101
|
Bandeira VS, Peixoto C, Rodrigues AF, Cruz P, Alves P, Coroadinha AS, Carrondo M. Downstream Processing of Lentiviral Vectors: releasing bottlenecks. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
102
|
Sousa Â, Sousa F, Queiroz JA. Advances in chromatographic supports for pharmaceutical-grade plasmid DNA purification. J Sep Sci 2012; 35:3046-58. [DOI: 10.1002/jssc.201200307] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/28/2012] [Accepted: 06/02/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Ângela Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - João A. Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| |
Collapse
|
103
|
Gatschelhofer C, Prasch A, Buchmeiser MR, Zimmer A, Wernig K, Griesbacher M, Pieber TR, Sinner FM. Monolithic precolumns as efficient tools for guiding the design of nanoparticulate drug-delivery formulations. Anal Chem 2012; 84:7415-21. [PMID: 22861123 DOI: 10.1021/ac3012208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of nanomedicines for improved diagnosis and treatment of diseases is pushing current analytical methods to their limits. More efficient, quantitative high-throughput screening methods are needed to guide the optimization of promising nanoparticulate drug delivery formulations. In response to this need, we present herein a novel approach using monolithic separation media. The unique porosity of our capillary monolithic precolumns allows the direct injection and online removal of protamine-oligonucleotide nanoparticles ("proticles") without column clogging, thus avoiding the need for time-consuming off-line sample workup. Furthermore, ring-opening metathesis polymerization (ROMP)-derived monoliths show equivalent preconcentration efficiency for the target drug vasoactive intestinal peptide (VIP) as conventional particle-packed precolumns. The performance of the ROMP-derived monolithic precolumns was constant over at least 100 injections of crude proticle-containing and 300 injections of highly acidic samples. Applying a validated LC-MS/MS capillary monolithic column switching method, we demonstrate the rapid determination of both drug load and in vitro drug release kinetics of proticles within the critical first 2 h and investigate the stability of VIP-loaded proticles in aqueous storage medium intended for inhalation therapy.
Collapse
|
104
|
Bandeira V, Peixoto C, Rodrigues AF, Cruz PE, Alves PM, Coroadinha AS, Carrondo MJT. Downstream Processing of Lentiviral Vectors: Releasing Bottlenecks. Hum Gene Ther Methods 2012; 23:255-63. [DOI: 10.1089/hgtb.2012.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Vanessa Bandeira
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
| | - Cristina Peixoto
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
| | - Ana F. Rodrigues
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal
| | - Pedro E. Cruz
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
| | - Paula M. Alves
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal
| | - Ana S. Coroadinha
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal
| | - Manuel J. T. Carrondo
- Instituto de Biologia Experimental e Tecnológica (IBET), 2781-901 Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), 2829-516 Caparica, Portugal
| |
Collapse
|
105
|
Bandari R, Buchmeiser MR. Ring-opening metathesis polymerization-derived large-volume monolithic supports for reversed-phase and anion-exchange chromatography of biomolecules. Analyst 2012; 137:3271-7. [PMID: 22673214 DOI: 10.1039/c2an35193e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparative-scale monolithic columns up to 433.5 mL in volume were prepared via transition metal-catalyzed ring-opening metathesis polymerization (ROMP) from norborn-2-ene (NBE) and trimethylolpropane-tris(5-norbornene-2-carboxylate) (CL) using the 1(st)-generation Grubbs initiator RuCl(2)(PCy(3))(2)(CHPh) (Cy = cyclohexyl) (1) in the presence of a macro- and microporogen, i.e. of 2-propanol and toluene. To prepare large-volume monoliths, bulk polymerizations were completed within borosilicate or PEEK column formats with diameters in the range of 3 to 49 mm. The pore structure of the large-volume monoliths was investigated by electron microscopy and inverse-size exclusion chromatography (ISEC), respectively. Monolithic columns with inner diameters (I.D.s) in the range of 10-49 mm were tested for the separation of a mixture of five proteins, i.e., insulin, cytochrome C, lysozyme, conalbumin, and β-lactoglobulin. Preparative separation of these proteins was achieved within less than 12 min in a 433.5 mL monolithic column by applying gradient elution in the RP-HPLC mode. Furthermore, weak and strong anion exchangers were prepared via post-synthesis grafting of bicyclo[2.2.1]hept-5-en-2-yl-methyl-N,N-dimethylammonium hydrochloride (4) and bicyclo[2.2.1]hept-5-en-2-ylmethyl-N,N,N-trimethylammonium iodide (5), respectively. The weak and strong anion exchangers were used for the preparative-scale separation of 5'-phosphorylated oligodeoxythymidylic acid fragments of d[pT](12-18) at pH values ranging from 5 to 9.
Collapse
Affiliation(s)
- Rajendar Bandari
- Lehrstuhl für Makromolekulare Stoffe und Faserchemie, Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | | |
Collapse
|
106
|
Gajdosik MS, Clifton J, Josic D. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures. J Chromatogr A 2012; 1239:1-9. [PMID: 22520159 PMCID: PMC3340482 DOI: 10.1016/j.chroma.2012.03.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/06/2023]
Abstract
Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed.
Collapse
Affiliation(s)
| | - James Clifton
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Djuro Josic
- COBRE Center for Cancer Research Development, Rhode Island Hospital and Brown University, Providence, RI, USA
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
107
|
Koku H, Maier RS, Schure MR, Lenhoff AM. Modeling of dispersion in a polymeric chromatographic monolith. J Chromatogr A 2012; 1237:55-63. [PMID: 22465685 PMCID: PMC3327764 DOI: 10.1016/j.chroma.2012.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/24/2012] [Accepted: 03/01/2012] [Indexed: 11/26/2022]
Abstract
Dispersion in a commercial polymeric monolith was simulated on a sample geometry obtained by direct imaging using high-resolution electron microscopy. A parallelized random walk algorithm, implemented using a velocity field obtained previously by the lattice-Boltzmann method, was used to model mass transfer. Both point particles and probes of finite size were studied. Dispersion simulations with point particles using periodic boundaries resulted in plate heights that varied almost linearly with flow rate, at odds with the weaker dependence suggested by experimental observations and predicted by theory. This discrepancy resulted from the combined effect of the artificial symmetry in the velocity field and the periodic boundaries implemented to emulate macroscopic column lengths. Eliminating periodicity and simulating a single block length instead resulted in a functional dependence of plate heights on flow rate more in accord with experimental trends and theoretical predictions for random media. The lower values of the simulated plate heights than experimental ones are attributed in part to the presence of walls in real systems, an effect not modeled by the algorithm. On the other hand, analysis of transient dispersion coefficients and comparison of lateral particle positions at the entry and exit hinted at non-asymptotic behavior and a strong degree of correlation that was presumably a consequence of preferential high-velocity pathways in the raw sample block. Simulations with finite-sized probes resulted in particle trajectories that frequently terminated at narrow constrictions of the geometry. The amount of entrapment was predicted to increase monotonically with flow rate, evidently due to the relative contributions to transport by convection that carries particles to choke-points and diffusion that dislodges these entrapped particles. The overall effect is very similar to a flow-dependent entrapment phenomenon previously observed experimentally for adenovirus.
Collapse
Affiliation(s)
- Harun Koku
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Robert S. Maier
- Information Technology Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180, USA
| | - Mark R. Schure
- Theoretical Separation Science Laboratory, The Dow Chemical Company, 727 Norristown Road, Spring House, PA 19477, USA
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
108
|
Nischang I. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: Interplay of morphology and nanoscale gel porosity. J Chromatogr A 2012; 1236:152-63. [DOI: 10.1016/j.chroma.2012.03.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 11/28/2022]
|
109
|
Mert EH, Kaya MA, Yıldırım H. Preparation and Characterization of Polyester–Glycidyl Methacrylate PolyHIPE Monoliths to Use in Heavy Metal Removal. Des Monomers Polym 2012. [DOI: 10.1163/156855511x615001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- E. Hilal Mert
- a Yalova University, Faculty of Engineering, Polymer Engineering Department, 77100 Yalova, Turkey, Yildiz Technical University, Department of Chemistry, 34220 Istanbul, Turkey;,
| | - Mehmet Arif Kaya
- b Yildiz Technical University, Department of Chemistry, 34220 Istanbul, Turkey
| | - Hüseyin Yıldırım
- c Yalova University, Faculty of Engineering, Polymer Engineering Department, 77100 Yalova, Turkey, Yildiz Technical University, Department of Chemistry, 34220 Istanbul, Turkey
| |
Collapse
|
110
|
Rajak P, Vijayalakshmi MA, Jayaprakash NS. Purification of monoclonal antibodies, IgG1, from cell culture supernatant by use of metal chelate convective interaction media monolithic columns. Biomed Chromatogr 2012; 26:1488-93. [DOI: 10.1002/bmc.2721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Poonam Rajak
- Centre for Bioseparation Technology; VIT University; Vellore-632014; Tamil Nadu; India
| | - M. A. Vijayalakshmi
- Centre for Bioseparation Technology; VIT University; Vellore-632014; Tamil Nadu; India
| | - N. S. Jayaprakash
- Centre for Bioseparation Technology; VIT University; Vellore-632014; Tamil Nadu; India
| |
Collapse
|
111
|
Bandari R, Buchmeiser MR. Polymeric monolith supported Pt-nanoparticles as ligand-free catalysts for olefinhydrosilylation under batch and continuous conditions. Catal Sci Technol 2012. [DOI: 10.1039/c1cy00351h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
112
|
Morphology and separation efficiency of a new generation of analytical silica monoliths. J Chromatogr A 2012; 1222:46-58. [DOI: 10.1016/j.chroma.2011.12.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 11/21/2022]
|
113
|
Barroso T, Roque ACA, Aguiar-Ricardo A. Bioinspired and sustainable chitosan-based monoliths for antibody capture and release. RSC Adv 2012. [DOI: 10.1039/c2ra21687f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
114
|
Guiochon G, Beaver LA. Separation science is the key to successful biopharmaceuticals. J Chromatogr A 2011; 1218:8836-58. [DOI: 10.1016/j.chroma.2011.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
115
|
Burden CS, Jin J, Podgornik A, Bracewell DG. A monolith purification process for virus-like particles from yeast homogenate. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 880:82-9. [PMID: 22134039 DOI: 10.1016/j.jchromb.2011.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 11/19/2022]
Abstract
Monoliths are an alternative stationary phase format to conventional particle based media for large biomolecules. Conventional resins suffer from limited capacities and flow rates when used for viruses, virus-like particles (VLP) and other nanoplex materials. The monolith structure provides a more open pore structure to improve accessibility for these materials and better mass transport from convective flow and reduced pressure drops. To examine the performance of this format for bioprocessing we selected the challenging capture of a VLP from clarified yeast homogenate. Using a recombinant Saccharomyces cerevisiae host it was found hydrophobic interaction based separation using a hydroxyl derivatised monolith had the best performance. The monolith was then compared to a known beaded resin method, where the dynamic binding capacity was shown to be three-fold superior for the monolith with equivalent 90% recovery of the VLP. To understand the impact of the crude feed material confocal microscopy was used to visualise lipid contaminants, deriving from the homogenised yeast. It was seen that the lipid formed a layer on top of the column, even after regeneration of the column with isopropanol, resulting in increasing pressure drops with the number of operational cycles. Removal of the lipid pre-column significantly reduces the amount and rate of this fouling process. Using Amberlite/XAD-4 beads around 70% of the lipid was removed, with a loss of VLP around 20%. Applying a reduced lipid feed versus an untreated feed further increased the dynamic binding capacity of the monolith from 0.11 mg/mL column to 0.25 mg/mL column.
Collapse
Affiliation(s)
- Claire S Burden
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | | | | | | |
Collapse
|
116
|
Sousa A, Tomaz C, Sousa F, Queiroz J. Successful application of monolithic innovative technology using a carbonyldiimidazole disk to purify supercoiled plasmid DNA suitable for pharmaceutical applications. J Chromatogr A 2011; 1218:8333-43. [DOI: 10.1016/j.chroma.2011.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 02/03/2023]
|
117
|
Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 2011; 29:869-78. [DOI: 10.1016/j.biotechadv.2011.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
|
118
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
119
|
Morphological analysis of physically reconstructed capillary hybrid silica monoliths and correlation with separation efficiency. J Chromatogr A 2011; 1218:5187-94. [DOI: 10.1016/j.chroma.2011.05.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
|
120
|
An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds. J Chromatogr A 2011; 1218:5487-97. [DOI: 10.1016/j.chroma.2011.06.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/19/2011] [Accepted: 06/09/2011] [Indexed: 11/23/2022]
|
121
|
Sproß J, Sinz A. Monolithic media for applications in affinity chromatography. J Sep Sci 2011; 34:1958-73. [DOI: 10.1002/jssc.201100400] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022]
|
122
|
Preparation of macroporous methacrylate-based monoliths for chromatographic applications by the Reactive Gelation Process. J Chromatogr A 2011; 1217:4675-81. [PMID: 20627252 DOI: 10.1016/j.chroma.2010.04.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/24/2010] [Accepted: 04/28/2010] [Indexed: 11/21/2022]
Abstract
Polymeric monoliths are a relatively new separation medium for chromatographic applications. The innovative approach to produce such monoliths, the Reactive Gelation Process, presented by Marti et al. [1] for polystyrene macroporous materials is applied to a methacrylate-based material. It is shown that it is possible to create a macroporous structure by Reactive Gelation also with this polymer even if the properties of the material are different. Besides the analysis of the material by SEM and BET, several chromatographic methods are used to analyze the material properties. The ISEC experiments showed a much smaller size exclusion effect than in conventional packed beds. The permeability of the material is comparable to a packed bed with 4.13 μm particles. The column efficiency is not changing for increasing flow rates. Because of the high efficiency of the material, shorter columns are needed and therefore the comparatively low permeability is compensated. The monolith also exhibits a significant adsorption capacity for hydrophobic interaction, which makes it suitable for chromatographic purification processes.
Collapse
|
123
|
Pucić M, Knezević A, Vidic J, Adamczyk B, Novokmet M, Polasek O, Gornik O, Supraha-Goreta S, Wormald MR, Redzić I, Campbell H, Wright A, Hastie ND, Wilson JF, Rudan I, Wuhrer M, Rudd PM, Josić D, Lauc G. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 2011; 10:M111.010090. [PMID: 21653738 PMCID: PMC3205872 DOI: 10.1074/mcp.m111.010090] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
All immunoglobulin G molecules carry N-glycans, which modulate their biological activity. Changes in N-glycosylation of IgG associate with various diseases and affect the activity of therapeutic antibodies and intravenous immunoglobulins. We have developed a novel 96-well protein G monolithic plate and used it to rapidly isolate IgG from plasma of 2298 individuals from three isolated human populations. N-glycans were released by PNGase F, labeled with 2-aminobenzamide and analyzed by hydrophilic interaction chromatography with fluorescence detection. The majority of the structural features of the IgG glycome were consistent with previous studies, but sialylation was somewhat higher than reported previously. Sialylation was particularly prominent in core fucosylated glycans containing two galactose residues and bisecting GlcNAc where median sialylation level was nearly 80%. Very high variability between individuals was observed, approximately three times higher than in the total plasma glycome. For example, neutral IgG glycans without core fucose varied between 1.3 and 19%, a difference that significantly affects the effector functions of natural antibodies, predisposing or protecting individuals from particular diseases. Heritability of IgG glycans was generally between 30 and 50%. The individual's age was associated with a significant decrease in galactose and increase of bisecting GlcNAc, whereas other functional elements of IgG glycosylation did not change much with age. Gender was not an important predictor for any IgG glycan. An important observation is that competition between glycosyltransferases, which occurs in vitro, did not appear to be relevant in vivo, indicating that the final glycan structures are not a simple result of competing enzymatic activities, but a carefully regulated outcome designed to meet the prevailing physiological needs.
Collapse
Affiliation(s)
- Maja Pucić
- Genos Ltd., Glycobiology Division, Planinska 1, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Hlushkou D, Bruns S, Seidel-Morgenstern A, Tallarek U. Morphology-transport relationships for silica monoliths: From physical reconstruction to pore-scale simulations. J Sep Sci 2011; 34:2026-37. [DOI: 10.1002/jssc.201100158] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/10/2022]
|
125
|
Koku H, Maier RS, Czymmek KJ, Schure MR, Lenhoff AM. Modeling of flow in a polymeric chromatographic monolith. J Chromatogr A 2011; 1218:3466-75. [PMID: 21529814 PMCID: PMC3109253 DOI: 10.1016/j.chroma.2011.03.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 11/18/2022]
Abstract
The flow behavior of a commercial polymeric monolith was investigated by direct numerical simulations employing the lattice-Boltzmann (LB) methodology. An explicit structural representation of the monolith was obtained by serial sectioning of a portion of the monolith and imaging by scanning electron microscopy. After image processing, the three-dimensional structure of a sample block with dimensions of 17.8 μm × 17.8 μm × 14.1 μm was obtained, with uniform 18.5 nm voxel size. Flow was simulated on this reconstructed block using the LB method to obtain the velocity distribution, and in turn macroscopic flow properties such as the permeability and the average velocity. The computed axial velocity distribution exhibits a sharp peak with an exponentially decaying tail. Analysis of the local components of the flow field suggests that flow is not evenly distributed throughout the sample geometry, as is also seen in geometries that exhibit preferential flow paths, such as sphere pack arrays with defects. A significant fraction of negative axial velocities are observed; the largest of these are due to flow along horizontal pores that are also slightly oriented in the negative axial direction. Possible implications for mass transfer are discussed.
Collapse
Affiliation(s)
- Harun Koku
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716
| | - Robert S. Maier
- Information Technology Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS 39180
| | - Kirk J. Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Mark R. Schure
- Theoretical Separation Science Laboratory, The Dow Chemical Company, 727 Norristown Road, Spring House, PA 19477-0904
| | - Abraham M. Lenhoff
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
126
|
Neff S, Jungbauer A. Monolith peptide affinity chromatography for quantification of immunoglobulin M. J Chromatogr A 2011; 1218:2374-80. [DOI: 10.1016/j.chroma.2010.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/07/2010] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
|
127
|
Etzel MR, Bund T. Monoliths for the purification of whey protein–dextran conjugates. J Chromatogr A 2011; 1218:2445-50. [DOI: 10.1016/j.chroma.2011.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/06/2011] [Accepted: 01/11/2011] [Indexed: 11/25/2022]
|
128
|
Urbas L, Košir B, Peterka M, Pihlar B, Štrancar A, Barut M. Reversed phase monolithic analytical columns for the determination of HA1 subunit of influenza virus haemagglutinin. J Chromatogr A 2011; 1218:2432-7. [DOI: 10.1016/j.chroma.2010.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/14/2010] [Accepted: 12/18/2010] [Indexed: 11/16/2022]
|
129
|
Urbas L, Jarc BL, Barut M, Zochowska M, Chroboczek J, Pihlar B, Szolajska E. Purification of recombinant adenovirus type 3 dodecahedric virus-like particles for biomedical applications using short monolithic columns. J Chromatogr A 2011; 1218:2451-9. [DOI: 10.1016/j.chroma.2011.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 02/07/2023]
|
130
|
Maksimova E, Vlakh E, Tennikova T. Methacrylate-based monolithic layers for planar chromatography of polymers. J Chromatogr A 2011; 1218:2425-31. [DOI: 10.1016/j.chroma.2010.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
131
|
Yamamoto S, Okada T, Abe M, Yoshimoto N. Peak spreading in linear gradient elution chromatography with a thin monolithic disk. J Chromatogr A 2011; 1218:2460-6. [DOI: 10.1016/j.chroma.2011.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 03/03/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
|
132
|
|
133
|
Batista-Viera F, Janson JC, Carlsson J. Affinity Chromatography. METHODS OF BIOCHEMICAL ANALYSIS 2011; 54:221-58. [DOI: 10.1002/9780470939932.ch9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
134
|
Namera A, Nakamoto A, Saito T, Miyazaki S. Monolith as a new sample preparation material: Recent devices and applications. J Sep Sci 2011; 34:901-24. [DOI: 10.1002/jssc.201000795] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/12/2011] [Accepted: 01/15/2011] [Indexed: 11/07/2022]
|
135
|
Mönster A, Hiller O, Grüger D, Blasczyk R, Kasper C. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns. J Chromatogr A 2011; 1218:706-10. [DOI: 10.1016/j.chroma.2010.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
136
|
Lesch HP, Laitinen A, Peixoto C, Vicente T, Makkonen KE, Laitinen L, Pikkarainen JT, Samaranayake H, Alves PM, Carrondo MJT, Ylä-Herttuala S, Airenne KJ. Production and purification of lentiviral vectors generated in 293T suspension cells with baculoviral vectors. Gene Ther 2011; 18:531-8. [DOI: 10.1038/gt.2010.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
137
|
Nischang I, Teasdale I, Brüggemann O. Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 2010; 400:2289-304. [DOI: 10.1007/s00216-010-4579-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
|
138
|
Performance evaluation of Mimetic Ligand™ B14-triazole-FractoAIMs adsorbents for the capture of human monoclonal immunoglobulin G from cell culture feed. Anal Bioanal Chem 2010; 400:2349-59. [DOI: 10.1007/s00216-010-4571-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/26/2022]
|
139
|
Gutiérrez-Aguirre I, Steyer A, Banjac M, Kramberger P, Poljšak-Prijatelj M, Ravnikar M. On-site reverse transcription-quantitative polymerase chain reaction detection of rotaviruses concentrated from environmental water samples using methacrylate monolithic supports. J Chromatogr A 2010; 1218:2368-73. [PMID: 21040925 DOI: 10.1016/j.chroma.2010.10.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/01/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Rotaviruses are the leading cause of gastroenteritis in children and they exist widely in water environments. Ingestion of 10-100 viral particles is enough to initiate disease, what calls for extremely sensitive detection methods. In this study we have confirmed the validity of a recently published method for rotavirus concentration and detection based on the combination of methacrylate monoliths and real-time reverse transcription-quantitative PCR (RT-qPCR). The method was used to concentrate rotaviruses from different tap water and environmental water samples collected in Slovenia within years 2007 and 2009. The performance of virus concentration using monolithic supports was improved in comparison to the one of tangential ultrafiltration upon application of both methods on a range of environmental samples. Several samples were successfully concentrated on-site after successful adaptation of the method to field requirements. In such on-site format, the combination of concentration using CIM and detection using RT-qPCR detected as low as 30 rotavirus particles/ml, spiked in an environmental water sample.
Collapse
Affiliation(s)
- Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
140
|
Hlushkou D, Bruns S, Höltzel A, Tallarek U. From Pore Scale to Column Scale Dispersion in Capillary Silica Monoliths. Anal Chem 2010; 82:7150-9. [DOI: 10.1021/ac101393b] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Stefan Bruns
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
141
|
Bruns S, Müllner T, Kollmann M, Schachtner J, Höltzel A, Tallarek U. Confocal Laser Scanning Microscopy Method for Quantitative Characterization of Silica Monolith Morphology. Anal Chem 2010; 82:6569-75. [DOI: 10.1021/ac100909t] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Bruns
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Tibor Müllner
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Martin Kollmann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Joachim Schachtner
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| |
Collapse
|
142
|
Hlushkou D, Bruns S, Tallarek U. High-performance computing of flow and transport in physically reconstructed silica monoliths. J Chromatogr A 2010; 1217:3674-82. [DOI: 10.1016/j.chroma.2010.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 11/29/2022]
|
143
|
Kramberger P, Honour RC, Herman RE, Smrekar F, Peterka M. Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. J Virol Methods 2010; 166:60-4. [DOI: 10.1016/j.jviromet.2010.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
144
|
Krammer F, Schinko T, Messner P, Palmberger D, Ferko B, Grabherr R. Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. J Virol Methods 2010; 167:17-22. [PMID: 20304011 DOI: 10.1016/j.jviromet.2010.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Various virus-like particles (VLPs) have been shown to induce cytotoxic T-cell immune response as well as B-cell immune response. This makes VLPs promising candidates for antigen-carrier platforms for various epitopes. Influenza A VLPs were produced displaying a 20 amino acid sequence from Mycobacterium tuberculosis early secretory antigenic target 6 protein (ESAT-6). As this sequence is known to comprise a potent T-cell epitope it was chosen as a model for a foreign epitope to be presented on an influenza VLP scaffold. The ESAT-6 epitope was engineered into the antigenic region B of the influenza hemagglutinin (HA) from strain A/New Caledonia/20/99. VLPs were expressed in insect cells and subjected to immunization studies in mice. High serum antibody titers detected against recombinant ESAT-6 demonstrated the feasibility of influenza A VLPs serving as an efficient platform for epitope presentation.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
145
|
Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 2010; 1217:902-24. [PMID: 19828151 PMCID: PMC2829304 DOI: 10.1016/j.chroma.2009.09.073] [Citation(s) in RCA: 423] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
The porous polymer monoliths went a long way since their invention two decades ago. While the first studies applied the traditional polymerization processes at that time well established for the preparation of polymer particles, creativity of scientists interested in the monolithic structures has later led to the use of numerous less common techniques. This review article presents vast variety of methods that have meanwhile emerged. The text first briefly describes the early approaches used for the preparation of monoliths comprising standard free radical polymerizations and includes their development up to present days. Specific attention is paid to the effects of process variables on the formation of both porous structure and pore surface chemistry. Specific attention is also devoted to the use of photopolymerization. Then, several less common free radical polymerization techniques are presented in more detail such as those initiated by gamma-rays and electron beam, the preparation of monoliths from high internal phase emulsions, and cryogels. Living processes including stable free radicals, atom transfer radical polymerization, and ring-opening metathesis polymerization are also discussed. The review ends with description of preparation methods based on polycondensation and polyaddition reactions as well as on precipitation of preformed polymers affording the monolithic materials.
Collapse
Affiliation(s)
- Frantisek Svec
- The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, MS 67R6110, Berkeley, CA 94720-8139, USA.
| |
Collapse
|
146
|
Horká M, Kubíček O, Kubesoví A, Kubíčková Z, Rosenbergová K, Šlais K. Testing of the influenza virus purification by CIEF. Electrophoresis 2010; 31:331-8. [DOI: 10.1002/elps.200900310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
147
|
Vlakh EG, Maksimova EF, Krasikov VD, Tennikova TB. Macroporous polymer materials: Synthesis of a new functional copolymer and its use for biological microanalysis. POLYMER SCIENCE SERIES B 2009. [DOI: 10.1134/s1560090409090024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
148
|
Roberts MWH, Ongkudon CM, Forde GM, Danquah MK. Versatility of polymethacrylate monoliths for chromatographic purification of biomolecules. J Sep Sci 2009; 32:2485-94. [PMID: 19603394 DOI: 10.1002/jssc.200900309] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.
Collapse
Affiliation(s)
- Michael W H Roberts
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | | | | | |
Collapse
|
149
|
|
150
|
Dinh NP, Cam QM, Nguyen AM, Shchukarev A, Irgum K. Functionalization of epoxy-based monoliths for ion exchange chromatography of proteins. J Sep Sci 2009; 32:2556-64. [DOI: 10.1002/jssc.200900243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|