101
|
Adeli K. Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 2011; 301:E1051-64. [PMID: 21971522 DOI: 10.1152/ajpendo.00399.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulated cell metabolism involves acute and chronic regulation of gene expression by various nutritional and endocrine stimuli. To respond effectively to endogenous and exogenous signals, cells require rapid response mechanisms to modulate transcript expression and protein synthesis and cannot, in most cases, rely on control of transcriptional initiation that requires hours to take effect. Thus, co- and posttranslational mechanisms have been increasingly recognized as key modulators of metabolic function. This review highlights the critical role of mRNA translational control in modulation of global protein synthesis as well as specific protein factors that regulate metabolic function. First, the complex lifecycle of eukaryotic mRNAs will be reviewed, including our current understanding of translational control mechanisms, regulation by RNA binding proteins and microRNAs, and the role of RNA granules, including processing bodies and stress granules. Second, the current evidence linking regulation of mRNA translation with normal physiological and metabolic pathways and the associated disease states are reviewed. A growing body of evidence supports a key role of translational control in metabolic regulation and implicates translational mechanisms in the pathogenesis of metabolic disorders such as type 2 diabetes. The review also highlights translational control of apolipoprotein B (apoB) mRNA by insulin as a clear example of endocrine modulation of mRNA translation to bring about changes in specific metabolic pathways. Recent findings made on the role of 5'-untranslated regions (5'-UTR), 3'-UTR, RNA binding proteins, and RNA granules in mediating insulin regulation of apoB mRNA translation, apoB protein synthesis, and hepatic lipoprotein production are discussed.
Collapse
Affiliation(s)
- Khosrow Adeli
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Atrium 3653, 555 University Ave., Toronto, ON, M5G 1X8 Canada.
| |
Collapse
|
102
|
Abstract
UNLABELLED The protein YfeX from Escherichia coli has been proposed to be essential for the process of iron removal from heme by carrying out a dechelation of heme without cleavage of the porphyrin macrocycle. Since this proposed reaction is unique and would represent the first instance of the biological dechelation of heme, we undertook to characterize YfeX. Our data reveal that YfeX effectively decolorizes the dyes alizarin red and Cibacron blue F3GA and has peroxidase activity with pyrogallal but not guiacol. YfeX oxidizes protoporphyrinogen to protoporphyrin in vitro. However, we were unable to detect any dechelation of heme to free porphyrin with purified YfeX or in cellular extracts of E. coli overexpressing YfeX. Additionally, Vibrio fischeri, an organism that can utilize heme as an iron source when grown under iron limitation, is able to grow with heme as the sole source of iron when its YfeX homolog is absent. Plasmid-driven expression of YfeX in V. fischeri grown with heme did not result in accumulation of protoporphyrin. We propose that YfeX is a typical dye-decolorizing peroxidase (or DyP) and not a dechelatase. The protoporphyrin reported to accumulate when YfeX is overexpressed in E. coli likely arises from the intracellular oxidation of endogenously synthesized protoporphyrinogen and not from dechelation of exogenously supplied heme. Bioinformatic analysis of bacterial YfeX homologs does not identify any connection with iron acquisition but does suggest links to anaerobic-growth-related respiratory pathways. Additionally, some genes encoding homologs of YfeX have tight association with genes encoding a bacterial cytoplasmic encapsulating protein. IMPORTANCE Acquisition of iron from the host during infection is a limiting factor for growth and survival of pathogens. Host heme is the major source of iron in infections, and pathogenic bacteria have evolved complex mechanisms to acquire heme and abstract the iron from heme. Recently Létoffé et al. (Proc. Natl. Acad. Sci. U.S.A. 106:11719-11724, 2009) reported that the protein YfeX from E. coli is able to dechelate heme to remove iron and leave an intact tetrapyrrole. This is totally unlike any other described biological system for iron removal from heme and, thus, would represent a dramatically new feature with potentially profound implications for our understanding of bacterial pathogenesis. Given that this reaction has no precedent in biological systems, we characterized YfeX and a related protein. Our data clearly demonstrate that YfeX is not a dechelatase as reported but is a peroxidase that oxidizes endogenous porphyrinogens to porphyrins.
Collapse
|
103
|
Jeong SY, Crooks DR, Wilson-Ollivierre H, Ghosh MC, Sougrat R, Lee J, Cooperman S, Mitchell JB, Beaumont C, Rouault TA. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice. PLoS One 2011; 6:e25404. [PMID: 22003390 PMCID: PMC3189198 DOI: 10.1371/journal.pone.0025404] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 09/02/2011] [Indexed: 12/12/2022] Open
Abstract
Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.
Collapse
Affiliation(s)
- Suh Young Jeong
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel R. Crooks
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hayden Wilson-Ollivierre
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Manik C. Ghosh
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachid Sougrat
- Nanobiology Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Sharon Cooperman
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James B. Mitchell
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carole Beaumont
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon, Université Paris Diderot, Paris, France
| | - Tracey A. Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
104
|
Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 2011; 118:e168-79. [PMID: 21940823 DOI: 10.1182/blood-2011-04-343541] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron regulatory proteins (IRPs) 1 and 2 are RNA-binding proteins that control cellular iron metabolism by binding to conserved RNA motifs called iron-responsive elements (IREs). The currently known IRP-binding mRNAs encode proteins involved in iron uptake, storage, and release as well as heme synthesis. To systematically define the IRE/IRP regulatory network on a transcriptome-wide scale, IRP1/IRE and IRP2/IRE messenger ribonucleoprotein complexes were immunoselected, and the mRNA composition was determined using microarrays. We identify 35 novel mRNAs that bind both IRP1 and IRP2, and we also report for the first time cellular mRNAs with exclusive specificity for IRP1 or IRP2. To further explore cellular iron metabolism at a system-wide level, we undertook proteomic analysis by pulsed stable isotope labeling by amino acids in cell culture in an iron-modulated mouse hepatic cell line and in bone marrow-derived macrophages from IRP1- and IRP2-deficient mice. This work investigates cellular iron metabolism in unprecedented depth and defines a wide network of mRNAs and proteins with iron-dependent regulation, IRP-dependent regulation, or both.
Collapse
|
105
|
Styś A, Galy B, Starzyński RR, Smuda E, Drapier JC, Lipiński P, Bouton C. Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide. J Biol Chem 2011; 286:22846-54. [PMID: 21566147 DOI: 10.1074/jbc.m111.231902] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mammals, iron regulatory proteins (IRPs) 1 and 2 posttranscriptionally regulate expression of genes involved in iron metabolism, including transferrin receptor 1, the ferritin (Ft) H and L subunits, and ferroportin by binding mRNA motifs called iron responsive elements (IREs). IRP1 is a bifunctional protein that mostly exists in a non-IRE-binding, [4Fe-4S] cluster aconitase form, whereas IRP2, which does not assemble an Fe-S cluster, spontaneously binds IREs. Although both IRPs fulfill a trans-regulatory function, only mice lacking IRP2 misregulate iron metabolism. NO stimulates the IRE-binding activity of IRP1 by targeting its Fe-S cluster. IRP2 has also been reported to sense NO, but the intrinsic function of IRP1 and IRP2 in NO-mediated regulation of cellular iron metabolism is controversial. In this study, we exposed bone marrow macrophages from Irp1(-/-) and Irp2(-/-) mice to NO and showed that the generated apo-IRP1 was entirely responsible for the posttranscriptional regulation of transferrin receptor 1, H-Ft, L-Ft, and ferroportin. The powerful action of NO on IRP1 also remedies the defects of iron storage found in IRP2-null bone marrow macrophages by efficiently reducing Ft overexpression. We also found that NO-dependent IRP1 activation, resulting in increased iron uptake and reduced iron sequestration and export, maintains enough intracellular iron to fuel the Fe-S cluster biosynthetic pathway for efficient restoration of the citric acid cycle aconitase in mitochondria. Thus, IRP1 is the dominant sensor and transducer of NO for posttranscriptional regulation of iron metabolism and participates in Fe-S cluster repair after exposure to NO.
Collapse
Affiliation(s)
- Agnieszka Styś
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Wólka Kosowska, Poland
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.
Collapse
|
107
|
Lemire J, Mailloux R, Darwich R, Auger C, Appanna VD. The disruption of L-carnitine metabolism by aluminum toxicity and oxidative stress promotes dyslipidemia in human astrocytic and hepatic cells. Toxicol Lett 2011; 203:219-26. [PMID: 21439360 DOI: 10.1016/j.toxlet.2011.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/19/2022]
Abstract
L-Carnitine is a critical metabolite indispensable for the metabolism of lipids as it facilitates fatty acid transport into the mitochondrion where β-oxidation occurs. Human astrocytes (CCF-STTG1 cells) and hepatocytes (HepG2 cells) exposed to aluminum (Al) and hydrogen peroxide (H₂O₂), were characterized with lower levels of L-carnitine, diminished β-oxidation, and increased lipid accumulation compared to the controls. γ-Butyrobetainealdehyde dehydrogenase (BADH) and butyrobetaine dioxygenase (BBDOX), two key enzymes mediating the biogenesis of L-carnitine, were sharply reduced during Al and H₂O₂ challenge. Exposure of the Al and H₂O₂-treated cells to α-ketoglutarate (KG), led to the recovery of L-carnitine production with the concomitant reduction in ROS levels. It appears that the channeling of KG to combat oxidative stress results in decreased L-carnitine synthesis, an event that contributes to the dyslipidemia observed during Al and H₂O₂ insults in these mammalian cells. Hence, KG may help alleviate pathological conditions induced by oxidative stress.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E2C6, Canada
| | | | | | | | | |
Collapse
|
108
|
De Domenico I, Vaughn MB, Paradkar PN, Lo E, Ward DM, Kaplan J. Decoupling ferritin synthesis from free cytosolic iron results in ferritin secretion. Cell Metab 2011; 13:57-67. [PMID: 21195349 PMCID: PMC3035985 DOI: 10.1016/j.cmet.2010.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 09/10/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Ferritin is a multisubunit protein that is responsible for storing and detoxifying cytosolic iron. Ferritin can be found in serum but is relatively iron poor. Serum ferritin occurs in iron overload disorders, in inflammation, and in the genetic disorder hyperferritinemia with cataracts. We show that ferritin secretion results when cellular ferritin synthesis occurs in the relative absence of free cytosolic iron. In yeast and mammalian cells, newly synthesized ferritin monomers can be translocated into the endoplasmic reticulum and transits through the secretory apparatus. Ferritin chains can be translocated into the endoplasmic reticulum in an in vitro translation and membrane insertion system. The insertion of ferritin monomers into the ER occurs under low-free-iron conditions, as iron will induce the assembly of ferritin. Secretion of ferritin chains provides a mechanism that limits ferritin nanocage assembly and ferritin-mediated iron sequestration in the absence of the translational inhibition of ferritin synthesis.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Internal Medicine School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Michael B Vaughn
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Prasad N Paradkar
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Eric Lo
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Diane M. Ward
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Jerry Kaplan
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| |
Collapse
|
109
|
Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell 2010; 142:24-38. [PMID: 20603012 DOI: 10.1016/j.cell.2010.06.028] [Citation(s) in RCA: 1496] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 02/06/2023]
Abstract
Disruptions in iron homeostasis from both iron deficiency and overload account for some of the most common human diseases. Iron metabolism is balanced by two regulatory systems, one that functions systemically and relies on the hormone hepcidin and the iron exporter ferroportin, and another that predominantly controls cellular iron metabolism through iron-regulatory proteins that bind iron-responsive elements in regulated messenger RNAs. We describe how the two distinct systems function and how they "tango" together in a coordinated manner. We also highlight some of the current questions in mammalian iron metabolism and discuss therapeutic opportunities arising from a better understanding of the underlying biological principles.
Collapse
Affiliation(s)
- Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|