPSCs in veterinary species. In that regard, skeletal myocytes from iPSCs would have great potential for understanding muscle function and disease in the equine athlete. In this study, we generated skeletal myotubes by transducing equine iPSC-derived mesenchymal derivatives with an inducible lentiviral vector coding for the human sequence of the myogenic factor, MyoD. Myosin heavy chain-positive myotubes generated from two different iPSC lines were compared to myotubes from adult equine skeletal muscle progenitor cells (MPCs). iPSC myotubes had a smaller mean area than MPC myotubes (≤2-fold). In addition, quantitative polymerase chain reaction analyses showed that iPSC myotubes expressed MYH2 and MYH3 isoforms (at similar or lower levels than MPC myotubes), but they did not express the mature muscle isoform, MYH1. Compared to MPC myotubes, iPSC myotubes expressed reduced levels of the myogenic factors, MYOD1 and MYF6, but did not express MYF5. Finally, iPSC myotubes responded to KCl-induced membrane depolarization by releasing calcium and did so in a manner similar to MPC myotubes. In conclusion, this is the first study to report the generation of functional myocytes from equine iPSCs.
Collapse
Affiliation(s)
- Karin R Amilon
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Yennifer Cortes-Araya
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Benjamin Moore
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Seungmee Lee
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Simon Lillico
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Amandine Breton
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Cristina L Esteves
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - F Xavier Donadeu
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom .,2 The Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
110
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
111
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
112
|
van der Wal E, Herrero-Hernandez P, Wan R, Broeders M, In 't Groen SLM, van Gestel TJM, van IJcken WFJ, Cheung TH, van der Ploeg AT, Schaaf GJ, Pijnappel WWMP. Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies. Stem Cell Reports 2018; 10:1975-1990. [PMID: 29731431 PMCID: PMC5993675 DOI: 10.1016/j.stemcr.2018.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
Although skeletal muscle cells can be generated from human induced pluripotent stem cells (iPSCs), transgene-free protocols include only limited options for their purification and expansion. In this study, we found that fluorescence-activated cell sorting-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 × 1011-fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of acid α-glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/Cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies. Transgene-free protocol for generation and expansion of myogenic progenitors Differentiation into contractile skeletal muscle cells in vitro Correction of glycogen accumulation in Pompe disease using CRISPR/cas9 Contribution to muscle regeneration in vivo
Collapse
Affiliation(s)
- Erik van der Wal
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Raymond Wan
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Mike Broeders
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Stijn L M In 't Groen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Tom J M van Gestel
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Department of Pediatrics, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
113
|
Magli A, Incitti T, Kiley J, Swanson SA, Darabi R, Rinaldi F, Selvaraj S, Yamamoto A, Tolar J, Yuan C, Stewart R, Thomson JA, Perlingeiro RCR. PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors. Cell Rep 2018; 19:2867-2877. [PMID: 28658631 DOI: 10.1016/j.celrep.2017.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/02/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022] Open
Abstract
Pluripotent stem (PS)-cell-derived cell types hold promise for treating degenerative diseases. However, PS cell differentiation is intrinsically heterogeneous; therefore, clinical translation requires the development of practical methods for isolating progenitors from unwanted and potentially teratogenic cells. Muscle-regenerating progenitors can be derived through transient PAX7 expression. To better understand the biology, and to discover potential markers for these cells, here we investigate PAX7 genomic targets and transcriptional changes in human cells undergoing PAX7-mediated myogenic commitment. We identify CD54, integrin α9β1, and Syndecan2 (SDC2) as surface markers on PAX7-induced myogenic progenitors. We show that these markers allow for the isolation of myogenic progenitors using both fluorescent- and CGMP-compatible magnetic-based sorting technologies and that CD54+α9β1+SDC2+ cells contribute to long-term muscle regeneration in vivo. These findings represent a critical step toward enabling the translation of PS-cell-based therapies for muscle diseases.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tania Incitti
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine, Department of Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fabrizio Rinaldi
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ami Yamamoto
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA; Minnesota Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ce Yuan
- Minnesota Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
114
|
Abstract
The skeletal muscle lineage derives from the embryonic paraxial mesoderm (PM) which also gives rise to the axial skeleton, the dermis of the back, brown fat, meninges, and endothelial cells. Direct conversion was pioneered in skeletal muscle with overexpression of the transcription factor MyoD which can convert fibroblasts to a muscle fate. In contrast, directed differentiation of skeletal muscle from pluripotent cells (PC) in vitro has proven to be very difficult compared to other lineages and has only been achieved recently. Experimental strategies recapitulating myogenesis in vitro from mouse and human PC (ES/iPS) have now been reported and all rely on early activation of Wnt signaling at the epiblast stage. This leads to induction of neuromesodermal progenitors that can subsequently be induced to a PM fate and to skeletal muscle. These protocols can efficiently produce fetal muscle fibers and immature satellite cells. These new in vitro systems now open the possibility to better understand human myogenesis and to develop in vitro disease models as well as cell therapy approaches.
Collapse
Affiliation(s)
- Olivier Pourquié
- Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States.
| | - Ziad Al Tanoury
- Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| | - Jérome Chal
- Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| |
Collapse
|
115
|
Current Progress and Challenges for Skeletal Muscle Differentiation from Human Pluripotent Stem Cells Using Transgene-Free Approaches. Stem Cells Int 2018; 2018:6241681. [PMID: 29760730 PMCID: PMC5924987 DOI: 10.1155/2018/6241681] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular diseases are caused by functional defects of skeletal muscles, directly via muscle pathology or indirectly via disruption of the nervous system. Extensive studies have been performed to improve the outcomes of therapies; however, effective treatment strategies have not been fully established for any major neuromuscular disease. Human pluripotent stem cells have a great capacity to differentiate into myogenic progenitors and skeletal myocytes for use in treating and modeling neuromuscular diseases. Recent advances have allowed the creation of patient-derived stem cells, which can be used as a unique platform for comprehensive study of disease mechanisms, in vitro drug screening, and potential new cell-based therapies. In the last decade, a number of methods have been developed to derive skeletal muscle cells from human pluripotent stem cells. By controlling the process of myogenesis using transcription factors and signaling molecules, human pluripotent stem cells can be directed to differentiate into cell types observed during muscle development. In this review, we highlight signaling pathways relevant to the formation of muscle tissue during embryonic development. We then summarize current methods to differentiate human pluripotent stem cells toward the myogenic lineage, specifically focusing on transgene-free approaches. Lastly, we discuss existing challenges for deriving skeletal myocytes and myogenic progenitors from human pluripotent stem cells.
Collapse
|
116
|
Benedetti S, Uno N, Hoshiya H, Ragazzi M, Ferrari G, Kazuki Y, Moyle LA, Tonlorenzi R, Lombardo A, Chaouch S, Mouly V, Moore M, Popplewell L, Kazuki K, Katoh M, Naldini L, Dickson G, Messina G, Oshimura M, Cossu G, Tedesco FS. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Mol Med 2018; 10:254-275. [PMID: 29242210 PMCID: PMC5801502 DOI: 10.15252/emmm.201607284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.
Collapse
Affiliation(s)
- Sara Benedetti
- Department of Cell and Developmental Biology, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Hidetoshi Hoshiya
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Louise Anne Moyle
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rossana Tonlorenzi
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Soraya Chaouch
- AIM/AFM Center for Research in Myology, Sorbonne Universités, UPMC Univ. Paris 06, INSERM UMRS974, CNRS FRE3617, Paris, France
| | - Vincent Mouly
- AIM/AFM Center for Research in Myology, Sorbonne Universités, UPMC Univ. Paris 06, INSERM UMRS974, CNRS FRE3617, Paris, France
| | - Marc Moore
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | - Linda Popplewell
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Motonobu Katoh
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Luigi Naldini
- Department of Biosciences, University of Milan, Milan, Italy
| | - George Dickson
- School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey, UK
| | | | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, Yonago, Tottori, Japan
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | | |
Collapse
|
117
|
Rao L, Qian Y, Khodabukus A, Ribar T, Bursac N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat Commun 2018; 9:126. [PMID: 29317646 PMCID: PMC5760720 DOI: 10.1038/s41467-017-02636-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022] Open
Abstract
The generation of functional skeletal muscle tissues from human pluripotent stem cells (hPSCs) has not been reported. Here, we derive induced myogenic progenitor cells (iMPCs) via transient overexpression of Pax7 in paraxial mesoderm cells differentiated from hPSCs. In 2D culture, iMPCs readily differentiate into spontaneously contracting multinucleated myotubes and a pool of satellite-like cells endogenously expressing Pax7. Under optimized 3D culture conditions, iMPCs derived from multiple hPSC lines reproducibly form functional skeletal muscle tissues (iSKM bundles) containing aligned multi-nucleated myotubes that exhibit positive force-frequency relationship and robust calcium transients in response to electrical or acetylcholine stimulation. During 1-month culture, the iSKM bundles undergo increased structural and molecular maturation, hypertrophy, and force generation. When implanted into dorsal window chamber or hindlimb muscle in immunocompromised mice, the iSKM bundles survive, progressively vascularize, and maintain functionality. iSKM bundles hold promise as a microphysiological platform for human muscle disease modeling and drug development.
Collapse
Affiliation(s)
- Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ying Qian
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Thomas Ribar
- Duke iPSC Shared Resource Facility, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
118
|
Ifuku M, Iwabuchi KA, Tanaka M, Lung MSY, Hotta A. Restoration of Dystrophin Protein Expression by Exon Skipping Utilizing CRISPR-Cas9 in Myoblasts Derived from DMD Patient iPS Cells. Methods Mol Biol 2018; 1828:191-217. [PMID: 30171543 DOI: 10.1007/978-1-4939-8651-4_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a congenital X-linked disease caused by mutations in the gene encoding the dystrophin protein, which is required for myofiber integrity. Exon skipping therapy is an emerging strategy for restoring the open reading frame of the dystrophin gene to produce functional protein in DMD patients by skipping single or multiple exons. Although antisense oligonucleotides are able to target pre-mRNA for exon skipping, their half-lives are short and any therapeutic benefit is transient. In contrast, genome editing by DNA nucleases, such as the CRISPR-Cas9 system, could offer permanent correction by targeting genomic DNA. Our laboratory previously reported that disrupting the splicing acceptor site in exon 45 by plasmid delivery of the CRISPR-Cas9 system in iPS cells, derived from a DMD patient lacking exon 44, successfully restored dystrophin protein expression in differentiated myoblasts. Herein, we describe an optimized methodology to prepare myoblasts differentiated from iPS cells by mRNA transfection of the CRISPR-Cas9 system to skip exon 45 in myoblasts, and evaluate the restored dystrophin by RT-PCR and Western blotting.
Collapse
Affiliation(s)
- Masataka Ifuku
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kumiko A Iwabuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masami Tanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mandy Siu Yu Lung
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
119
|
Hicks MR, Hiserodt J, Paras K, Fujiwara W, Eskin A, Jan M, Xi H, Young CS, Evseenko D, Nelson SF, Spencer MJ, Handel BV, Pyle AD. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat Cell Biol 2018; 20:46-57. [PMID: 29255171 PMCID: PMC5962356 DOI: 10.1038/s41556-017-0010-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be directed to differentiate into skeletal muscle progenitor cells (SMPCs). However, the myogenicity of hPSC-SMPCs relative to human fetal or adult satellite cells remains unclear. We observed that hPSC-SMPCs derived by directed differentiation are less functional in vitro and in vivo compared to human satellite cells. Using RNA sequencing, we found that the cell surface receptors ERBB3 and NGFR demarcate myogenic populations, including PAX7 progenitors in human fetal development and hPSC-SMPCs. We demonstrated that hPSC skeletal muscle is immature, but inhibition of transforming growth factor-β signalling during differentiation improved fusion efficiency, ultrastructural organization and the expression of adult myosins. This enrichment and maturation strategy restored dystrophin in hundreds of dystrophin-deficient myofibres after engraftment of CRISPR-Cas9-corrected Duchenne muscular dystrophy human induced pluripotent stem cell-SMPCs. The work provides an in-depth characterization of human myogenesis, and identifies candidates that improve the in vivo myogenic potential of hPSC-SMPCs to levels that are equal to directly isolated human fetal muscle cells.
Collapse
MESH Headings
- Adult
- Aged
- CRISPR-Cas Systems
- Cell Differentiation
- Dystrophin/genetics
- Dystrophin/metabolism
- Female
- Gene Editing
- Gene Expression Regulation, Developmental
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Male
- Middle Aged
- Muscle Development/genetics
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts/cytology
- Myoblasts/metabolism
- Myosins/genetics
- Myosins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Michael R Hicks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Julia Hiserodt
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Katrina Paras
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Wakana Fujiwara
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ascia Eskin
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Majib Jan
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Haibin Xi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Courtney S Young
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stanley F Nelson
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Melissa J Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA, USA.
| |
Collapse
|
120
|
Direct conversion from skin fibroblasts to functional dopaminergic neurons for biomedical application. BIOMEDICAL DERMATOLOGY 2017. [DOI: 10.1186/s41702-017-0004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
121
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
122
|
Jiwlawat S, Lynch E, Glaser J, Smit-Oistad I, Jeffrey J, Van Dyke JM, Suzuki M. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation 2017; 96:70-81. [PMID: 28915407 DOI: 10.1016/j.diff.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/01/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Human induced-pluripotent stem cells (iPSCs) are a promising resource for propagation of myogenic progenitors. Our group recently reported a unique protocol for the derivation of myogenic progenitors directly (without genetic modification) from human pluripotent cells using free-floating spherical culture. Here we expand our previous efforts and attempt to determine how differentiation duration, culture surface coatings, and nutrient supplements in the medium influence progenitor differentiation and formation of skeletal myotubes containing sarcomeric structures. A long differentiation period (over 6 weeks) promoted the differentiation of iPSC-derived myogenic progenitors and subsequent myotube formation. These iPSC-derived myotubes contained representative sarcomeric structures, consisting of organized myosin and actin filaments, and could spontaneously contract. We also found that a bioengineering approach using three-dimensional (3D) artificial muscle constructs could facilitate the formation of elongated myotubes. Lastly, we determined how culture surface coating matrices and different supplements would influence terminal differentiation. While both Matrigel and laminin coatings showed comparable effects on muscle differentiation, B27 serum-free supplement in the differentiation medium significantly enhanced myogenesis compared to horse serum. Our findings support the possibility to create an in vitro model of contractile sarcomeric myofibrils for disease modeling and drug screening to study neuromuscular diseases.
Collapse
Affiliation(s)
- Saowanee Jiwlawat
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jennifer Glaser
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Ivy Smit-Oistad
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jeremy Jeffrey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jonathan M Van Dyke
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
123
|
Oh Y, Zhang F, Wang Y, Lee EM, Choi IY, Lim H, Mirakhori F, Li R, Huang L, Xu T, Wu H, Li C, Qin CF, Wen Z, Wu QF, Tang H, Xu Z, Jin P, Song H, Ming GL, Lee G. Zika virus directly infects peripheral neurons and induces cell death. Nat Neurosci 2017; 20:1209-1212. [PMID: 28758997 PMCID: PMC5575960 DOI: 10.1038/nn.4612] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/01/2017] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV)-infection is associated with neurological disorders of both the central and peripheral nervous systems (PNS), yet few studies have directly examined PNS-infection. Here we show that intraperitoneally or intraventricularly-injected ZIKV in the mouse could infect and impact peripheral neurons in vivo. Moreover, ZIKV productively infects stem cell-derived human neural crest cells and peripheral neurons in vitro, leading to increased cell death, transcriptional dysregulation and cell-type specific molecular pathology.
Collapse
Affiliation(s)
- Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - In Young Choi
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hotae Lim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fahimeh Mirakhori
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianlei Xu
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Psychiatry and Behavioral Sciences, Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
124
|
Miyagoe-Suzuki Y, Takeda S. Skeletal muscle generated from induced pluripotent stem cells - induction and application. World J Stem Cells 2017; 9:89-97. [PMID: 28717411 PMCID: PMC5491631 DOI: 10.4252/wjsc.v9.i6.89] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/20/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patient-iPSCs shows disease-specific phenotypes, it can be useful for studying the disease pathogenesis and for drug development. On the other hand, human iPSCs from healthy donors or hereditary muscle disease-iPSCs whose genomes are edited to express normal protein are expected to be a cell source for cell therapy. Several protocols for the derivation of skeletal muscle from human iPSCs have been reported to allow the development of efficient treatments for devastating muscle diseases. In 2017, the focus of research is shifting to another stage: (1) the establishment of mature myofibers that are suitable for study of the pathogenesis of muscle disease; (2) setting up a high-throughput drug screening system; and (3) the preparation of highly regenerative, non-oncogenic cells in large quantities for cell transplantation, etc.
Collapse
|
125
|
Kim J, Magli A, Chan SSK, Oliveira VKP, Wu J, Darabi R, Kyba M, Perlingeiro RCR. Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports 2017; 9:12-22. [PMID: 28528701 PMCID: PMC5511038 DOI: 10.1016/j.stemcr.2017.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Recent reports have documented the differentiation of human pluripotent stem cells toward the skeletal myogenic lineage using transgene- and cell purification-free approaches. Although these protocols generate myocytes, they have not demonstrated scalability, safety, and in vivo engraftment, which are key aspects for their future clinical application. Here we recapitulate one prominent protocol, and show that it gives rise to a heterogeneous cell population containing myocytes and other cell types. Upon transplantation, the majority of human donor cells could not contribute to myofiber formation. As a proof-of-principle, we incorporated the inducible PAX7 lentiviral system into this protocol, which then enabled scalable expansion of a homogeneous population of skeletal myogenic progenitors capable of forming myofibers in vivo. Our findings demonstrate the methods for scalable expansion of PAX7+ myogenic progenitors and their purification are critical for practical application to cell replacement treatment of muscle degenerative diseases. Tested CDM muscle differentiation protocol generates a heterogeneous population The population does not contribute to myofiber formation in vivo Regulated PAX7 expression allows expansion of homogeneous myogenic progenitors CDM iPAX7 myogenic progenitors are endowed with in vivo regenerative potential
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, 4-128 CCRB, 2231 6th Street South East, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, 4-128 CCRB, 2231 6th Street South East, Minneapolis, MN 55455, USA
| | - Sunny S K Chan
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vanessa K P Oliveira
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, 4-128 CCRB, 2231 6th Street South East, Minneapolis, MN 55455, USA
| | - Jianbo Wu
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael Kyba
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, 4-128 CCRB, 2231 6th Street South East, Minneapolis, MN 55455, USA.
| |
Collapse
|
126
|
Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. Stem Cells Int 2017; 2017:8765154. [PMID: 28607562 PMCID: PMC5451761 DOI: 10.1155/2017/8765154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic.
Collapse
|
127
|
van der Wal E, Bergsma AJ, van Gestel TJM, In 't Groen SLM, Zaehres H, Araúzo-Bravo MJ, Schöler HR, van der Ploeg AT, Pijnappel WWMP. GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624186 PMCID: PMC5415960 DOI: 10.1016/j.omtn.2017.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pompe disease is a metabolic myopathy caused by deficiency of the acid α-glucosidase (GAA) enzyme and results in progressive wasting of skeletal muscle cells. The c.-32-13T>G (IVS1) GAA variant promotes exon 2 skipping during pre-mRNA splicing and is the most common variant for the childhood/adult disease form. We previously identified antisense oligonucleotides (AONs) that promoted GAA exon 2 inclusion in patient-derived fibroblasts. It was unknown how these AONs would affect GAA splicing in skeletal muscle cells. To test this, we expanded induced pluripotent stem cell (iPSC)-derived myogenic progenitors and differentiated these to multinucleated myotubes. AONs restored splicing in myotubes to a similar extent as in fibroblasts, suggesting that they act by modulating the action of shared splicing regulators. AONs targeted the putative polypyrimidine tract of a cryptic splice acceptor site that was part of a pseudo exon in GAA intron 1. Blocking of the cryptic splice donor of the pseudo exon with AONs likewise promoted GAA exon 2 inclusion. The simultaneous blocking of the cryptic acceptor and cryptic donor sites restored the majority of canonical splicing and alleviated GAA enzyme deficiency. These results highlight the relevance of cryptic splicing in human disease and its potential as therapeutic target for splicing modulation using AONs.
Collapse
Affiliation(s)
- Erik van der Wal
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Atze J Bergsma
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Tom J M van Gestel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Holm Zaehres
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Westphalian Wilhelms-University, Medical Faculty, 48149 Münster, Germany
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Molecular Stem Cell Biology, Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Department of Pediatrics, Erasmus Medical Center, 3015 CN Rotterdam, the Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands.
| |
Collapse
|
128
|
Genovese NJ, Domeier TL, Telugu BPVL, Roberts RM. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells. Sci Rep 2017; 7:41833. [PMID: 28165492 PMCID: PMC5292944 DOI: 10.1038/srep41833] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
The pig is recognized as a valuable model in biomedical research in addition to its agricultural importance. Here we describe a means for generating skeletal muscle efficiently from porcine induced pluripotent stem cells (piPSC) in vitro thereby providing a versatile platform for applications ranging from regenerative biology to the ex vivo cultivation of meat. The GSK3B inhibitor, CHIR99021 was employed to suppress apoptosis, elicit WNT signaling events and drive naïve-type piPSC along the mesoderm lineage, and, in combination with the DNA methylation inhibitor 5-aza-cytidine, to activate an early skeletal muscle transcription program. Terminal differentiation was then induced by activation of an ectopically expressed MYOD1. Myotubes, characterized by myofibril development and both spontaneous and stimuli-elicited excitation-contraction coupling cycles appeared within 11 days. Efficient lineage-specific differentiation was confirmed by uniform NCAM1 and myosin heavy chain expression. These results provide an approach for generating skeletal muscle that is potentially applicable to other pluripotent cell lines and to generating other forms of muscle.
Collapse
Affiliation(s)
- Nicholas J Genovese
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 6521, USA
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Bhanu Prakash V L Telugu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.,Animal Bioscience and Biotechnology Laboratory, USDA ARS, Beltsville, MD 20705, USA
| | - R Michael Roberts
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 6521, USA
| |
Collapse
|
129
|
Devine H, Patani R. The translational potential of human induced pluripotent stem cells for clinical neurology : The translational potential of hiPSCs in neurology. Cell Biol Toxicol 2016; 33:129-144. [PMID: 27915387 PMCID: PMC5325844 DOI: 10.1007/s10565-016-9372-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
The induced pluripotent state represents a decade-old Nobel prize-winning discovery. Human-induced pluripotent stem cells (hiPSCs) are generated by the nuclear reprogramming of any somatic cell using a variety of established but evolving methods. This approach offers medical science unparalleled experimental opportunity to model an individual patient’s disease “in a dish.” HiPSCs permit developmentally rationalized directed differentiation into any cell type, which express donor cell mutation(s) at pathophysiological levels and thus hold considerable potential for disease modeling, drug discovery, and potentially cell-based therapies. This review will focus on the translational potential of hiPSCs in clinical neurology and the importance of integrating this approach with complementary model systems to increase the translational yield of preclinical testing for the benefit of patients. This strategy is particularly important given the expected increase in prevalence of neurodegenerative disease, which poses a major burden to global health over the coming decades.
Collapse
Affiliation(s)
- Helen Devine
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK.,Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Rickie Patani
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK. .,National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|