101
|
Liu N, Xiong Y, Ren Y, Zhang L, He X, Wang X, Liu M, Li D, Shui W, Zhou J. Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin. J Proteome Res 2015; 14:3292-304. [DOI: 10.1021/acs.jproteome.5b00308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ningning Liu
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yun Xiong
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yiran Ren
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linlin Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xianfei He
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xincheng Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenqing Shui
- Key
Laboratory of Systems Microbial Biotechnology, Tianjin Institute of
Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jun Zhou
- State
Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
102
|
A Dynein Light Chain 1 Binding Motif in Rabies Virus Polymerase L Protein Plays a Role in Microtubule Reorganization and Viral Primary Transcription. J Virol 2015; 89:9591-600. [PMID: 26157129 DOI: 10.1128/jvi.01298-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Rabies virus (RABV) polymerase L together with phosphoprotein P forms the PL polymerase complex that is essential for replication and transcription. However, its exact mechanism of action, interactions with cellular factors, and intracellular distribution are yet to be understood. Here by imaging a fluorescently tagged polymerase (mCherry-RABV-L), we show that L accumulates at acetylated and reorganized microtubules (MT). In silico analysis revealed a dynein light chain 1 (DLC1) binding motif in L that could mediate MT binding through dynein motors. As DLC1 binding by polymerase cofactor P is known, we compared the impact of the DLC1-binding motifs in P and L. Viruses with mutations in the respective motifs revealed that both motifs are required for efficient primary transcription, indicating that DLC1 acts as a transcription enhancer by binding to both P and L. Notably, also the levels of cellular DLC1 protein were regulated by both motifs, suggesting regulation of the DLC1 gene expression by both P and L. Finally, disruption of the motif in L resulted in a cell-type-specific loss of MT localization, demonstrating that DLC1 is involved in L-mediated cytoskeleton reorganization. Overall, we conclude that DLC1 acts as a transcription factor that stimulates primary RABV transcription by binding to both P and L. We further conclude that L influences MT organization and posttranslational modification, suggesting a model in which MT manipulation by L contributes to efficient intracellular transport of virus components and thus may serve as an important step in virus replication. IMPORTANCE Regulation of rabies virus polymerase complex by viral and cellular factors thus far has not been fully understood. Although cellular dynein light chain 1 (DLC1) has been reported to increase primary transcription by binding to polymerase cofactor phosphoprotein P, the detailed mechanism is unknown, and it is also not known whether the large enzymatic polymerase subunit L is involved. By fluorescence microscopy analysis of fluorescence-tagged rabies virus L, in silico identification of a potential DLC1 binding site in L, and characterization of recombinant rabies virus mutants, we show that a DLC1 binding motif in L is involved in cytoskeleton localization and reorganization, primary transcription regulation by DLC1, and regulation of cellular DLC1 gene expression. By providing evidence for a direct contribution of a DLC1 binding motif in L, our data significantly increase the understanding of rabies virus polymerase regulation and host manipulation by the virus as well.
Collapse
|
103
|
Valera MS, de Armas-Rillo L, Barroso-González J, Ziglio S, Batisse J, Dubois N, Marrero-Hernández S, Borel S, García-Expósito L, Biard-Piechaczyk M, Paillart JC, Valenzuela-Fernández A. The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology 2015; 12:53. [PMID: 26105074 PMCID: PMC4479245 DOI: 10.1186/s12977-015-0181-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor β (CBF-β), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-β-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.
Collapse
Affiliation(s)
- María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Serena Ziglio
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Julien Batisse
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Noé Dubois
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Sophie Borel
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR5236 CNRS UMSF, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Laura García-Expósito
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Martine Biard-Piechaczyk
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR5236 CNRS UMSF, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| |
Collapse
|
104
|
Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA, Schulte B, Diaz-Griffero F, Walsh D, Naghavi MH. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun 2015; 6:6660. [PMID: 25818806 PMCID: PMC4380233 DOI: 10.1038/ncomms7660] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. Although a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bi-directional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement towards the nucleus.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Geoffrey Bennett
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | - Bianca Schulte
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
105
|
Fernandez J, Portilho DM, Danckaert A, Munier S, Becker A, Roux P, Zambo A, Shorte S, Jacob Y, Vidalain PO, Charneau P, Clavel F, Arhel NJ. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J Biol Chem 2014; 290:4631-4646. [PMID: 25505242 DOI: 10.1074/jbc.m114.613133] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.
Collapse
Affiliation(s)
- Juliette Fernandez
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Débora M Portilho
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Sandie Munier
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Andreas Becker
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Pascal Roux
- Imagopole, Institut Pasteur, 75015 Paris, France
| | - Anaba Zambo
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Yves Jacob
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, CNRS UMR3569, Institut Pasteur, 75015 Paris, France, and
| | - Pierre Charneau
- the Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France
| | - François Clavel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Nathalie J Arhel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France,.
| |
Collapse
|
106
|
Cytoplasmic dynein promotes HIV-1 uncoating. Viruses 2014; 6:4195-211. [PMID: 25375884 PMCID: PMC4246216 DOI: 10.3390/v6114195] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.
Collapse
|
107
|
Al-Zeer MA, Al-Younes HM, Kerr M, Abu-Lubad M, Gonzalez E, Brinkmann V, Meyer TF. Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface. Mol Microbiol 2014; 94:1285-97. [PMID: 25315131 DOI: 10.1111/mmi.12829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
Abstract
Chlamydia trachomatis (Ctr), an obligate intracellular bacterium, survives and replicates within a membrane-bound vacuole, termed the inclusion, which intercepts host exocytic pathways to acquire nutrients. Ctr subverts cellular trafficking pathways from the Golgi by targeting small GTPases, including Rab proteins, to sustain intracellular bacterial replication; however, the precise mechanisms involved remain incompletely understood. Here, we show that Chlamydia infection in human epithelial cells induces microtubule remodeling, in particular the formation of detyrosinated stable MTs, to recruit Golgi ministacks, but not recycling endosomes, to the inclusion. These stable microtubules show increased resistance to chemically induced depolymerization, and their selective depletion results in reduced bacterial infectivity. Rab6 knockdown reversibly prevented not only Golgi ministack formation but also detyrosinated microtubule association with the inclusion. Our data demonstrate that Chlamydia co-opts the function of stable microtubules to support its development.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitèplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
UNLABELLED Following entry into the target cell, human immunodeficiency virus type 1 (HIV-1) must reverse transcribe its RNA genome to DNA and traffic to the nuclear envelope, where the viral genome is translocated into the nucleus for subsequent integration into the host cell chromosome. During this time, the viral core, which houses the genome, undergoes a poorly understood process of disassembly, known as uncoating. Collectively, many studies suggest that uncoating is tightly regulated to allow nuclear import of the genome while minimizing the exposure of the newly synthesized DNA to cytosolic DNA sensors. However, whether host cellular proteins facilitate this process remains poorly understood. Here we report that intact microtubules facilitate HIV-1 uncoating in target cells. Disruption of microtubules with nocodazole substantially delays HIV-1 uncoating, as revealed with three different assay systems. This defect in uncoating did not correlate with defective reverse transcription at early times postinfection, demonstrating that microtubule-facilitated uncoating is distinct from the previously reported role of viral reverse transcription in the uncoating process. We also find that pharmacological or small interfering RNA (siRNA)-mediated inhibition of cytoplasmic dynein or the kinesin 1 heavy chain KIF5B delays uncoating, providing detailed insight into how microtubules facilitate the uncoating process. These studies reveal a previously unappreciated role for microtubules and microtubule motor function in HIV-1 uncoating, establishing a functional link between viral trafficking and uncoating. Targeted disruption of the capsid motor interaction may reveal novel mechanisms of inhibition of viral infection or provide opportunities to activate cytoplasmic antiviral responses directed against capsid or viral DNA. IMPORTANCE During HIV-1 infection, fusion of viral and target cell membranes dispenses the viral ribonucleoprotein complex into the cytoplasm of target cells. During this time, the virus must reverse transcribe its RNA genome, traffic from the location of fusion to the nuclear membrane, and undergo the process of uncoating, whereby the viral capsid core disassembles to allow the subsequent nuclear import of the viral genome. Numerous cellular restriction factors target the viral capsid, suggesting that perturbation of the uncoating process represents an excellent antiviral target. However, this uncoating process, and the cellular factors that facilitate uncoating, remains poorly understood. The main observation of this study is that normal uncoating requires intact microtubules and is facilitated by dynein and kinesin motors. Targeting these factors may either directly inhibit infection or delay it enough to trigger mediators of intrinsic immunity that recognize cytoplasmic capsid or DNA and subsequently induce an antiviral state in these cells.
Collapse
|
109
|
Histone deacetylase 6 inhibits influenza A virus release by downregulating the trafficking of viral components to the plasma membrane via its substrate, acetylated microtubules. J Virol 2014; 88:11229-39. [PMID: 25031336 DOI: 10.1128/jvi.00727-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Mammalian cells produce many proteins, such as IFITM3, ISG15, MxA, and viperin, that inhibit influenza A virus (IAV) infection. Here, we show that a new class of host protein, histone deacetylase 6 (HDAC6), inhibits IAV infection. We found that HDAC6-overexpressing cells release about 3-fold less IAV progeny, whereas HDAC6-depleted cells release about 6-fold more IAV progeny. The deacetylase activity of HDAC6 played a role in its anti-IAV function as tubacin, a specific small-molecule inhibitor of HDAC6, increased the release of IAV progeny in a dose-dependent manner. Further, as visualized by electron microscopy, tubacin-treated cells showed an increase in IAV budding at the plasma membrane, the site of IAV assembly. Tubacin is a domain-specific inhibitor and binds to one of the two HDAC6 catalytic domains possessing tubulin deacetylase activity. This indicated the potential involvement of acetylated microtubules in the trafficking of viral components to the plasma membrane. Indeed, as quantified by flow cytometry, there was about a 2.0- to 2.5-fold increase and about a 2.0-fold decrease in the amount of viral envelope protein hemagglutinin present on the plasma membrane of tubacin-treated/HDAC6-depleted and HDAC6-overexpressing cells, respectively. In addition, the viral ribonucleoprotein complex was colocalized with acetylated microtubule filaments, and viral nucleoprotein coimmunoprecipitated with acetylated tubulin. Together, our findings indicate that HDAC6 is an anti-IAV host factor and exerts its anti-IAV function by negatively regulating the trafficking of viral components to the host cell plasma membrane via its substrate, acetylated microtubules. IMPORTANCE Host cells produce many proteins that have the natural ability to restrict influenza virus infection. Here, we discovered that another host protein, histone deacetylase 6 (HDAC6), inhibits influenza virus infection. We demonstrate that HDAC6 exerts its anti-influenza virus function by negatively regulating the trafficking of viral components to the site of influenza virus assembly via its substrate, acetylated microtubules. HDAC6 is a multisubstrate enzyme and regulates multiple cellular pathways, including the ones leading to various cancers, neurodegenerative diseases, and inflammatory disorders. Therefore, several drugs targeting HDAC6 are under clinical development for the treatment of a wide range of diseases. Influenza virus continues to be a major global public health problem due to regular emergence of drug-resistant and novel influenza virus strains in humans. As an alternative antiviral strategy, HDAC6 modulators could be employed to stimulate the anti-influenza virus potential of endogenous HDAC6 to inhibit influenza virus infection.
Collapse
|
110
|
The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events. J Virol 2014; 88:10803-12. [PMID: 25008921 DOI: 10.1128/jvi.00320-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4(+) T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4(+) T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. IMPORTANCE HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a "shock-and-kill" strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the susceptibility of uninfected CD4(+) T cells to infection with HIV, raising clinical concerns that vorinostat may reseed the viral reservoirs it is meant to purge, particularly under conditions of suboptimal drug exposure. We demonstrate that vorinostat acts following viral fusion and enhances the kinetics and efficiency of reverse transcription, nuclear import, and integration. The effect of vorinostat was recapitulated using the cytoplasmic histone deacetylase 6 (HDAC6) inhibitor tubacin, revealing a novel and previously unknown cytoplasmic mechanism of HDAC inhibitors on HIV replication that is distinct from their well-characterized effects of long-terminal-repeat (LTR)-driven gene expression. Moreover, our results suggest that treatment of patients with class I-specific HDAC inhibitors could induce latent viruses without increasing the susceptibility of uninfected cells to HIV.
Collapse
|
111
|
Naghavi MH. Stable microtubule subsets facilitate early HIV-1 infection. AIDS Res Hum Retroviruses 2014; 30:211-2. [PMID: 24588578 DOI: 10.1089/aid.2014.0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mojgan H. Naghavi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| |
Collapse
|