101
|
Flow cytometric detection of p38 MAPK phosphorylation and intracellular cytokine expression in peripheral blood subpopulations from patients with autoimmune rheumatic diseases. J Immunol Res 2014; 2014:671431. [PMID: 24741615 PMCID: PMC3987974 DOI: 10.1155/2014/671431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022] Open
Abstract
Flow cytometric analysis of p38 mitogen-activated protein kinase (p38 MAPK) signaling cascade is optimally achieved by methanol permeabilization protocols. Such protocols suffer from the difficulties to accurately detect intracellular cytokines and surface epitopes of infrequent cell subpopulations, which are removed by methanol. To overcome these limitations, we have modified methanol-based phosphoflow protocols using several commercially available antibody clones suitable for surface antigens, intracellular cytokines, and p38 MAPK. These included markers of B cells (CD19, CD20, and CD22), T cells (CD3, CD4, and CD8), NK (CD56 and CD7), and dendritic cells (CD11c). We have also tested surface markers of costimulatory molecules, such as CD27. We have successfully determined simultaneous expression of IFN- γ , as well as IL-10, and phosphorylated p38 in cell subsets. The optimized phosphoflow protocol has also been successfully applied in peripheral blood mononuclear cells or purified cell subpopulations from patients with various autoimmune diseases. In conclusion, our refined phosphoflow cytometric approach allows simultaneous detection of p38 MAPK activity and intracellular cytokine expression and could be used as an important tool to study signaling cascades in autoimmunity.
Collapse
|
102
|
Xu W, Di Santo JP. Taming the beast within: regulation of innate lymphoid cell homeostasis and function. THE JOURNAL OF IMMUNOLOGY 2014; 191:4489-96. [PMID: 24141855 DOI: 10.4049/jimmunol.1301759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although substantial parallels have been made between transcription factor regulation of cytokine production by innate lymphoid cell (ILC) and Th cell subsets, we are still learning how ILC subsets are regulated during immune responses. Critical factors that promote ILC development and stimulate their effector functions have been identified, but mechanisms that control their homeostasis and downregulate their cytokine secretion remain poorly understood. In this review, we consider some of the potential positive and negative regulators of ILC homeostasis and function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Wei Xu
- Innate Immunity Unit, Institut Pasteur, 75724 Paris, France
| | | |
Collapse
|
103
|
Wagage S, John B, Krock BL, Hall AO, Randall LM, Karp CL, Simon MC, Hunter CA. The aryl hydrocarbon receptor promotes IL-10 production by NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:1661-70. [PMID: 24403534 DOI: 10.4049/jimmunol.1300497] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cytokine IL-10 has an important role in limiting inflammation in many settings, including toxoplasmosis. In the present studies, an IL-10 reporter mouse was used to identify the sources of this cytokine following challenge with Toxoplasma gondii. During infection, multiple cell types expressed the IL-10 reporter but NK cells were a major early source of this cytokine. These IL-10 reporter(+) NK cells expressed high levels of the IL-12 target genes T-bet, KLRG1, and IFN-γ, and IL-12 depletion abrogated reporter expression. However, IL-12 signaling alone was not sufficient to promote NK cell IL-10, and activation of the aryl hydrocarbon receptor (AHR) was also required for maximal IL-10 production. NK cells basally expressed the AHR, relevant chaperone proteins, and the AHR nuclear translocator, which heterodimerizes with the AHR to form a competent transcription factor. In vitro studies revealed that IL-12 stimulation increased NK cell AHR levels, and the AHR and AHR nuclear translocator were required for optimal production of IL-10. Additionally, NK cells isolated from T. gondii-infected Ahr(-/-) mice had impaired expression of IL-10, which was associated with increased resistance to this infection. Taken together, these data identify the AHR as a critical cofactor involved in NK cell production of IL-10.
Collapse
Affiliation(s)
- Sagie Wagage
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Toxoplasma gondii upregulates interleukin-12 to prevent Plasmodium berghei-induced experimental cerebral malaria. Infect Immun 2014; 82:1343-53. [PMID: 24396042 DOI: 10.1128/iai.01259-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A chronic infection with the parasite Toxoplasma gondii has previously been shown to protect mice against subsequent viral, bacterial, or protozoal infections. Here we have shown that a chronic T. gondii infection can prevent Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM) in C57BL/6 mice. Treatment with soluble T. gondii antigens (STAg) reduced parasite sequestration and T cell infiltration in the brains of P. berghei-infected mice. Administration of STAg also preserved blood-brain barrier function, reduced ECM symptoms, and significantly decreased mortality. STAg treatment 24 h post-P. berghei infection led to a rapid increase in serum levels of interleukin 12 (IL-12) and gamma interferon (IFN-γ). By 5 days after P. berghei infection, STAg-treated mice had reduced IFN-γ levels compared to those of mock-treated mice, suggesting that reductions in IFN-γ at the time of ECM onset protected against lethality. Using IL-10- and IL-12βR-deficient mice, we found that STAg-induced protection from ECM is IL-10 independent but IL-12 dependent. Treatment of P. berghei-infected mice with recombinant IL-12 significantly decreased parasitemia and mortality. These data suggest that IL-12, either induced by STAg or injected as a recombinant protein, mediates protection from ECM-associated pathology potentially through early induction of IFN-γ and reduction in parasitemia. These results highlight the importance of early IL-12 induction in protection against ECM.
Collapse
|
105
|
Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol 2014; 380:213-36. [PMID: 25004820 DOI: 10.1007/978-3-662-43492-5_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-22 is a member of the IL-10 family of cytokines, which, besides IL-10, contains seven additional cytokines. Although the founding member IL-10 is an important immunoregulatory cytokine that represses both innate and adaptive immunity, the other family members preferentially target epithelial cells and enhance innate host defense mechanisms against various pathogens such as bacteria, yeast, and viruses. Based on their functions, the IL-10 family can be further divided into three subgroups, IL-10 itself, the IL-20 subfamily, and the IFNλ subfamily. IL-22 is the best-studied member of the IL-20 subfamily, and exemplifies the diverse biological effects of this subfamily. IL-22 elicits various innate immune responses from epithelial cells and is essential for host defense against several invading pathogens, including Citrobacter rodentium and Klebsiella pneumonia. IL-22 also protects tissue integrity and maintains the mucosal homeostasis. On the other hand, IL-22 is a proinflammatory cytokine with the capacity to amplify inflammatory responses, which might result in tissue damage, e.g., the IL-22-dependent necrosis of the small intestine during Toxoplasma gondii infection.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA,
| | | | | | | |
Collapse
|
106
|
Marçais A, Viel S, Grau M, Henry T, Marvel J, Walzer T. Regulation of mouse NK cell development and function by cytokines. Front Immunol 2013; 4:450. [PMID: 24376448 PMCID: PMC3859915 DOI: 10.3389/fimmu.2013.00450] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations.
Collapse
Affiliation(s)
- Antoine Marçais
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Sébastien Viel
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France ; Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud , Lyon , France
| | - Morgan Grau
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Jacqueline Marvel
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| | - Thierry Walzer
- CIRI, International Center for Infectiology Research, Université de Lyon , Lyon , France ; U1111, INSERM , Lyon , France ; Ecole Normale Supérieure de Lyon , Lyon , France ; Centre International de Recherche en Infectiologie, Université Lyon 1 , Lyon , France ; UMR5308, CNRS , Lyon , France
| |
Collapse
|
107
|
McBerry C, Dias A, Shryock N, Lampe K, Gutierrez FRS, Boon L, De'Broski RH, Aliberti J. PD-1 modulates steady-state and infection-induced IL-10 production in vivo. Eur J Immunol 2013; 44:469-79. [PMID: 24165808 PMCID: PMC3955717 DOI: 10.1002/eji.201343658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/17/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022]
Abstract
Programmed death-1 (PD-1) plays an important role in mediating immune tolerance through mechanisms that remain unclear. Herein, we investigated whether PD-1 prevents excessive host tissue damage during infection with the protozoan parasite, Toxoplasma gondii. Surprisingly, our results demonstrate that PD-1-deficient mice have increased susceptibility to T. gondii, with increased parasite cyst counts along with reduced type-1 cytokine responses (IL-12 and IFN-γ). PD-1⁻/⁻ DCs showed no cell intrinsic defect in IL-12 production in vitro. Instead, PD-1 neutralization via genetic or pharmacological approaches resulted in a striking increase in IL-10 release, which impaired type-1-inflammation during infection. Our results indicate that the absence of PD-1 increases IL-10 production even in the absence of infection. Although the possibility that such increased IL-10 protects against autoimmune damage is speculative, our results show that IL-10 suppresses the development of protective Th1 immune response after T. gondii infection.
Collapse
Affiliation(s)
- Cortez McBerry
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Stewart CA, Metheny H, Iida N, Smith L, Hanson M, Steinhagen F, Leighty RM, Roers A, Karp CL, Müller W, Trinchieri G. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 2013; 123:4859-74. [PMID: 24216477 PMCID: PMC3809773 DOI: 10.1172/jci65180] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
The capacity of IL-10 and Tregs in the inflammatory tumor microenvironment to impair anticancer Th1 immunity makes them attractive targets for cancer immunotherapy. IL-10 and Tregs also suppress Th17 activity, which is associated with poor prognosis in several cancers. However, previous studies have overlooked their potential contribution to the regulation of pathogenic cancer-associated inflammation. In this study, we investigated the origin and function of IL-10–producing cells in the tumor microenvironment using transplantable tumor models in mice. The majority of tumor-associated IL-10 was produced by an activated Treg population. IL-10 production by Tregs was required to restrain Th17-type inflammation. Accumulation of activated IL-10+ Tregs in the tumor required type I IFN signaling but not inflammatory signaling pathways that depend on TLR adapter protein MyD88 or IL-12 family cytokines. IL-10 production limited Th17 cell numbers in both spleen and tumor. However, type I IFN was required to limit Th17 cells specifically in the tumor microenvironment, reflecting selective control of tumor-associated Tregs by type I IFN. Thus, the interplay of type I IFN, Tregs, and IL-10 is required to negatively regulate Th17 inflammation in the tumor microenvironment. Therapeutic interference of this network could therefore have the undesirable consequence of promoting Th17 inflammation and cancer growth.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Humans
- Immunotherapy/adverse effects
- Inflammation/etiology
- Inflammation/immunology
- Inflammation/prevention & control
- Interferon Type I/metabolism
- Interleukin-10/biosynthesis
- Interleukin-10/deficiency
- Interleukin-10/genetics
- Interleukin-17/biosynthesis
- Interleukin-17/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- STAT1 Transcription Factor/deficiency
- STAT1 Transcription Factor/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- Th17 Cells/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- C. Andrew Stewart
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hannah Metheny
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Noriho Iida
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Loretta Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Miranda Hanson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Folkert Steinhagen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert M. Leighty
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Axel Roers
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christopher L. Karp
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Werner Müller
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA.
Department for Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
Data Management Services Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany.
Division of Molecular Immunology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, USA.
Bill Ford Chair of Cellular Immunology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
109
|
Batalla EI, Pino Martínez AM, Poncini CV, Duffy T, Schijman AG, González Cappa SM, Alba Soto CD. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent Trypanosoma cruzi population. J Innate Immun 2013; 5:494-504. [PMID: 23689360 DOI: 10.1159/000350242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.
Collapse
Affiliation(s)
- Estela I Batalla
- Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica-IMPAM, UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
IL-10 is an anti-inflammatory cytokine that plays a significant role in controlling inflammation and modulating adaptive immune responses that cause tissue damage. IL-10-producing lymphocytes contribute to the delicate balance between inflammation and immunoregulation, and are thus regarded as a kind of "regulatory cells." Dysregulation of these cells is linked with susceptibility to numerous inflammatory diseases. In this review, we summarized what is known about the regulatory effects of IL-10 produced by lymphocytes, including T cells, B cells and natural killer cells, in inflammatory diseases. We hope to augment immune responses or prevent immunopathology through making some small changes in the levels of IL-10 produced by lymphocytes, or in the cellular location where it is produced.
Collapse
Affiliation(s)
- Yang Yao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | |
Collapse
|
111
|
Maślanka T. Dexamethasone inhibits and meloxicam promotes proliferation of bovine NK cells. Immunopharmacol Immunotoxicol 2013; 35:225-34. [PMID: 23369108 DOI: 10.3109/08923973.2013.764504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Due to the unrecognized effect of dexamethasone (DEX) and meloxicam (MEL) on bovine natural killer (NK) cells, studies have been undertaken in order to determine whether the above medications can affect these cells in respect of their counts, apoptosis, proliferation and production of selected cytokines. Peripheral blood mononuclear cells (PBMCs) were treated with the drugs in concentrations reflecting their plasma levels achieved in vivo at therapeutic doses and in 10-fold lower concentrations. The effect of DEX and MEL on percentages and absolute counts of NK cells was determined 6, 12, 48 and 168 h after the exposure of PBMCs to the drugs. At each time point, it was found out that DEX reduced the absolute count of NK cells, an effect attributed to the proapoptotic and anti-proliferative influence of the drug on these cells. DEX lowered the production of IFN-γ by the analyzed cells and raised the percentage of IL-10-producing cells. Thus, the above effects are important elements contributing to the complex mechanism responsible for the anti-inflammatory and immunosuppressive properties of the drug. MEL neither affects the apoptosis of NK cells nor did it reduce their count. Moreover, one-week exposure to MEL raised the absolute count of these cells, which was the result of their more intense proliferation in the presence of the drug. Thus, the influence of MEL with respect to the proliferation and count of NK cells was immunostimulating. On the other hand, MEL reduced the percentage of IFN-γ-producing NK cells, which in turn is an immunosuppressive effect.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland.
| |
Collapse
|
112
|
Bernardini G, Sciumè G, Santoni A. Differential chemotactic receptor requirements for NK cell subset trafficking into bone marrow. Front Immunol 2013; 4:12. [PMID: 23386850 PMCID: PMC3558687 DOI: 10.3389/fimmu.2013.00012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022] Open
Abstract
Responsiveness of maturing natural killer (NK) cells to chemotactic molecules directly affect their retention and relocation in selected bone marrow (BM) microenvironment during development, as well as their localization at sites of immune response during inflammatory diseases. BM is the main site of NK cell generation, providing microenvironmental signals required to sustain cell proliferation and differentiation. Drastic changes of expression and function of several chemoattractant receptors can be observed during progression from precursor NK cells to immature and mature NK cells. Indeed, the gradual decrease of CXCR4 expression parallels the increased expression of CXCR3, CCR1, and CX3CR1 and S1P5 (Sphingosine-1-phosphate receptor 5) on mature DX5+ NK cells. The chemokine CXCL12 is produced constitutively in the BM and, acting via CXCR4, is critical for retaining immature and mature NK cell subsets in the BM. During steady-state, the maintenance of NK cells into BM parenchyma depends on the equilibrium of CXCR4 retention and S1P5 mobilizing functions, as the gradient of S1P coming from the sinusoids facilitates mature NK cell egress into circulation via S1P5, when CXCR4/CXCL12-mediated retention decreases. Chemoattractants are also key factors for the response to inflammatory or infection conditions that promote mobilization of effector NK cells from storage compartments (including BM) to sites of disease or for NK cell recruitment/response during pathological conditions that affect BM integrity, including hematopoietic malignancies. In this review, we summarize what is known about the requirement for NK cell localization and exit from BM and how chemokine-mediated functions may affect BM NK cell development and immune responses.
Collapse
Affiliation(s)
- Giovanni Bernardini
- Laboratory of Immunology and Immunopathology, Department of Molecular Medicine and Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma Rome, Italy
| | | | | |
Collapse
|
113
|
Interferon-γ production by natural killer cells and cytomegalovirus in critically ill patients. Crit Care Med 2013; 40:3162-9. [PMID: 22971588 DOI: 10.1097/ccm.0b013e318260c90e] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The mechanisms involved in cytomegalovirus reactivation in critically ill patients who were previously immunocompetent are still unknown. The current study was designed to evaluate the possible role of natural killer cells in the reactivation of cytomegalovirus in these patients. DESIGN Prospective observational. SETTING : A medical intensive care unit of a university hospital. PATIENTS Fifty-one subjects, including 15 patients who experienced cytomegalovirus reactivation (cases) during their intensive care unit stay and 15 patients who matched intensive care unit controls, selected from a cohort of consecutive nonimmunocompromised intensive care unit patients, as well as healthy controls. INTERVENTIONS Tests included weekly systematic immunomonitoring and routine screening for cytomegalovirus infection until discharge from the intensive care unit or death. The immunophenotype and functions of natural killer cells were performed by flow cytometry, and serum levels of pro- and anti-inflammatory cytokines were determined by enzyme-linked immunosorbent assay. MEASUREMENTS AND MAIN RESULTS The overall occurrence of cytomegalovirus reactivation in the cohort was 27%. No differences of natural killer cell effector functions were observed at admission between cases and controls. Instead, before cytomegalovirus reactivation, the ability of natural killer cells to secrete interferon-γ was significantly reduced in cases as compared with controls upon stimulation with antibody-coated target cells (p = .029) and with K562 cell stimulation (p = .029). No phenotypic or quantitative differences were observed between cases and controls. Cases exhibited higher levels of interleukin 10 (p = .031) and interleukin 15 (p = .021) than controls before cytomegalovirus reactivation. CONCLUSIONS Impaired natural killer cell function with reduced interferon-γ secretion precedes the occurrence of cytomegalovirus reactivation among previously immunocompetent critically ill patients.
Collapse
|
114
|
Desbois M, Rusakiewicz S, Locher C, Zitvogel L, Chaput N. Natural killer cells in non-hematopoietic malignancies. Front Immunol 2012; 3:395. [PMID: 23269924 PMCID: PMC3529393 DOI: 10.3389/fimmu.2012.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies.
Collapse
Affiliation(s)
- Mélanie Desbois
- Institut de Cancérologie Gustave Roussy Villejuif, France ; Centre d'Investigation Clinique Biothérapie 507, Institut de cancérologie Gustave Roussy Villejuif, France ; Faculté de Médecine, Université Paris-Sud Le Kremlin-Bicȴtre, France xs
| | | | | | | | | |
Collapse
|
115
|
NK cells are required for costimulatory blockade induced tolerance to vascularized allografts. Transplantation 2012; 94:575-84. [PMID: 22914174 DOI: 10.1097/tp.0b013e318264d3c4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The role of natural killer (NK) cells in organ transplantation is poorly understood because studies link these cells to both regulatory and inflammatory functions. NK cells exacerbate inflammation and adaptive immunity under conditions of allograft rejection, but little is known regarding their roles in allograft tolerance. We test the hypothesis that NK cells have regulatory function and promote tolerance induction to murine cardiac allografts. METHODS Murine hearts were transplanted as fully vascularized heterotopic grafts from BALB/c donors into C57BL/6 recipients. Allograft tolerance was achieved using donor splenocyte transfusion + anti-CD40L monoclonal antibody (mAb) before transplantation. The requirement for NK cells in tolerance induction was tested by administering anti-NK1.1-depleting mAb or anti-NKG2D-blocking mAb. Intragraft and peripheral immune cell populations were determined by flow cytometry and immunohistochemistry. CD4 T-cell alloantigen-specific responses and donor-specific alloantibody were also determined. RESULTS NK cell-depleted recipients acutely reject allografts despite anti-CD40L blockade, but rejecting recipients lacked alloantibody and alloantigen-specific CD4 T-cell responses. NK cell depletion resulted in elevated numbers of graft-infiltrating macrophages. NKG2D blockade in tolerized recipients did not cause acute rejection but increased macrophage graft infiltration and increased the expression of NKG2D ligand Rae-1γ on these cells. CONCLUSIONS Our data show that NK cells are required for tolerance induction in recipients given donor splenocyte transfusion + anti-CD40L mAb. Our data suggest NK cells regulate monocyte or macrophage activation and infiltration into allografts by a mechanism partially dependent on NKG2D receptor-ligand interactions between NK cells and monocytes/macrophages.
Collapse
|
116
|
Innate and adaptive immune responses to the major Parietaria allergen Par j 1 in healthy subjects. Immunobiology 2012; 218:995-1004. [PMID: 23332216 DOI: 10.1016/j.imbio.2012.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 12/17/2022]
Abstract
In this study we wanted to analyse the pattern of the immune response to the Parietaria major allergen Par j 1 in freshly purified peripheral blood mononuclear cell (PBMC) from healthy subjects. We observed that Par j 1 was capable of inducing IFN-γ production by CD3⁻ and CD16⁺/CD56⁺ cells exclusively in healthy individuals. Furthermore, a multiparametric analysis allowed us a better definition of two IFN-γ-Par j 1 specific populations (IFN-γ(dim) and IFN-γ(high)) characterized by the presence of different proportions of NKT and NK cells. We also identified the concomitant presence of a subset of IL-10⁺ NK cells. Moreover, CFSE staining showed that the Par j 1 preferentially induced the proliferation of CD3⁻/CD56⁺/CD335⁺ cells. Finally, a subset of CD4⁺/CD25⁺/FoxP3⁺/IL-10⁻ T cells was identified. The result of this pilot study suggest that during a tolerogenic response, the major allergen of the Parietaria pollen works as an activator of both the innate and the adaptive human immune system.
Collapse
|
117
|
Bezouška K, Kubínková Z, Stříbný J, Volfová B, Pompach P, Kuzma M, Šírová M, Říhová B. Dimerization of an immunoactivating peptide derived from mycobacterial hsp65 using N-hydroxysuccinimide based bifunctional reagents is critical for its antitumor properties. Bioconjug Chem 2012; 23:2032-41. [PMID: 22988810 DOI: 10.1021/bc300056x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown previously that a short pentapeptide derived from the mycobacterial heat shock protein hsp65 can be highly activating for the immune system based on its strong reactivity with the early activation antigen of lymphocytes CD69. Here, we investigated an optimal form of presentation of this antigen to the cells of the immune system. Four different forms of the dimerized heptapeptide LELTEGY, and of the control inactive dimerized heptapeptide LELLEGY that both contained an extra UV active glycine-tyrosine sequence, were prepared using dihydroxysuccinimidyl oxalate (DSO), dihydroxysuccinimidyl tartarate (DST), dihydroxysuccinimidyl glutarate (DSG), and dihydroxysuccinimidyl suberate (DSS), respectively. Heptapeptides dimerized through DST and DSG linkers had optimal activity in CD69 precipitation assay. Moreover, dimerization of active heptapeptide resulted in a remarkable increase in its proliferation activity and production of cytokines in vitro. Furthermore, while DST and DSG dimerized heptapeptides both significantly enhanced the cytotoxicity of natural killer cells in vitro, only the DSG dimerized compound was active in suppressing growth of melanoma tumors in mice and in enhancing the cytotoxic activity of tumor infiltrating lymphocytes ex vivo. Thus, while the dimerization of the immunoactive peptide caused a dramatic increase in its immunoactivating properties, its in vivo anticancer properties were influenced by the chemical nature of linker used for its dimerization.
Collapse
Affiliation(s)
- Karel Bezouška
- Department of Biochemistry, Faculty of Science, Charles University Prague, Hlavova 8, CZ-12840 Praha 2, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Kraus L, Trautewig B, Klempnauer J, Lieke T. Naïve rat NK cells control the onset of T cell response. PLoS One 2012; 7:e47074. [PMID: 23077546 PMCID: PMC3471963 DOI: 10.1371/journal.pone.0047074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
NK cell function in the rat is only defined in a rudimentary way due to missing tools for clear NK cell identification. The present study introduces the congenic LEW.BH-NKC rat strain which allows distinct detection of rat NK cells using commercial antibodies. LEW.BH-NKC rats were exposed in vivo to the porcine B cell line L23 by subcutaneous transfer of L23 cell suspension. We used Luciferase transgeneic L23 cells to follow the course of rejection by living imaging. L23 cells were rejected within five days after placement under the skin thus the rejection is mediated by innate immune responses in the first place. Indeed we found increased percentages of NK cells in the blood, spleen and in draining lymph nodes using flow cytometry methods. Surprisingly, we found as a consequence a decrease in proliferative T cell response in the draining lymph nodes. We identified NK cells as mediators of this regulation by in vitro performed mixed lymphocyte reactions. The remarkable feature was the naive state of NK cells exhibiting the regulative capacity. Furthermore, the regulation was not exclusively mediated by IL-10 as it has been reported before for influence of T cell response by activated NK cells but predominantly by TGF-β. Interestingly, after initiation of the adaptive immune response, NK cells failed to take influence on the proliferation of T cells. We conclude that naive NK cells build up a threshold of activation impulse that T cells have to overcome.
Collapse
Affiliation(s)
- Lilli Kraus
- Transplant Laboratory, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Britta Trautewig
- Transplant Laboratory, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Juergen Klempnauer
- Transplant Laboratory, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Thorsten Lieke
- ReMediES, Department of General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
119
|
Immune response and immunopathology during toxoplasmosis. Semin Immunopathol 2012; 34:793-813. [PMID: 22955326 DOI: 10.1007/s00281-012-0339-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/21/2012] [Indexed: 12/18/2022]
Abstract
Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection.
Collapse
|
120
|
Gaddi PJ, Crane MJ, Kamanaka M, Flavell RA, Yap GS, Salazar-Mather TP. IL-10 mediated regulation of liver inflammation during acute murine cytomegalovirus infection. PLoS One 2012; 7:e42850. [PMID: 22880122 PMCID: PMC3411849 DOI: 10.1371/journal.pone.0042850] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/12/2012] [Indexed: 01/01/2023] Open
Abstract
Various cell types in both lymphoid and non-lymphoid tissues produce the anti-inflammatory cytokine interleukin (IL)-10 during murine cytomegalovirus (MCMV) infection. The functions of IL-10 in the liver during acute infection and the cells that generate this cytokine at this site have not been extensively investigated. In this study, we demonstrate that the production of IL-10 in the liver is elevated in C57BL/6 mice during late acute MCMV infection. Using IL-10 green fluorescence protein (GFP) reporter knock-in mice, designated IL-10-internal ribosomal entry site (IRES)-GFP-enhanced reporter (tiger), NK cells are identified as major IL-10 expressing cells in the liver after infection, along with T cells and other leukocytes. In the absence of IL-10, mice exhibit marked elevations in proinflammatory cytokines and in the numbers of mononuclear cells and lymphocytes infiltrating the liver during this infection. IL-10-deficiency also enhances liver injury without improving viral clearance from this site. Collectively, the results indicate that IL-10-producing cells in the liver provide protection from collateral injury by modulating the inflammatory response associated with MCMV infection.
Collapse
Affiliation(s)
- Pamela J. Gaddi
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology and Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Meredith J. Crane
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology and Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Masahito Kamanaka
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- The Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Thais P. Salazar-Mather
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology and Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
121
|
IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence. PLoS Pathog 2012; 8:e1002846. [PMID: 22876184 PMCID: PMC3410900 DOI: 10.1371/journal.ppat.1002846] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/22/2012] [Indexed: 01/09/2023] Open
Abstract
IL-10 is an anti-inflammatory cytokine that regulates the extent of host immunity to infection by exerting suppressive effects on different cell types. Herpes viruses induce IL-10 to modulate the virus-host balance towards their own benefit, resulting in prolonged virus persistence. To define the cellular and molecular players involved in IL-10 modulation of herpes virus-specific immunity, we studied mouse cytomegalovirus (MCMV) infection. Here we demonstrate that IL-10 specifically curtails the MCMV-specific CD4 T cell response by suppressing the bidirectional crosstalk between NK cells and myeloid dendritic cells (DCs). In absence of IL-10, NK cells licensed DCs to effectively prime MCMV-specific CD4 T cells and we defined the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 to regulate this bidirectional NK/DC interplay. Consequently, markedly enhanced priming of MCMV-specific CD4 T cells in Il10−/− mice led to faster control of lytic viral replication, but this came at the expense of TNF-α mediated immunopathology. Taken together, our data show that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-adaptive immune cell crosstalk, thereby impacting beneficially on the ensuing virus-host balance for both the virus and the host. Cytomegalovirus (CMV) infections are very widespread in mammalian hosts. Despite the fact that CMVs are usually well controlled by the immune system, they cause persistent life-long infection and have evolved a number of strategies to effectively modulate or hide from host immunity. Since the establishment of an immunosuppressive environment favors virus persistence, IL-10 is one of the host targets that CMVs actively use to tune the virus-host balance toward their own benefit, resulting in prolonged virus persistence and hence increased chance for horizontal transmission. Here, we delineate the mechanisms of how IL-10 exerts its powerful immune-suppressing function in the context of murine cytomegalovirus (MCMV) infection. We found that IL-10 specifically restrains the priming of MCMV-specific CD4 T cell responses by suppressing dendritic cell (DC) - natural killer cell (NK) crosstalk during acute MCMV infection. Target molecules mediating this bi-directional crosstalk between DCs and NK cells were the pro-inflammatory cytokines IL-12, IFN-γ and TNF-α as well as NK cell activating receptors NKG2D and NCR-1 and all of them were markedly suppressed by IL-10. A consequence resulting from this impeded DC-NK cross-talk by IL-10, leading to poor priming of MCMV-specific CD4 T cell responses was increased lytic CMV persistence and reduced development of host tissue damage. Our study indicates that early induction of IL-10 during MCMV infection critically regulates the strength of the innate-adaptive crosstalk, thereby imparting on the ensuing virus-host balance for the benefit of both the virus and the host.
Collapse
|
122
|
Bogdan C. Natural killer cells in experimental and human leishmaniasis. Front Cell Infect Microbiol 2012; 2:69. [PMID: 22919660 PMCID: PMC3417408 DOI: 10.3389/fcimb.2012.00069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022] Open
Abstract
Infections with parasites of the genus Leishmania lead to a rapid, but transient activation of natural killer (NK) cells. In mice activation of NK cells requires a toll-like-receptor 9-dependent stimulation of dendritic cells (DC) which is followed by the production of IL-12. Although NK cells appear to be non-essential for the ultimate control of cutaneous and visceral leishmaniasis (VL) and can exhibit immunosuppressive functions, they form an important source of interferon (IFN)-γ, which elicits antileishmanial activity in macrophages and helps to pave a protective T helper cell response. In contrast, the cytotoxic activity of NK cells is dispensable, because Leishmania-infected myeloid cells are largely resistant to NK-mediated lysis. In human cutaneous and VL, the functional importance of NK cells is suggested by reports that demonstrate (1) a direct activation or inhibition of NK cells by Leishmania promastigotes, (2) the suppression of NK cell numbers or activity during chronic, non-healing infections, and (3) the recovery of NK cell activity following treatment. This review aims to provide an integrated view on the migration, activation, inhibition, function, and therapeutic modulation of NK cells in experimental and human leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Bavaria, Germany. christian.bogdan@ uk-erlangen.de
| |
Collapse
|
123
|
Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun 2012; 80:2519-27. [PMID: 22547545 DOI: 10.1128/iai.06364-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogenic Yersinia species modulate host immune responses through the activity of a plasmid-encoded type III secretion system and its associated effector proteins. One effector, YopM, is a leucine-rich-repeat-containing protein that is important for virulence in murine models of Yersinia infection. Although the mechanism by which YopM promotes virulence is unknown, we previously demonstrated that YopM was required for the induction of high levels of the immunosuppressive cytokine interleukin-10 (IL-10) in sera of C57BL/6J mice infected with Yersinia pseudotuberculosis. To determine if IL-10 production is important for the virulence function of YopM, C57BL/6J or congenic IL-10⁻/⁻ mice were infected intravenously with wild-type or yopM mutant Y. pseudotuberculosis strains. Analysis of cytokine levels in serum and bacterial colonization in the spleen and liver showed that YopM is required for IL-10 induction in C57BL/6J mice infected with either the IP32953 or the 32777 strain of Y. pseudotuberculosis, demonstrating that the phenotype is conserved in the species. In single-strain infections, the ability of the 32777ΔyopM mutant to colonize the liver was significantly increased by the delivery of exogenous IL-10 to C57BL/6J mice. In mixed infections, the competitive advantage of a yopM⁺ 32777 strain over an isogenic yopM mutant to colonize spleen and liver, as observed for C57BL/6J mice, was significantly reduced in IL-10⁻/⁻ animals. Thus, by experimentally controlling IL-10 levels in a mouse infection model, we obtained evidence that the induction of this cytokine is an important mechanism by which YopM contributes to Y. pseudotuberculosis virulence.
Collapse
|
124
|
Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway. Nat Immunol 2012; 13:551-9. [PMID: 22522491 DOI: 10.1038/ni.2283] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/06/2012] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms that fine-tune Toll-like receptor (TLR)-triggered innate inflammatory responses remain to be fully elucidated. Major histocompatibility complex (MHC) molecules can mediate reverse signaling and have nonclassical functions. Here we found that constitutively expressed membrane MHC class I molecules attenuated TLR-triggered innate inflammatory responses via reverse signaling, which protected mice from sepsis. The intracellular domain of MHC class I molecules was phosphorylated by the kinase Src after TLR activation, then the tyrosine kinase Fps was recruited via its Src homology 2 domain to phosphorylated MHC class I molecules. This led to enhanced Fps activity and recruitment of the phosphatase SHP-2, which interfered with TLR signaling mediated by the signaling molecule TRAF6. Thus, constitutive MHC class I molecules engage in crosstalk with TLR signaling via the Fps-SHP-2 pathway and control TLR-triggered innate inflammatory responses.
Collapse
|
125
|
Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 2012; 18:270-85. [PMID: 22105606 DOI: 10.2119/molmed.2011.00201] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells were first described as immune leukocytes that could kill tumor cells and soon after were reported to kill virus-infected cells. In the mid-1980s, 10 years after their discovery, NK cells were also demonstrated to contribute to the fight against bacterial infection, particularly because of crosstalk with other leukocytes. A wide variety of immune cells are now recognized to interact with NK cells through the production of cytokines such as interleukin (IL)-2, IL-12, IL-15 and IL-18, which boost NK cell activities. The recent demonstration that NK cells express pattern recognition receptors, namely Toll-like and nucleotide oligomerization domain (NOD)-like receptors, led to the understanding that these cells are not only under the control of accessory cells, but can be directly involved in the antibacterial response thanks to their capacity to recognize pathogen-associated molecular patterns. Interferon (IFN)-γ is the predominant cytokine produced by activated NK cells. IFN-γ is a key contributor to antibacterial immune defense. However, in synergy with other inflammatory cytokines, IFN-γ can also lead to deleterious effects similar to those observed during sepsis. Accordingly, as the main source of IFN-γ in the early phase of infection, NK cells display both beneficial and deleterious effects, depending on the circumstances.
Collapse
|
126
|
Luci C, Gaudy-Marqueste C, Rouzaire P, Audonnet S, Cognet C, Hennino A, Nicolas JF, Grob JJ, Tomasello E. Peripheral natural killer cells exhibit qualitative and quantitative changes in patients with psoriasis and atopic dermatitis. Br J Dermatol 2012; 166:789-96. [DOI: 10.1111/j.1365-2133.2012.10814.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
127
|
Perona-Wright G, Lundie RJ, Jenkins SJ, Webb LM, Grencis RK, MacDonald AS. Concurrent bacterial stimulation alters the function of helminth-activated dendritic cells, resulting in IL-17 induction. THE JOURNAL OF IMMUNOLOGY 2012; 188:2350-8. [PMID: 22287718 DOI: 10.4049/jimmunol.1101642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with schistosome helminths is associated with granulomatous inflammation that forms around parasite eggs trapped in host tissues. In severe cases, the resulting fibrosis can lead to organ failure, portal hypertension, and fatal bleeding. Murine studies identified IL-17 as a critical mediator of this immunopathology, and mouse strains that produce high levels of IL-17 in response to schistosome infection show increased mortality. In this article, we demonstrate that schistosome-specific IL-17 induction by dendritic cells from low-pathology C57BL/6 mice is normally regulated by their concomitant induction of IL-10. Simultaneous stimulation of schistosome-exposed C57BL/6 dendritic cells with a heat-killed bacterium enabled these cells to overcome IL-10 regulation and induce IL-17, even in wild-type C57BL/6 recipients. This schistosome-specific IL-17 was dependent on IL-6 production by the copulsed dendritic cells. Coimmunization of C57BL/6 animals with bacterial and schistosome Ags also resulted in schistosome-specific IL-17, and this response was enhanced in the absence of IL-10-mediated immune regulation. Together, our data suggest that the balance of pro- and anti-inflammatory cytokines that determines the severity of pathology during schistosome infection can be influenced not only by host and parasite, but also by concurrent bacterial stimulation.
Collapse
Affiliation(s)
- Georgia Perona-Wright
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
128
|
Horowitz A, Stegmann KA, Riley EM. Activation of natural killer cells during microbial infections. Front Immunol 2012; 2:88. [PMID: 22566877 PMCID: PMC3342047 DOI: 10.3389/fimmu.2011.00088] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/16/2011] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are large granular lymphocytes that express a diverse array of germline encoded inhibitory and activating receptors for MHC Class I and Class I-like molecules, classical co-stimulatory ligands, and cytokines. The ability of NK cells to be very rapidly activated by inflammatory cytokines, to secrete effector cytokines, and to kill infected or stressed host cells, suggests that they may be among the very early responders during infection. Recent studies have also identified a small number of pathogen-derived ligands that can bind to NK cell surface receptors and directly induce their activation. Here we review recent studies that have begun to elucidate the various pathways by which viral, bacterial, and parasite pathogens activate NK cells. We also consider two emerging themes of NK cell–pathogen interactions, namely their contribution to adaptive immune responses and their potential to take on regulatory and immunomodulatory functions.
Collapse
Affiliation(s)
- Amir Horowitz
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine London, UK
| | | | | |
Collapse
|
129
|
Natural killer cells regulate murine cytomegalovirus-induced sialadenitis and salivary gland disease. J Virol 2011; 86:2132-42. [PMID: 22156514 DOI: 10.1128/jvi.06898-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmission of herpesviruses depends on viral shedding at mucosal surfaces. The salivary gland represents a major site of persistent viral replication for many viruses, including cytomegalovirus. We established a mouse model of salivary gland dysfunction after acute viral infection and investigated the cellular requirements for the loss of secretion. Murine cytomegalovirus (MCMV) infection severely impaired saliva secretion independently of salivary gland virus levels. Lymphocytes or circulating monocytes/macrophages were not required for secretory dysfunction. Dysfunction occurred before glandular inflammation, suggesting that a soluble mediator initiated the disruption of acinar cell function. Despite genetic differences in innate resistance to MCMV, NK cells protected the host against acinar atrophy and the loss of secretions under conditions of an exceedingly low virus inoculum. NK cells also modulated the type of glandular inflammation after infection, as they prevented an influx of Siglec-F(+) polymorphonuclear leukocytes (PMNs). Therefore, beyond their recognized role in controlling MCMV replication, NK cells preserve organ integrity and function and regulate the innate inflammatory response within the gland.
Collapse
|
130
|
Egan CE, Cohen SB, Denkers EY. Insights into inflammatory bowel disease using Toxoplasma gondii as an infectious trigger. Immunol Cell Biol 2011; 90:668-75. [PMID: 22064707 DOI: 10.1038/icb.2011.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oral infection of certain inbred mouse strains with the protozoan Toxoplasma gondii triggers inflammatory pathology resembling lesions seen during human inflammatory bowel disease, in particular Crohn's disease (CD). Damage triggered by the parasite is largely localized to the distal portion of the small intestine, and as such is one of only a few models for ileal inflammation. This is important because ileal involvement is a characteristic of CD in over two-thirds of patients. The disease induced by Toxoplasma is mediated by Th1 cells and the cytokines tumor necrosis factor-α and interferon-γ. Inflammation is dependent upon IL-23, also identified by genome-wide association studies as a risk factor in CD. Development of lesions is concomitant with emergence of E. coli that display enhanced adhesion to the intestinal epithelium and subepithelial translocation. Furthermore, depletion of gut flora renders mice resistant to Toxoplasma-triggered ileitis. Recent findings suggest complex CCR2-dependent interactions between lamina propria T cells and intraepithelial lymphocytes in fueling proinflammatory pathology in the intestine. The advantage of the Toxoplasma model is that disease develops rapidly (within 7-10 days of infection) and can be induced in immunodeficient mice by adoptive transfer of mucosal T cells from infected donors. We propose that Toxoplasma acts as a trigger setting into motion a series of events culminating in loss of tolerance in the intestine and emergence of pathogenic T cell effectors. The Toxoplasma trigger model is providing new leaps in our understanding of immunity in the intestine.
Collapse
Affiliation(s)
- Charlotte E Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
131
|
Schmidt RL, Filak HC, Lemon JD, Potter TA, Lenz LL. A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells. PLoS Pathog 2011; 7:e1002368. [PMID: 22072975 PMCID: PMC3207947 DOI: 10.1371/journal.ppat.1002368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.
Collapse
Affiliation(s)
- Rebecca L. Schmidt
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Holly C. Filak
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Jack D. Lemon
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Terry A. Potter
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Laurel L. Lenz
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| |
Collapse
|
132
|
Huarte E, Rynda-Apple A, Riccardi C, Skyberg JA, Golden S, Rollins MF, Ramstead AG, Jackiw LO, Maddaloni M, Pascual DW. Tolerogen-induced interferon-producing killer dendritic cells (IKDCs) protect against EAE. J Autoimmun 2011; 37:328-41. [PMID: 22018711 DOI: 10.1016/j.jaut.2011.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/13/2011] [Accepted: 09/17/2011] [Indexed: 11/15/2022]
Abstract
Natural killer (NK) cells and dendritic cells (DCs) have been shown to link the innate and adaptive immune systems. Likewise, a new innate cell subset, interferon-producing killer DCs (IKDCs), shares phenotypic and functional characteristics with both DCs and NK cells. Here, we show IKDCs play an essential role in the resolution of experimental autoimmune encephalomyelitis (EAE) upon treatment with the tolerizing agent, myelin oligodendrocyte glycoprotein (MOG), genetically fused to reovirus protein σ1 (termed MOG-pσ1). Activated IKDCs were recruited subsequent MOG-pσ1 treatment of EAE, and disease resolution was abated upon NK1.1 cell depletion. These IKDCs were able to kill activated CD4(+) T cells and mature dendritic DCs, thus, contributing to EAE remission. In addition, IKDCs were responsible for MOG-pσ1-mediated MOG-specific regulatory T cell recruitment to the CNS. The IKDCs induced by MOG-pσ1 expressed elevated levels of HVEM for interactions with cognate ligand-positive cells: LIGHT(+) NK and T(eff) cells and BTLA(+) B cells. Further characterization revealed these activated IKDCs being MHC class II(high), and upon their adoptive transfer (CD11c(+)NK1.1(+)MHC class II(high)), IKDCs, but not CD11c(+)NK1.1(+)MHC class II(intermediate/low) (unactivated) cells, conferred protection against EAE. These activated IKDCs showed enhanced CD107a, PD-L1, and granzyme B expression and could present OVA, unlike unactivated IKDCs. Thus, these results demonstrate the interventional potency induced HVEM(+) IKDCs to resolve autoimmune disease.
Collapse
Affiliation(s)
- Eduardo Huarte
- Department of Immunology and Infectious Diseases, Montana State University, 960 Technology Blvd., Bozeman, MT 59718, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Laroni A, Gandhi R, Beynon V, Weiner HL. IL-27 imparts immunoregulatory function to human NK cell subsets. PLoS One 2011; 6:e26173. [PMID: 22039443 PMCID: PMC3198386 DOI: 10.1371/journal.pone.0026173] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
Abstract
Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56bright and CD56dim NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56bright and CD56dim NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56bright NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56bright NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Alice Laroni
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roopali Gandhi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vanessa Beynon
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
134
|
Stacey MA, Marsden M, Wang ECY, Wilkinson GWG, Humphreys IR. IL-10 restricts activation-induced death of NK cells during acute murine cytomegalovirus infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:2944-52. [PMID: 21849677 DOI: 10.4049/jimmunol.1101021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-10 is an immunomodulatory cytokine that acts to antagonize T cell responses elicited during acute and chronic infections. Thus, the IL-10R signaling pathway provides a potential therapeutic target in strategies aimed at combating infectious diseases. In this study, we set out to investigate whether IL-10 expression had an effect on NK cells. Murine CMV infection provides the best characterized in vivo system to evaluate the NK cell response, with NK cells being critical in the early control of acute infection. Blockade of IL-10R during acute murine CMV infection markedly reduced the accumulation of cytotoxic NK cells in the spleen and lung, a phenotype associated with a transient elevation of virus DNA load. Impaired NK cell responsiveness after IL-10R blockade was attributed to elevated levels of apoptosis observed in NK cells exhibiting an activated phenotype. Therefore, we conclude that IL-10 contributes to antiviral innate immunity during acute infection by restricting activation-induced death in NK cells.
Collapse
Affiliation(s)
- Maria A Stacey
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | | | | | | | | |
Collapse
|
135
|
Ghose P, Ali AQ, Fang R, Forbes D, Ballard B, Ismail N. The interaction between IL-18 and IL-18 receptor limits the magnitude of protective immunity and enhances pathogenic responses following infection with intracellular bacteria. THE JOURNAL OF IMMUNOLOGY 2011; 187:1333-46. [PMID: 21715688 DOI: 10.4049/jimmunol.1100092] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The binding of IL-18 to IL-18Rα induces both proinflammatory and protective functions during infection, depending on the context in which it occurs. IL-18 is highly expressed in the liver of wild-type (WT) C57BL/6 mice following lethal infection with highly virulent Ixodes ovatus ehrlichia (IOE), an obligate intracellular bacterium that causes acute fatal toxic shock-like syndrome. In this study, we found that IOE infection of IL-18Rα(-/-) mice resulted in significantly less host cell apoptosis, decreased hepatic leukocyte recruitment, enhanced bacterial clearance, and prolonged survival compared with infected WT mice, suggesting a pathogenic role for IL-18/IL-18Rα in Ehrlichia-induced toxic shock. Although lack of IL-18R decreased the magnitude of IFN-γ producing type-1 immune response, enhanced resistance of IL-18Rα(-/-) mice against Ehrlichia correlated with increased proinflammatory cytokines at sites of infection, decreased systemic IL-10 production, increased frequency of protective NKT cells producing TNF-α and IFN-γ, and decreased frequency of pathogenic TNF-α-producing CD8(+) T cells. Adoptive transfer of immune WT CD8(+) T cells increased bacterial burden in IL-18Rα(-/-) mice following IOE infection. Furthermore, rIL-18 treatment of WT mice infected with mildly virulent Ehrlichia muris impaired bacterial clearance and enhanced liver injury. Finally, lack of IL-18R signal reduced dendritic cell maturation and their TNF-α production, suggesting that IL-18 might promote the adaptive pathogenic immune responses against Ehrlichia by influencing T cell priming functions of dendritic cells. Together, these results suggested that the presence or absence of IL-18R signals governs the pathogenic versus protective immunity in a model of Ehrlichia-induced immunopathology.
Collapse
Affiliation(s)
- Purnima Ghose
- Department of Pathology, Meharry Medical College, Nashville, TN 37028, USA
| | | | | | | | | | | |
Collapse
|
136
|
Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun 2011; 79:2964-73. [PMID: 21576331 DOI: 10.1128/iai.00047-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The generation of an effective immune response against an infection while also limiting tissue damage requires a delicate balance between pro- and anti-inflammatory responses. Interleukin-10 (IL-10) has potent immunosuppressive effects and is essential for regulation of immune responses. However, the immunosuppressive properties of IL-10 can also be exploited by pathogens to facilitate their own survival. In this minireview, we discuss the role of IL-10 in modulating intracellular bacterial, fungal, and parasitic infections. Using information from several different infection models, we bring together and highlight some common pathways for IL-10 regulation and function that cannot be fully appreciated by studies of a single pathogen.
Collapse
|
137
|
The role of natural killer cells in sepsis. J Biomed Biotechnol 2011; 2011:986491. [PMID: 21629707 PMCID: PMC3100670 DOI: 10.1155/2011/986491] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/16/2011] [Indexed: 01/20/2023] Open
Abstract
Severe sepsis and septic shock are still deadly conditions urging to develop novel therapies. A better understanding of the complex modifications of the immune system of septic patients is needed for the development of innovative immunointerventions. Natural killer (NK) cells are characterized as CD3−NKp46+CD56+ cells that can be cytotoxic and/or produce high amounts of cytokines such as IFN-γ. NK cells are also engaged in crosstalks with other immune cells, such as dendritic cells, macrophages, and neutrophils. During the early stage of septic shock, NK cells may play a key role in the promotion of the systemic inflammation, as suggested in mice models. Alternatively, at a later stage, NK cells-acquired dysfunction could favor nosocomial infections and mortality. Standardized biological tools defining patients' NK cell status during the different stages of sepsis are mandatory to guide potential immuno-interventions. Herein, we review the potential role of NK cells during severe sepsis and septic shock.
Collapse
|
138
|
Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 2011; 17:700-7. [PMID: 21552268 DOI: 10.1038/nm.2366] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/01/2011] [Indexed: 12/15/2022]
Abstract
The natural killer (NK) cell receptor NKp30 is involved in the recognition of tumor and dendritic cells (DCs). Here we describe the influence of three NKp30 splice variants on the prognosis of gastrointestinal sarcoma (GIST), a malignancy that expresses NKp30 ligands and that is treated with NK-stimulatory KIT tyrosine kinase inhibitors. Healthy individuals and those with GIST show distinct patterns of transcription of functionally different NKp30 isoforms. In a retrospective analysis of 80 individuals with GIST, predominant expression of the immunosuppressive NKp30c isoform (over the immunostimulatory NKp30a and NKp30b isoforms) was associated with reduced survival of subjects, decreased NKp30-dependent tumor necrosis factor-α (TNF-α) and CD107a release, and defective interferon-γ (IFN-γ) and interleukin-12 (IL-12) secretion in the NK-DC cross-talk that could be restored by blocking of IL-10. Preferential NKp30c expression resulted partly from a single-nucleotide polymorphism at position 3790 in the 3' untranslated region of the gene encoding NKp30. The genetically determined NKp30 status predicts the clinical outcomes of individuals with GIST independently from KIT mutation.
Collapse
|
139
|
Shifting hierarchies of interleukin-10-producing T cell populations in the central nervous system during acute and persistent viral encephalomyelitis. J Virol 2011; 85:6702-13. [PMID: 21525347 DOI: 10.1128/jvi.00200-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interleukin-10 (IL-10) mRNA is rapidly upregulated in the central nervous system (CNS) following infection with neurotropic coronavirus and remains elevated during persistent infection. Infection of transgenic IL-10/green fluorescent protein (GFP) reporter mice revealed that CNS-infiltrating T cells were the major source of IL-10, with minimal IL-10 production by macrophages and resident microglia. The proportions of IL-10-producing cells were initially similar in CD8(+) and CD4(+) T cells but diminished rapidly in CD8(+) T cells as the virus was controlled. Overall, the majority of IL-10-producing CD8(+) T cells were specific for the immunodominant major histocompatibility complex (MHC) class I epitope. Unlike CD8(+) T cells, a large proportion of CD4(+) T cells within the CNS retained IL-10 production throughout persistence. Furthermore, elevated frequencies of IL-10-producing CD4(+) T cells in the spinal cord supported preferential maintenance of IL-10 production at the site of viral persistence and tissue damage. IL-10 was produced primarily by the CD25(+) CD4(+) T cell subset during acute infection but prevailed in CD25(-) CD4(+) T cells during the transition to persistent infection and thereafter. Overall, these data demonstrate significant fluidity in the T-cell-mediated IL-10 response during viral encephalitis and persistence. While IL-10 production by CD8(+) T cells was limited primarily to the time of acute effector function, CD4(+) T cells continued to produce IL-10 throughout infection. Moreover, a shift from predominant IL-10 production by CD25(+) CD4(+) T cells to CD25(-) CD4(+) T cells suggests that a transition to nonclassical regulatory T cells precedes and is retained during CNS viral persistence.
Collapse
|
140
|
Yamazaki S, Okada K, Maruyama A, Matsumoto M, Yagita H, Seya T. TLR2-dependent induction of IL-10 and Foxp3+ CD25+ CD4+ regulatory T cells prevents effective anti-tumor immunity induced by Pam2 lipopeptides in vivo. PLoS One 2011; 6:e18833. [PMID: 21533081 PMCID: PMC3080372 DOI: 10.1371/journal.pone.0018833] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 01/07/2023] Open
Abstract
16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2) lipopeptides act as toll-like receptor (TLR)2/6 ligands and activate natural killer (NK) cells and dendritic cells (DCs) to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3+CD4+ regulatory T (T reg) cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- * E-mail: (TS); (SY)
| | - Kohei Okada
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Maruyama
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- * E-mail: (TS); (SY)
| |
Collapse
|
141
|
Naper C, Shegarfi H, Inngjerdingen M, Rolstad B. The role of natural killer cells in the defense against Listeria monocytogenes lessons from a rat model. J Innate Immun 2011; 3:289-97. [PMID: 21430356 DOI: 10.1159/000324143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/10/2011] [Indexed: 01/22/2023] Open
Abstract
Ly49 receptors in rodents, like killer cell immunoglobulin-like receptors in humans, regulate natural killer (NK) cell activity. Although inhibitory Ly49 receptors clearly recognize classical major histocompatibility complex class I (MHC-I) molecules, the role for the activating Ly49 receptors has been less well understood. Here, we discuss recent data from a rat model for listeriosis. Rats depleted of NK cells, or more specifically the Ly49 receptor-bearing cells, showed increased bacterial loads in their spleen. Athymic nude rats with no functional T cells but increased numbers of Ly49-expressing NK cells were more resistant to infection, indicating a central role of NK cells in early immune defense against Listeria in this species. Listeria infection of macrophages or enteric epithelial cells led to upregulation of MHC-I, including nonclassical (Ib) molecules not regularly recognized by T cells. We have shown that activating Ly49 receptors are more efficiently stimulated when binding to upregulated class Ib antigens on infected cells. From this we postulate that activating Ly49 receptors may have a sentinel function in the early immune response against Listeria in detecting diseased cells 'flagged' by increased MHC-Ib expression.
Collapse
Affiliation(s)
- Christian Naper
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
142
|
Trandem K, Zhao J, Fleming E, Perlman S. Highly activated cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-induced encephalitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3642-52. [PMID: 21317392 DOI: 10.4049/jimmunol.1003292] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute viral encephalitis requires rapid pathogen elimination without significant bystander tissue damage. In this article, we show that IL-10, a potent anti-inflammatory cytokine, is produced transiently at the peak of infection by CD8 T cells in the brains of coronavirus-infected mice. IL-10(+)CD8 and IL-10(-)CD8 T cells interconvert during acute disease, possibly based on recent Ag exposure. Strikingly, IL-10(+)CD8 T cells were more highly activated and cytolytic than IL-10(-)CD8 T cells, expressing greater levels of proinflammatory cytokines and chemokines, as well as cytotoxic proteins. Even though these cells are highly proinflammatory, IL-10 expressed by these cells was functional. Furthermore, IL-10 produced by CD8 T cells diminished disease severity in mice with coronavirus-induced acute encephalitis, suggesting a self-regulatory mechanism that minimizes immunopathological changes.
Collapse
Affiliation(s)
- Kathryn Trandem
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
143
|
Tessmer MS, Reilly EC, Brossay L. Salivary gland NK cells are phenotypically and functionally unique. PLoS Pathog 2011; 7:e1001254. [PMID: 21249177 PMCID: PMC3020929 DOI: 10.1371/journal.ppat.1001254] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 12/10/2010] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells and CD8+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or Treg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells. Human cytomegalovirus (HCMV) is a herpesvirus that infects 50–95% of human populations. In immunocompetent individuals, a primary infection often goes unnoticed and when resolved by the adaptive immune response, HCMV enters into a latent phase. The natural mouse pathogen murine CMV (MCMV) is a well-characterized animal model of viral infection that results in a non-replicative, chronic infection of an immunocompetent animal. MCMV is cleared efficiently by cytotoxic lymphocytes in all organs of the infected host, except the submandibular gland (SMG) of the salivary glands where it persists for several months eventually becoming latent for the life of the host. The acute response to this virus is dependent in part on natural killer (NK) cell cytotoxicity, as animals deficient in NK cells rapidly succumb to infection. Here, we identify a distinct salivary gland resident NK cell population, which detects the infection but remains mostly hyporesponsive. Peripheral NK cells, which control infection in the spleen, are not recruited to the salivary gland. Altogether, these data imply that CMV latency in the SMG could result from inadequate NK cell responses and can potentially lead to immune intervention to reverse CMV latency.
Collapse
Affiliation(s)
- Marlowe S. Tessmer
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Emma C. Reilly
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
144
|
Schleinitz N, Vély F, Harlé JR, Vivier E. Natural killer cells in human autoimmune diseases. Immunology 2010; 131:451-8. [PMID: 21039469 DOI: 10.1111/j.1365-2567.2010.03360.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells have been implicated in tumour surveillance and in the early control of several microbial infections. In autoimmune disease their involvement in these processes has been evaluated in animal models, with conflicting results. Both a disease-controlling and a disease-promoting role have been suggested. In human autoimmune disease only a few studies, mainly descriptive, have demonstrated qualitative and quantitative modification of NK cells. These changes were observed on blood- or tissue-infiltrating NK cells. Taken together with our expanding knowledge of the genetical variability of NK cell receptors and NK cell physiology, these findings pave the way for the dissection of the role of NK cells in human autoimmune diseases. NK cells may be directly involved in these diseases through their potential autoreactivity or through their interaction with dendritic cells, macrophages or T lymphocytes, thereby inducing excessive inflammation or favouring the adaptive autoimmune response. Thus, NK cells may be implicated in the onset, the maintenance or the progression of autoimmune diseases. Some reports also suggest the involvement of NK cells in the treatment of human autoimmune disease by biotherapies. All these observations suggest that NK cells are involved in the complex processes of autoimmune diseases. Nevertheless, further careful analysis of NK cells at different steps of these diseases, in different tissues and through combined genetical and functional studies will contribute to a better understanding of their role in autoimmune diseases. This knowledge might allow the development of new therapeutic strategies based on NK cells for the treatment of some autoimmune diseases.
Collapse
|
145
|
Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect Immun 2010; 78:3529-39. [PMID: 20515922 DOI: 10.1128/iai.00269-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The YopM protein of Yersinia sp. is a type III secreted effector that is required for virulence in murine models of infection. YopM has previously been shown to contain leucine-rich repeats (LRRs) and to interact with two host kinases, RSK1 and PRK2, although the consequence of these interactions is unknown. A series of YopM proteins missing different numbers of LRRs or a C-terminal domain were produced and used for in vitro binding reactions to map domains required for interaction with RSK1 and PRK2. A C-terminal domain of YopM (from LRR12 to the C terminus) was shown to be required for interaction with RSK1, while an internal portion encompassing LRR6 to LRR15 was shown to be required for interaction with PRK2. The virulence of a Yersinia pseudotuberculosis Delta yopM mutant in mice via an intravenous route of infection was significantly attenuated. At day 4 postinfection, there were significantly increased levels of gamma interferon and reduced levels of interleukin-18 (IL-18) and IL-10 in the serum of the Delta yopM-infected mice compared to that of mice infected with the wild type, suggesting that YopM action alters the balance of these key cytokines to promote virulence. The PRK2 and RSK1 interaction domains of YopM were both required for IL-10 induction in vivo, irrespective of splenic colonization levels. In an orogastric model of Y. pseudotuberculosis infection, a Delta yopM mutant was defective in dissemination from the intestine to the spleen and significantly reduced in virulence. In addition, Y. pseudotuberculosis mutants expressing YopM proteins unable to interact with either RSK1 (YopM Delta 12-C) or PRK2 (YopM Delta 6-15) were defective for virulence in this assay, indicating that both interaction domains are important for YopM to promote pathogenesis.
Collapse
|
146
|
van der Touw W, Bromberg JS. Natural killer cells and the immune response in solid organ transplantation. Am J Transplant 2010; 10:1354-8. [PMID: 20353480 DOI: 10.1111/j.1600-6143.2010.03086.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells have been characterized classically for their cytotoxicity against pathogen infected or stressed cells as well as for their role in monitoring the expression of self MHC I. However, the participation of NK cells in solid organ transplantation (SOT) is poorly defined due to conflicting clinical and animal model data. Preclinical models have shown that NK cells exacerbate T-cell allogeneic responses during rejection, but can also promote tolerance induction under immunosuppressive conditions. Further, while protocols such as costimulatory blockade effectively induce tolerance by blocking T-cell activation and promoting Treg generation, how such regimens regulate other innate and adaptive immune cells, including NK cells, is incomplete. This review examines NK cells and the regulation of their effector functions in SOT.
Collapse
Affiliation(s)
- W van der Touw
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
147
|
Abstract
The development of Th1 lymphocytes is essential for cell-mediated immunity and resistance against intracellular pathogens. However, if left unregulated, the same response can cause serious damage to host tissues and lead to mortality. A number of different paracrine regulatory mechanisms involving distinct myeloid and lymphoid subpopulations have been implicated in controlling excessive secretion of inflammatory cytokines by Th1 cells. Much of this work has focused on interleukin (IL)-10, a cytokine with broad anti-inflammatory properties, one of which is to counteract the function of Th1 lymphocytes. While studying the role of IL-10 in regulating immunopathology during infection with the intracellular parasite Toxoplasma gondii, we discovered that the host-protective IL-10 derives in an autocrine manner from conventional interferon-gamma (IFN-gamma)-producing T-bet(+) Foxp3(neg) Th1 cells. In the following review, we will discuss these findings that support the general concept that production of IL-10 is an important self-regulatory function of CD4(+) T lymphocytes.
Collapse
|
148
|
Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node. Nat Immunol 2010; 11:520-6. [PMID: 20418876 PMCID: PMC2895995 DOI: 10.1038/ni.1866] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/18/2010] [Indexed: 01/10/2023]
Abstract
Cytokines are soluble proteins that regulate immune responses. A current paradigm is that cytokine production in lymphoid tissues is tightly localized and signaling occurs between conjugate cells. Here we assess cytokine signaling during infection by measuring in vivo phosphorylation of intracellular signal transducers and activators of transcription (STATs). We show that interferon γ (IFN-γ) and interleukin 4 (IL-4) signal to the majority of lymphocytes throughout the reactive lymph node, and that IL-4 conditioning of naïve, bystander cells is sufficient to override opposing Th1 instruction. Our results demonstrate that, despite localized production, cytokines can permeate a lymph node and modify the majority of cells therein. Cytokine conditioning of bystander cells could provide a mechanism by which chronic worm infections subvert the host response to subsequent infections or vaccination attempts.
Collapse
|
149
|
Karasova D, Sebkova A, Havlickova H, Sisak F, Volf J, Faldyna M, Ondrackova P, Kummer V, Rychlik I. Influence of 5 major Salmonella pathogenicity islands on NK cell depletion in mice infected with Salmonella enterica serovar Enteritidis. BMC Microbiol 2010; 10:75. [PMID: 20226037 PMCID: PMC2848020 DOI: 10.1186/1471-2180-10-75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 03/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background In this study we were interested in the colonisation and early immune response of Balb/C mice to infection with Salmonella Enteritidis and isogenic pathogenicity island free mutants. Results The virulence of S. Enteritidis for Balb/C mice was exclusively dependent on intact SPI-2. Infections with any of the mutants harbouring SPI-2 (including the mutant in which we left only SPI-2 but removed SPI-1, SPI-3, SPI-4 and SPI-5) resulted in fatalities, liver injures and NK cell depletion from the spleen. The infection was of minimal influence on counts of splenic CD4 CD8 T lymphocytes and γδ T-lymphocytes although a reduced ability of splenic lymphocytes to respond to non-specific mitogens indicated general immunosuppression in mice infected with SPI-2 positive S. Enteritidis mutants. Further investigations showed that NK cells were depleted also in blood but not in the caecal lamina propria. However, NK cell depletion was not directly associated with the presence of SPI-2 and was rather an indicator of virulence or avirulence of a particular mutant because the depletion was not observed in mice infected with other attenuated mutants such as lon and rfaL. Conclusions The virulence of S. Enteritidis for Balb/C mice is exclusively dependent on the presence of SPI-2 in its genome, and a major hallmark of the infection in terms of early changes in lymphocyte populations is the depletion of NK cells in spleen and blood. The decrease of NK cells in circulation can be used as a marker of attenuation of S. Enteritidis mutants for Balb/C mice.
Collapse
Affiliation(s)
- Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
|