101
|
Teunissen PF, Boshuizen MC, Hollander MR, Biesbroek PS, van der Hoeven NW, Mol JQ, Gijbels MJ, van der Velden S, van der Pouw Kraan TC, Horrevoets AJ, de Winther MP, van Royen N. MAb therapy against the IFN-α/β receptor subunit 1 stimulates arteriogenesis in a murine hindlimb ischaemia model without enhancing atherosclerotic burden. Cardiovasc Res 2015; 107:255-66. [DOI: 10.1093/cvr/cvv138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
|
102
|
Hollander MR, Horrevoets AJG, van Royen N. Cellular and pharmacological targets to induce coronary arteriogenesis. Curr Cardiol Rev 2015; 10:29-37. [PMID: 23638831 PMCID: PMC3968592 DOI: 10.2174/1573403x113099990003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022] Open
Abstract
The formation of collateral vessels (arteriogenesis) to sustain perfusion in ischemic tissue is native to the body and can compensate for coronary stenosis. However, arteriogenesis is a complex process and is dependent on many different factors. Although animal studies on collateral formation and stimulation show promising data, clinical trials have failed to replicate these results. Further research to the exact mechanisms is needed in order to develop a pharmalogical stimulant. This review gives an overview of recent data in the field of arteriogenesis.
Collapse
Affiliation(s)
| | | | - Niels van Royen
- VU University Medical Center, Department of Cardiology, Room 4D-36, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
103
|
Nelson CP, Schunkert H, Samani NJ, Erridge C. Genetic analysis of leukocyte type-I interferon production and risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2015; 35:1456-62. [PMID: 25882064 DOI: 10.1161/atvbaha.114.304925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/04/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus are genetically predisposed to enhanced production of the type-I interferon IFN-α and are also at elevated risk of developing atherosclerosis compared with healthy subjects. We aimed to test whether genetic predisposition to increased type-I IFN production affects risk of coronary artery disease. APPROACH AND RESULTS Using a list of 11 single nucleotide polymorphisms from the results of genome-wide association studies for systemic lupus erythematosus, which we hypothesised would be enriched in variants that regulate type-I IFN production, we identified a genetic risk score based on 3 single nucleotide polymorphisms (rs10516487, rs3131379 and rs7574865), which correlated significantly with production of IFN-α by human peripheral leukocytes stimulated with CpG-oligonucleotide (n=60, P=1.50 × 10(-5)). These single nucleotide polymorphisms explained 27.8% of variation in the CpG-oligonucleotide-induced IFN-α response and were also associated with Toll-like receptor-7/8- and Toll-like receptor-9-dependent IFN-α and IFN-β responses, but were not associated with inflammatory cytokine production in response to Toll-like receptor-4 stimulation or risk of coronary artery disease in 22,233 cases and 64,762 controls (odds ratio 1.00, 95% CI 0.98-1.02) using Mendelian randomization-based analyses. Coronary artery disease risk was also not associated with the full panel of 11 systemic lupus erythematosus single nucleotide polymorphisms or loci responsible for the monogenic type-I interferonopathies Aicardi-Goutières syndrome and Spondyloenchondrodysplasia with immune dysregulation. CONCLUSIONS The results argue against the potential utility of drugs targeting type-I IFN production for coronary artery disease. The use of genetic variants that modify leukocyte signaling pathways, rather than circulating biomarkers, as instruments in Mendelian randomization analyses may be useful for studies investigating causality of other candidate pathways of atherogenesis.
Collapse
Affiliation(s)
- Christopher P Nelson
- From the Department of Cardiovascular Sciences, University of Leicester, Leicester, UK (C.P.N., N.J.S., C.E.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK (C.P.N., N.J.S., C.E.); German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (H.S.); and Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (H.S.)
| | - Heribert Schunkert
- From the Department of Cardiovascular Sciences, University of Leicester, Leicester, UK (C.P.N., N.J.S., C.E.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK (C.P.N., N.J.S., C.E.); German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (H.S.); and Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (H.S.)
| | - Nilesh J Samani
- From the Department of Cardiovascular Sciences, University of Leicester, Leicester, UK (C.P.N., N.J.S., C.E.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK (C.P.N., N.J.S., C.E.); German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (H.S.); and Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (H.S.)
| | - Clett Erridge
- From the Department of Cardiovascular Sciences, University of Leicester, Leicester, UK (C.P.N., N.J.S., C.E.); National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK (C.P.N., N.J.S., C.E.); German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany (H.S.); and Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (H.S.).
| |
Collapse
|
104
|
Ilhan F, Kalkanli ST. Atherosclerosis and the role of immune cells. World J Clin Cases 2015; 3:345-352. [PMID: 25879006 PMCID: PMC4391004 DOI: 10.12998/wjcc.v3.i4.345] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/30/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon (IFN)-α and β are generated upon the activation of toll-like receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immune cells in the atherosclerosis.
Collapse
|
105
|
Ketelhuth DFJ, Hansson GK. Modulation of autoimmunity and atherosclerosis - common targets and promising translational approaches against disease. Circ J 2015; 79:924-33. [PMID: 25766275 DOI: 10.1253/circj.cj-15-0167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall that is influenced by several risk factors, including hyperlipidemia and hypertension. Autoimmune diseases substantially increase the risk for cardiovascular disease (CVD). Although atherosclerotic CVD, such as myocardial and stroke, is much more prevalent than classical autoimmune conditions such as rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, these types of pathology have many similarities, raising the possibility that therapies against autoimmune disease can have beneficial effects on CVD. Substantial clinical and experimental data support the potential for immunomodulatory approaches to combating both autoimmune and cardiovascular diseases, including classical immunosuppressants, anticytokine therapy, the targeting of T and B cells and their responses, and vaccination. In this review, we discuss experimental and clinical studies that have used immunomodulatory approaches to mitigate autoimmune reactions and examine their potential to prevent and treat atherosclerotic CVD.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital
| | | |
Collapse
|
106
|
Abstract
Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, L01-146.1, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
107
|
Kanno S, Nishio H, Tanaka T, Motomura Y, Murata K, Ihara K, Onimaru M, Yamasaki S, Kono H, Sueishi K, Hara T. Activation of an innate immune receptor, Nod1, accelerates atherogenesis in Apoe-/- mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:773-80. [PMID: 25488987 DOI: 10.4049/jimmunol.1302841] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atherosclerosis is essentially a vascular inflammatory process in the presence of an excess amount of lipid. We have recently reported that oral administration of a nucleotide-binding oligomerization domain (Nod)-1 ligand, FK565, induced vascular inflammation in vivo. No studies, however, have proven the association between Nod1 and atherosclerosis in vivo. To investigate a potential role of NOD1 in atherogenesis, we orally administered FK565 to apolipoprotein E knockout (Apoe(-/-)) mice for 4 wk intermittently and performed quantification of atherosclerotic lesions in aortic roots and aortas, immunohistochemical analyses, and microarray-based gene expression profiling of aortic roots. FK565 administration accelerated the development of atherosclerosis in Apoe(-/-) mice, and the effect was dependent on Nod1 in non-bone marrow origin cells by bone marrow transplantation experiments. Immunohistochemical studies revealed the increases in the accumulation of macrophages and CD3 T cells within the plaques in aortic roots. Gene expression analyses of aortic roots demonstrated a marked upregulation of the Ccl5 gene during early stage of atherogenesis, and the treatment with Ccl5 antagonist significantly inhibited the acceleration of atherosclerosis in FK565-administered Apoe(-/-) mice. Additionally, as compared with Apoe(-/-) mice, Apoe and Nod1 double-knockout mice showed reduced development of atherosclerotic lesions from the early stage as well as their delayed progression and a significant reduction in Ccl5 mRNA levels at 9 wk of age. Data in the present study show that the Nod1 signaling pathway in non-bone marrow-derived cells contributes to the development of atherosclerosis.
Collapse
Affiliation(s)
- Shunsuke Kanno
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Hisanori Nishio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Center for the Study of Global Infection, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Motomura
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University 812-8582, Fukuoka, Japan
| | - Kenji Murata
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Ihara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuho Onimaru
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University 812-8582, Fukuoka, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan; and
| | - Katsuo Sueishi
- Department of Research and Education, National Hospital Organization Fukuoka-Higashi Medical Center, Fukuoka 811-3195, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
108
|
Diverse vascular lesions in systemic lupus erythematosus and clinical implications. Curr Opin Nephrol Hypertens 2014; 23:218-23. [PMID: 24670401 DOI: 10.1097/01.mnh.0000444812.65002.cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Vascular injury is one of the typical symptoms of systemic lupus erythematosus (SLE), and may play a key role in the choice of treatment strategy and prediction of prognosis. In this review, diverse vascular lesions in SLE and their clinical significance are discussed. RECENT FINDINGS The clinical features of vascular disease in SLE differ from organ to organ, and may be extreme with regard to renal vascular lesions. Vascular lesions in SLE may be of inflammatory or thrombotic origin, and immune system dysfunction is considered to be a predominant feature. Numerous lines of evidence suggest that the activation and injury of endothelial cells might play a key role in the pathogenesis. SUMMARY Vascular lesions in SLE are mediated by a complex interaction between the immune system and other contributing factors. Different therapies developed for vascular lesions, both immunosuppressive and nonimmunosuppressive, should be selected based on the different clinical and pathological characteristics, and our future understanding of the different mechanisms involved.
Collapse
|
109
|
Barsalou J, Bradley TJ, Silverman ED. Cardiovascular risk in pediatric-onset rheumatological diseases. Arthritis Res Ther 2014; 15:212. [PMID: 23731870 PMCID: PMC3672705 DOI: 10.1186/ar4212] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular morbidity and mortality are becoming major health concerns for adults with inflammatory rheumatic diseases. The enhanced atherogenesis in this patient population is promoted by the exposure to traditional risk factors as well as nontraditional cardiovascular insults, such as corticosteroid therapy, chronic inflammation and autoantibodies. Despite definite differences between many adult-onset and pediatric-onset rheumatologic diseases, it is extremely likely that atherosclerosis will become the leading cause of morbidity and mortality in this pediatric patient population. Because cardiovascular events are rare at this young age, surrogate measures of atherosclerosis must be used. The three major noninvasive vascular measures of early atherosclerosis--namely, flow-mediated dilatation, carotid intima-media thickness and pulse wave velocity--can be performed easily on children. Few studies have explored the prevalence of cardiovascular risk factors and even fewer have used the surrogate vascular measures to document signs of early atherosclerosis in children with pediatric-onset rheumatic diseases. The objective of this review is to provide an overview on cardiovascular risk and early atherosclerosis in pediatric-onset systemic lupus erythematosus, juvenile idiopathic arthritis and juvenile dermatomyositis patients, and to review cardiovascular preventive strategies that should be considered in this population.
Collapse
|
110
|
Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling. Cell Metab 2014; 20:813-826. [PMID: 25440058 PMCID: PMC4254584 DOI: 10.1016/j.cmet.2014.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/30/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are an important constituent of the macrophage glycocalyx and extracellular microenvironment. To examine their role in atherogenesis, we inactivated the biosynthetic gene N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) in macrophages and crossbred the strain to Ldlr(-/-) mice. When placed on an atherogenic diet, Ldlr(-/-)Ndst1(f/f)LysMCre(+) mice had increased atherosclerotic plaque area and volume compared to Ldlr(-/-) mice. Diminished sulfation of heparan sulfate resulted in enhanced chemokine expression; increased macrophages in plaques; increased expression of ACAT2, a key enzyme in cholesterol ester storage; and increased foam cell conversion. Motif analysis of promoters of upregulated genes suggested increased type I interferon signaling, which was confirmed by elevation of STAT1 phosphorylation induced by IFN-β. The proinflammatory macrophages derived from Ndst1(f/f)LysMCre(+) mice also sensitized the animals to diet-induced obesity. We propose that macrophage HSPGs control basal activation of macrophages by maintaining type I interferon reception in a quiescent state through sequestration of IFN-β.
Collapse
|
111
|
Tomasello E, Pollet E, Vu Manh TP, Uzé G, Dalod M. Harnessing Mechanistic Knowledge on Beneficial Versus Deleterious IFN-I Effects to Design Innovative Immunotherapies Targeting Cytokine Activity to Specific Cell Types. Front Immunol 2014; 5:526. [PMID: 25400632 PMCID: PMC4214202 DOI: 10.3389/fimmu.2014.00526] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN-I) were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote anti-viral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic anti-viral immunity. Second, IFN-I orchestrate innate and adaptive anti-viral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1) infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV) infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including (i) the subtypes and dose of IFN-I produced, (ii) the cell types affected by IFN-I, and (iii) the source and timing of IFN-I production. Finally, we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.
Collapse
Affiliation(s)
- Elena Tomasello
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Emeline Pollet
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Gilles Uzé
- UMR 5235, Centre National de la Recherche Scientifique (CNRS), University Montpellier II , Montpellier , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| |
Collapse
|
112
|
Affiliation(s)
- Erik A L Biessen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands (E.A.L.B.); Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA (A.C.).
| | - Anette Christ
- From the Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands (E.A.L.B.); Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA (A.C.)
| |
Collapse
|
113
|
Moll HP, Lee A, Minussi DC, da Silva CG, Csizmadia E, Bhasin M, Ferran C. A20 regulates atherogenic interferon (IFN)-γ signaling in vascular cells by modulating basal IFNβ levels. J Biol Chem 2014; 289:30912-24. [PMID: 25217635 DOI: 10.1074/jbc.m114.591966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnβ signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNβ levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNβ abrogates heightened STAT1 levels in these cells. Upstream of IFNβ, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNβ transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNβ levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment.
Collapse
Affiliation(s)
- Herwig P Moll
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Andy Lee
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Darlan C Minussi
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Cleide G da Silva
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Eva Csizmadia
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Manoj Bhasin
- the Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02135
| | - Christiane Ferran
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Division of Nephrology, Department of Medicine, and
| |
Collapse
|
114
|
Bot I, Daissormont ITMN, Zernecke A, van Puijvelde GHM, Kramp B, de Jager SCA, Sluimer JC, Manca M, Hérias V, Westra MM, Bot M, van Santbrink PJ, van Berkel TJC, Su L, Skjelland M, Gullestad L, Kuiper J, Halvorsen B, Aukrust P, Koenen RR, Weber C, Biessen EAL. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J Mol Cell Cardiol 2014; 74:44-52. [PMID: 24816217 PMCID: PMC4418455 DOI: 10.1016/j.yjmcc.2014.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
AIMS The SDF-1α/CXCR4 dyad was previously shown by us and others to be instrumental in intimal hyperplasia as well as early stage atherosclerosis. We here sought to investigate its impact on clinically relevant stages of atherosclerosis in mouse and man. METHODS AND RESULTS Immunohistochemical analysis of CXCR4 expression in human atherosclerotic lesions revealed a progressive accumulation of CXCR4(+) cells during plaque progression. To address causal involvement of CXCR4 in advanced stages of atherosclerosis we reconstituted LDLr(-/-) mice with autologous bone marrow infected with lentivirus encoding SDF-1α antagonist or CXCR4 degrakine, which effects proteasomal degradation of CXCR4. Functional CXCR4 blockade led to progressive plaque expansion with disease progression, while also promoting intraplaque haemorrhage. Moreover, CXCR4 knockdown was seen to augment endothelial adhesion of neutrophils. Concordant with this finding, inhibition of CXCR4 function increased adhesive capacity and reduced apoptosis of neutrophils and resulted in hyperactivation of circulating neutrophils. Compatible with a role of the neutrophil CXCR4 in end-stage atherosclerosis, CXCR4 expression by circulating neutrophils was lowered in patients with acute cardiovascular syndromes. CONCLUSION In conclusion, CXCR4 contributes to later stages of plaque progression by perturbing neutrophil function.
Collapse
Affiliation(s)
- Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Isabelle T M N Daissormont
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Alma Zernecke
- Rudolf-Virchow-Center/DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Gijs H M van Puijvelde
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Birgit Kramp
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Saskia C A de Jager
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Marco Manca
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Veronica Hérias
- Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Marijke M Westra
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Martine Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Peter J van Santbrink
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Theo J C van Berkel
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lishan Su
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology School of Medicine, The University of North Carolina, Chapel Hill, NC 27599-7295
| | - Mona Skjelland
- Department of Neurology, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bente Halvorsen
- Department of Internal Medicine, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Paul Aukrust
- Department of Internal Medicine, Rikshospitalet University Hospital, University of Oslo, Norway
| | - Rory R Koenen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erik A L Biessen
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Experimental Vascular Pathology Group, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
115
|
Srivastava S, Koch LK, Campbell DJ. IFNαR signaling in effector but not regulatory T cells is required for immune dysregulation during type I IFN-dependent inflammatory disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:2733-42. [PMID: 25092894 DOI: 10.4049/jimmunol.1401039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type I IFNs are a family of proinflammatory cytokines that are essential for antiviral immunity but whose overexpression is associated with several autoimmune disorders. In this study, we asked how chronic IFN overexpression regulates the activity of different cell types and how this contributes to immune dysfunction during IFN-associated inflammatory diseases. We show that in mice that chronically overproduce type I IFNs owing to loss of the DNA exonuclease Trex1, inflammatory disease completely depends on IFNαR signaling in T cells. Although IFNs directly inhibited the proliferation and activation of Foxp3(+) regulatory T cells, this was neither required nor sufficient for development of inflammatory disease. Rather, chronic IFN expression directly promoted the expansion and activation of effector T cells, and disease development was completely dependent on IFNαR signaling in these cells. Thus, chronic IFN expression can drive inflammatory disease via its direct effects on effector, but not regulatory, T cells.
Collapse
Affiliation(s)
- Shivani Srivastava
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195; and
| | - Lisa K Koch
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195
| | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195; and
| |
Collapse
|
116
|
Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 2014; 5:279. [PMID: 25120492 PMCID: PMC4110479 DOI: 10.3389/fphys.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical UniversityMoscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
| | - Igor A. Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production ComplexMoscow, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneyCampbelltown, NSW, Australia
| |
Collapse
|
117
|
Zhang SM, Zhu LH, Li ZZ, Wang PX, Chen HZ, Guan HJ, Jiang DS, Chen K, Zhang XF, Tian S, Yang D, Zhang XD, Li H. Interferon regulatory factor 3 protects against adverse neo-intima formation. Cardiovasc Res 2014; 102:469-479. [PMID: 24596398 DOI: 10.1093/cvr/cvu052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
AIMS Vascular smooth muscle cell (VSMC) proliferation is central to the pathophysiology of neo-intima formation. Interferon regulatory factor 3 (IRF3) inhibits the growth of cancer cells and fibroblasts. However, the role of IRF3 in vascular neo-intima formation is unknown. We evaluated the protective role of IRF3 against neo-intima formation in mice and the underlying mechanisms. METHODS AND RESULTS IRF3 expression was down-regulated in VSMCs after carotid wire injury in vivo, and in SMCs after platelet-derived growth factor (PDGF)-BB challenge in vitro. Global knockout of IRF3 (IRF3-KO) led to accelerated neo-intima formation and proliferation of VSMCs, whereas the opposite was seen in SMC-specific IRF3 transgenic mice. Mechanistically, we identified IRF3 as a novel regulator of peroxisome proliferator-activated receptor γ (PPARγ), a negative regulator of SMC proliferation after vascular injury. Binding of IRF3 to the AB domain of PPARγ in the nucleus of SMCs facilitated PPARγ transactivation, resulting in decreased proliferation cell nuclear antigen expression and suppressed proliferation. Overexpression of wild-type, but not truncated, IRF3 with a mutated IRF association domain (IAD) retained the ability to exert anti-proliferative effect. CONCLUSIONS IRF3 inhibits VSMC proliferation and neo-intima formation after vascular injury through PPARγ activation.
Collapse
Affiliation(s)
- Shu-Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Zuo-Zhi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Jing Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Da Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Jiefang Road 238, Wuhan 430060, China Cardiovascular Research Institute of Wuhan University, Wuhan, China
| |
Collapse
|
118
|
Döring Y, Soehnlein O, Weber C. Neutrophils cast NETs in atherosclerosis: employing peptidylarginine deiminase as a therapeutic target. Circ Res 2014; 114:931-4. [PMID: 24625721 DOI: 10.1161/circresaha.114.303479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yvonne Döring
- From Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Germany (Y.D., O.S., C.W.); Academic Medical Center, Department of Pathology, Amsterdam University, the Netherlands (O.S.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.)
| | | | | |
Collapse
|
119
|
Pulliam L, Calosing C, Sun B, Grunfeld C, Rempel H. Monocyte activation from interferon-α in HIV infection increases acetylated LDL uptake and ROS production. J Interferon Cytokine Res 2014; 34:822-8. [PMID: 24731171 DOI: 10.1089/jir.2013.0152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is an inflammatory disease that is accelerated in human immunodeficiency virus (HIV) infection. Individuals with HIV infection have an activated type I interferon (IFN) monocyte phenotype, which may enhance uptake of modified low-density lipoprotein (LDL) thereby initiating a prefoam cell pathology and recruitment into atherosclerotic plaques. In a sampling of HIV-infected subjects, an increase in monocyte activation genes, MX1 and CXCL10, correlated with monocyte expression of the scavenger receptor A (SR-A), a major receptor for lipid uptake and foam cell formation. Monocytes from HIV-infected subjects accumulated more lipid than control uninfected subjects. We modeled increased activation in HIV infection by priming human monocytes with IFNα followed by exposure to acetylated LDL (acLDL). Exposure to IFNα increased acLDL uptake, which generated increased cellular reactive oxygen species (ROS). We posit that HIV infection augments formation of arterial plaques by triggering monocyte activation with a type I IFN profile, which induces SR-A expression, lipid uptake, and subsequent ROS production. These findings may explain in part why HIV-infected individuals with chronic immune activation have an increased risk of atherosclerosis.
Collapse
Affiliation(s)
- Lynn Pulliam
- 1 Department of Laboratory Medicine, San Francisco Veterans Affairs Medical Center, University of California , San Francisco, California
| | | | | | | | | |
Collapse
|
120
|
Zernecke A. Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead. SCIENTIFICA 2014; 2014:952625. [PMID: 24818041 PMCID: PMC4003768 DOI: 10.1155/2014/952625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
121
|
Abstract
PURPOSE OF REVIEW With improved management of the classical disease manifestations of systemic lupus erythematosus (SLE), cardiovascular disease (CVD) has emerged as one of the most important causes of morbidity and mortality. This review in particular focuses on progress over the past year in clinical and basic aspects of SLE-driven accelerated atherosclerosis. RECENT FINDINGS Both subclinical CVD and CV events continue to be recognized at increased frequency in previously unstudied lupus cohorts and populations. Novel associations have been identified between lupus CVD and cognitive impairment, depression, and low-income status. In terms of pathogenesis, there is an ever-increasing focus on the innate immune system and, in particular, type I interferons (IFNs). Recent studies have drawn connections in both human and murine models between neutrophils, plasmacytoid dendritic cells, type I IFNs, and endothelial dysfunction. Whether treatments such as mycophenolate mofetil or statins have a role in prevention of lupus CVD is an area of intensive study. SUMMARY CVD is a major complication of lupus and is now a leading cause of death among people living with this disease. As such, additional studies are needed in order to identify the most effective preventive strategies and most predictive vascular risk biomarkers. Type I IFNs may play a critical role in lupus CVD pathogenesis, and it is recommended that vascular outcomes be included in ongoing trials testing the efficacy of anti-IFN biologics.
Collapse
|
122
|
Abstract
Chemokines play important roles in atherosclerotic vascular disease. Expressed by not only cells of the vessel wall but also emigrated leukocytes, chemokines were initially discovered to direct leukocytes to sites of inflammation. However, chemokines can also exert multiple functions beyond cell recruitment. Here, we discuss novel and recently emerging aspects of chemokines and their involvement in atherosclerosis. While reviewing newly identified roles of chemokines and their receptors in monocyte and neutrophil recruitment during atherogenesis and atheroregression, we also revisit homeostatic functions of chemokines, including their roles in cell homeostasis and foam cell formation. The functional diversity of chemokines in atherosclerosis warrants a clear-cut mechanistic dissection and stage-specific assessment to better appreciate the full scope of their actions in vascular inflammation and to identify pathways that harbor the potential for a therapeutic targeting of chemokines in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany (A.Z.); Department of Vascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany (A.Z.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (A.Z., C.W.); and Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (C.W.)
| | | |
Collapse
|
123
|
Knight JS, Luo W, O'Dell AA, Yalavarthi S, Zhao W, Subramanian V, Guo C, Grenn RC, Thompson PR, Eitzman DT, Kaplan MJ. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114:947-56. [PMID: 24425713 DOI: 10.1161/circresaha.114.303312] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. OBJECTIVE To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. METHODS AND RESULTS Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. CONCLUSIONS Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.
Collapse
Affiliation(s)
- Jason S Knight
- From the Department of Rheumatology (J.S.K., A.A.O., S.Y., R.C.G.) and Cardiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI (W.L., C.G., D.T.E.); Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD (W.Z., M.J.K.); and Department of Chemistry, The Scripps Research Institute, Jupiter, FL (V.S., P.R.T.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Lagor WR, Fields DW, Bauer RC, Crawford A, Abt MC, Artis D, Wherry EJ, Rader DJ. Genetic manipulation of the ApoF/Stat2 locus supports an important role for type I interferon signaling in atherosclerosis. Atherosclerosis 2014; 233:234-41. [PMID: 24529150 DOI: 10.1016/j.atherosclerosis.2013.12.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 01/17/2023]
Abstract
Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (Ldlr KO) and ApoF/Ldlr double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/Ldlr DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p < 0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease.
Collapse
Affiliation(s)
- William R Lagor
- Division of Translational Medicine and Human Genetics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - David W Fields
- Division of Translational Medicine and Human Genetics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Bauer
- Division of Translational Medicine and Human Genetics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison Crawford
- Department of Microbiology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Abt
- Department of Microbiology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Artis
- Department of Microbiology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
125
|
Subramanian M, Tabas I. Dendritic cells in atherosclerosis. Semin Immunopathol 2013; 36:93-102. [PMID: 24196454 DOI: 10.1007/s00281-013-0400-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/13/2013] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with activation of both the innate and adaptive arms of the immune system. Dendritic cells (DCs) are potent activators of adaptive immunity and have been identified in the normal arterial wall and within atherosclerotic lesions. Recent evidence points to a functional role for DCs in all stages of atherosclerosis because of their myriad functions including lipid uptake, antigen presentation, efferocytosis, and inflammation resolution. Moreover, DC-based vaccination strategies are currently being developed for the treatment of atherosclerosis. This review will focus on the current evidence as well as the proposed roles for DCs in the pathogenesis of atherosclerosis and discuss future therapeutic strategies.
Collapse
Affiliation(s)
- Manikandan Subramanian
- Department of Medicine, Columbia University, 630 West 168th Street PH9-406, New York, NY, 10032, USA,
| | | |
Collapse
|
126
|
Cole JE, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis: a ‘Pandora's box’ of advances and controversies. Trends Pharmacol Sci 2013; 34:629-36. [DOI: 10.1016/j.tips.2013.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
127
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
128
|
The 9p21 Locus Does Not Affect Risk of Coronary Artery Disease Through Induction of Type 1 Interferons. J Am Coll Cardiol 2013; 62:1376-81. [DOI: 10.1016/j.jacc.2013.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 12/11/2022]
|
129
|
Legein B, Temmerman L, Biessen EAL, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 2013; 70:3847-69. [PMID: 23430000 PMCID: PMC11113412 DOI: 10.1007/s00018-013-1289-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.
Collapse
Affiliation(s)
- Bart Legein
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Erik A. L. Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Pettenkoferstrasse 8a/9, 80336 Munich, Germany
| |
Collapse
|
130
|
Wolfs IMJ, Stöger JL, Goossens P, Pöttgens C, Gijbels MJJ, Wijnands E, Vorst EPC, Gorp P, Beckers L, Engel D, Biessen EAL, Kraal G, Die I, Donners MMPC, Winther MPJ. Reprogramming macrophages to an anti‐inflammatory phenotype by helminth antigens reduces murine atherosclerosis. FASEB J 2013; 28:288-99. [DOI: 10.1096/fj.13-235911] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ine M. J. Wolfs
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | - J. Lauran Stöger
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| | - Pieter Goossens
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Centre d'Immunologie de Marseille‐Luminy (CIML)Aix‐Marseille UniversityMarseilleFrance
| | - Chantal Pöttgens
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PhysiologyCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Marion J. J. Gijbels
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| | - Erwin Wijnands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | - Emiel P. C. Vorst
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
| | - Patrick Gorp
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
| | - Linda Beckers
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| | - David Engel
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | | | - Georg Kraal
- Department of Molecular Cell Biology and ImmunologyVrije Universiteit (VU) Medical Center AmsterdamAmsterdamThe Netherlands
| | - Irma Die
- Department of Molecular Cell Biology and ImmunologyVrije Universiteit (VU) Medical Center AmsterdamAmsterdamThe Netherlands
| | - Marjo M. P. C. Donners
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of PathologyMaastricht UniversityMaastrichtThe Netherlands
| | - Menno P. J. Winther
- Department of Molecular GeneticsMaastricht UniversityMaastrichtThe Netherlands
- Department of Medical BiochemistryAcademic Medical Center (AMC)University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
131
|
Boon MR, van den Berg SAA, Wang Y, van den Bossche J, Karkampouna S, Bauwens M, De Saint-Hubert M, van der Horst G, Vukicevic S, de Winther MPJ, Havekes LM, Jukema JW, Tamsma JT, van der Pluijm G, van Dijk KW, Rensen PCN. BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 2013; 8:e74083. [PMID: 24066098 PMCID: PMC3774620 DOI: 10.1371/journal.pone.0074083] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to combat obesity and associated disorders.
Collapse
Affiliation(s)
- Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands ; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Heymans S, Corsten MF, Verhesen W, Carai P, van Leeuwen REW, Custers K, Peters T, Hazebroek M, Stöger L, Wijnands E, Janssen BJ, Creemers EE, Pinto YM, Grimm D, Schürmann N, Vigorito E, Thum T, Stassen F, Yin X, Mayr M, de Windt LJ, Lutgens E, Wouters K, de Winther MPJ, Zacchigna S, Giacca M, van Bilsen M, Papageorgiou AP, Schroen B. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation 2013; 128:1420-32. [PMID: 23956210 DOI: 10.1161/circulationaha.112.001357] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease. METHODS AND RESULTS Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency. CONCLUSIONS Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure.
Collapse
Affiliation(s)
- Stephane Heymans
- Center for Heart Failure Research, Department of Cardiology (S.H., M.F.C., W.V., P.C., R.E.W.v.L., K.C., T.P., M.H., M.v.B., A.-P.P., B.S.), Department of Molecular Genetics (L.S., M.P.J.d.W.), Department of Pathology (E.W., E.L.), Department of Pharmacology (B.J.J.), Department of Cardiology (L.J.d.W.), and Department of Internal Medicine (K.W.), Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands (S.H.); Center for Molecular and Cardiovascular Biology, Department of Cardiovascular Sciences, Leuven, Belgium (S.H., P.C., A.-P.P.); Department of Medical Biochemistry (L.S., E.L., M.P.J.d.W.) and Heart Failure Research Center (E.E.C., Y.M.P.), Academic Medical Center, Amsterdam, the Netherlands; Cluster of Excellence Cell Networks, Department of Infectious Diseases/Virology, Virus Host Interactions, Heidelberg University, Heidelberg, Germany (D.G., N.S.); Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK (E.V.); Institute for Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany (T.T.); Medical Microbiology, Maastricht University, Maastricht, the Netherlands (F.S.); King's BHF Centre, King's College London, London UK (X.Y., M.M.); Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany (E.L.); and Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., M.G.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Spirig R, Schaub A, Kropf A, Miescher S, Spycher MO, Rieben R. Reconstituted high-density lipoprotein modulates activation of human leukocytes. PLoS One 2013; 8:e71235. [PMID: 23967171 PMCID: PMC3743844 DOI: 10.1371/journal.pone.0071235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/28/2013] [Indexed: 01/17/2023] Open
Abstract
An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Rolf Spirig
- Laboratory of Cardiovascular Research, Department of Clinical Research, University of Bern, Bern, Switzerland
- CSL Behring AG, Bern, Switzerland
| | | | | | | | | | - Robert Rieben
- Laboratory of Cardiovascular Research, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
134
|
van Leeuwen M, Kemna MJ, de Winther MPJ, Boon L, Duijvestijn AM, Henatsch D, Bos NA, Gijbels MJJ, Tervaert JWC. Passive immunization with hypochlorite-oxLDL specific antibodies reduces plaque volume in LDL receptor-deficient mice. PLoS One 2013; 8:e68039. [PMID: 23874490 PMCID: PMC3713002 DOI: 10.1371/journal.pone.0068039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
Aims New strategies to overcome complications of cardiovascular diseases are needed. Since it has been demonstrated that atherosclerosis is an inflammatory disease, modulation of the immune system may be a promising approach. Previously, it was suggested that antibodies may confer protective effects on the development of atherosclerosis. In this study, we hypothesised that passive immunization with anti-oxLDL IgM antibodies specific for hypochlorite (HOCl) may be athero-protective in mice. Methods and Results Monoclonal mouse IgM antibodies were produced and the antibody with specificity for hypochlorite-oxLDL (HOCl-oxLDL) (Moab A7S8) was selected. VH sequence determination revealed that Moab A7S8 is a natural IgM antibody. Atherosclerosis in LDLr−/− mice was induced by a perivascular collar placement around the right carotid artery in combination with feeding a high-fat diet. Subsequently, the mice were treated every six days with 500 µg Moab A7S8, non-relevant IgM or with PBS and the carotid arteries and aortic roots were studied for atherosclerosis. Passive immunization with this Moab A7S8 resulted in a significant reduced plaque volume formation in LDLr−/− mice when compared with PBS treatment (P = 0.002 and P = 0.035). Cholesterol levels decreased by 20% when mice were treated with Moab A7S8 compared to PBS. Furthermore, anti-oxLDL specific IgM and IgG antibody production increased significantly in the Moab A7S8 treated mice in comparison with PBS treated mice. Conclusion Our data show that passive immunization with a natural IgM antibody, directed to HOCl-oxLDL, can reduce atherosclerotic plaque development. We postulate that specific antibody therapy may be developed for use in human cardiovascular diseases.
Collapse
Affiliation(s)
- Marcella van Leeuwen
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Michael J. Kemna
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Menno P. J. de Winther
- Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | | | - Adriaan M. Duijvestijn
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Darius Henatsch
- Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nico A. Bos
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marion J. J. Gijbels
- Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Willem Cohen Tervaert
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Immunology Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
135
|
Falck-Hansen M, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis. Int J Mol Sci 2013; 14:14008-23. [PMID: 23880853 PMCID: PMC3742229 DOI: 10.3390/ijms140714008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease (CVD), is driven by inflammation. Increasing evidence suggests that toll-like receptors (TLRs) are key orchestrators of the atherosclerotic disease process. Interestingly, a distinct picture is being revealed for individual receptors in atherosclerosis. TLRs exhibit a complex nature enabling the detection of multiple motifs named danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Activation of these receptors triggers an intracellular signalling cascade mediated through MyD88 or TRIF, leading to the production of pro- and anti-inflammatory cytokines. In this review we explore key novel findings pertaining to TLR signalling in atherosclerosis, including recently described endosomal TLRs and future directions in TLR research.
Collapse
Affiliation(s)
- Mika Falck-Hansen
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| | | | | |
Collapse
|
136
|
Oxidised plant sterols as well as oxycholesterol increase the proportion of severe atherosclerotic lesions in female LDL receptor+/ − mice. Br J Nutr 2013; 111:64-70. [DOI: 10.1017/s0007114513002018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxysterols (oxidised cholesterol) may play a role in the pathogenesis of CVD. Similar to cholesterol, plant sterols are susceptible to oxidation. However, less is known about the potential atherogenicity of oxidised plant sterols (oxyphytosterols). In the present study, the atherogenicity of a mixture of oxyphytosterols was examined by feeding female LDL receptor-deficient (LDLR+/ −) mice for 35 weeks a control diet (atherogenic high-fat diet; n 9), an oxysterol diet (control diet+0·025 % (w/w) oxysterols; n 12) or an oxyphytosterol diet (control diet+0·025 % (w/w) oxyphytosterols; n 12). In the LDLR+/ − mice, serum levels of cholesterol, lipoprotein profiles, cholesterol exposure and inflammatory markers at the end of the experiment were comparable between the three diet groups. Nevertheless, the proportion of severe atherosclerotic lesions was significantly higher after oxysterol (41 %; P= 0·004) and oxyphytosterol (34 %; P= 0·011) diet consumption than after control diet consumption (26 %). Oxyphytosterol levels in the lesions were the highest in the oxyphytosterol group. Here, we show that not only dietary oxysterols but also dietary oxyphytosterols increase the proportion of severe atherosclerotic lesions. This suggests that plant sterols when oxidised may increase atherosclerotic lesion severity instead of lowering the size and severity of lesions when fed in their non-oxidised form. Therefore, this finding might give an indication as to where to find the answer in the current hot debate about the potential atherogenicity of plant sterols. However, to what extent these results can be extrapolated to the human situation warrants further investigation.
Collapse
|
137
|
Bouma G, Baggen JM, van Bodegraven AA, Mulder CJJ, Kraal G, Zwiers A, Horrevoets AJ, van der Pouw Kraan CTM. Thiopurine treatment in patients with Crohn's disease leads to a selective reduction of an effector cytotoxic gene expression signature revealed by whole-genome expression profiling. Mol Immunol 2013; 54:472-81. [PMID: 23454163 DOI: 10.1016/j.molimm.2013.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells.
Collapse
Affiliation(s)
- G Bouma
- VU University Medical Center, Deptartment of Gastroenterology, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Lundberg AM, Ketelhuth DF, Johansson ME, Gerdes N, Liu S, Yamamoto M, Akira S, Hansson GK. Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res 2013; 99:364-73. [DOI: 10.1093/cvr/cvt033] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
139
|
Thacker SG, Zhao W, Smith CK, Luo W, Wang H, Vivekanandan-Giri A, Rabquer BJ, Koch AE, Pennathur S, Davidson A, Eitzman DT, Kaplan MJ. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. ACTA ACUST UNITED AC 2012; 64:2975-85. [PMID: 22549550 DOI: 10.1002/art.34504] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have a notable increase in atherothrombotic cardiovascular disease (CVD) which is not explained by the Framingham risk equation. In vitro studies indicate that type I interferons (IFNs) may play prominent roles in increased CV risk in SLE. However, the in vivo relevance of these findings, with regard to the development of CVD, has not been characterized. This study was undertaken to examine the role of type I IFNs in endothelial dysfunction, aberrant vascular repair, and atherothrombosis in murine models of lupus and atherosclerosis. METHODS Lupus-prone New Zealand mixed 2328 (NZM) mice and atherosclerosis-prone apolipoprotein E- knockout (apoE(-/-) ) mice were compared to mice lacking type I IFN receptor (INZM and apoE(-/-) IFNAR(-/-) mice, respectively) with regard to endothelial vasodilatory function, endothelial progenitor cell (EPC) function, in vivo neoangiogenesis, plaque development, and occlusive thrombosis. Similar experiments were performed using NZM and apoE(-/-) mice exposed to an IFNα-containing or empty adenovirus. RESULTS Loss of type I IFN receptor signaling improved endothelium-dependent vasorelaxation, lipoprotein parameters, EPC numbers and function, and neoangiogenesis in lupus-prone mice, independent of disease activity or sex. Further, acute exposure to IFNα impaired endothelial vasorelaxation and EPC function in lupus-prone and non-lupus-prone mice. Decreased atherosclerosis severity and arterial inflammatory infiltrates and increased neoangiogenesis were observed in apoE(-/-) IFNAR(-/-) mice, compared to apoE(-/-) mice, while NZM and apoE(-/-) mice exposed to IFNα developed accelerated thrombosis and platelet activation. CONCLUSION These results support the hypothesis that type I IFNs play key roles in the development of premature CVD in SLE and, potentially, in the general population, through pleiotropic deleterious effects on the vasculature.
Collapse
Affiliation(s)
- Seth G Thacker
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice. PLoS One 2012; 7:e47286. [PMID: 23144813 PMCID: PMC3492382 DOI: 10.1371/journal.pone.0047286] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 09/14/2012] [Indexed: 12/03/2022] Open
Abstract
Rationale Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC proliferation and differentiation. Objectives We hypothesized that LDL may enhance HSPC proliferation and differentiation while HDL might have the opposing effect which might influence the size of the pool of inflammatory cells. Methods and Results HSPC number and function were studied in hypercholesterolemic LDL receptor knockout (LDLr−/−) mice on high fat diet. Hypercholesterolemia was associated with increased frequency of HSPC, monocytes and granulocytes in the peripheral blood (PB). In addition, an increased proportion of BM HSPC was in G2M of the cell cycle, and the percentage of HSPC and granulocyte-macrophage progenitors (GMP) increased in BM of LDLr−/− mice. When BM Lin-Sca-1+cKit+ (i.e. “LSK”) cells were cultured in the presence of LDL in vitro we also found enhanced differentiation towards monocytes and granulocytes. Furthermore, LDL promoted lineage negative (Lin−) cells motility. The modulation by LDL on HSPC differentiation into granulocytes and motility was inhibited by inhibiting ERK phosphorylation. By contrast, when mice were infused with human apoA-I (the major apolipoprotein of HDL) or reconstituted HDL (rHDL), the frequency and proliferation of HSPC was reduced in BM in vivo. HDL also reversed the LDL-induced monocyte and granulocyte differentiation in vitro. Conclusion Our data suggest that LDL and HDL have opposing effects on HSPC proliferation and differentiation. It will be of interest to determine if breakdown of HSPC homeostasis by hypercholesterolemia contributes to inflammation and atherosclerosis progression.
Collapse
|
141
|
Grassia G, MacRitchie N, Platt AM, Brewer JM, Garside P, Maffia P. Plasmacytoid dendritic cells: biomarkers or potential therapeutic targets in atherosclerosis? Pharmacol Ther 2012; 137:172-82. [PMID: 23059425 DOI: 10.1016/j.pharmthera.2012.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 12/28/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique subset of dendritic cells that play distinct and critical roles in the immune response. Importantly, pDCs play a pivotal role in several chronic autoimmune diseases strongly characterized by an increased risk of vascular pathology. Clinical studies have shown that pDCs are detectable in atherosclerotic plaques and others have suggested an association between reduced numbers of circulating pDCs and cardiovascular events. Although the causal relationship between pDCs and atherosclerosis is still uncertain, recent results from mouse models are starting to define the specific role(s) of pDCs in the disease process. In this review, we will discuss the role of pDCs in innate and adaptive immunity, the emerging evidence demonstrating the contribution of pDCs to vascular pathology and we will consider the possible impact of pDCs on the acceleration of atherosclerosis in chronic inflammatory autoimmune diseases. Finally, we will discuss how pDCs could be targeted for therapeutic utility.
Collapse
Affiliation(s)
- Gianluca Grassia
- Department of Experimental Pharmacology, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
142
|
Kahlenberg JM, Kaplan MJ. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu Rev Med 2012; 64:249-63. [PMID: 23020882 DOI: 10.1146/annurev-med-060911-090007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), the two most common systemic autoimmune disorders, have both unique and overlapping manifestations. One feature they share is a significantly enhanced risk of atherosclerotic cardiovascular (CV) disease that significantly contributes to morbidity and mortality. The primary mechanisms that drive CV damage in these diseases remain to be fully characterized, but recent discoveries indicate that distinct inflammatory pathways and immune dysregulation characteristic of RA and SLE likely play prominent roles. This review focuses on analyzing the major mechanisms and pathways potentially implicated in the acceleration of atherothrombosis and CV risk in SLE and RA, as well as in the identification of putative preventive strategies that may mitigate vascular complications in systemic autoimmunity.
Collapse
Affiliation(s)
- J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-5680, USA.
| | | |
Collapse
|
143
|
Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012; 225:461-8. [PMID: 23078881 DOI: 10.1016/j.atherosclerosis.2012.09.013] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/03/2012] [Accepted: 09/07/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Macrophages are decisive in the chronic inflammatory processes that drive atherogenesis. The purpose of this study was to explore the presence and spatial distribution of polarized macrophage populations in human atherosclerosis. METHODS & RESULTS We used transcriptomics and immunohistochemistry to analyze macrophage subset dynamics in successive stages of atherogenesis. Developing lesions progressively accumulated both M1 and M2 cells, as was signified by the enhanced expression of associated markers at the transcriptional and protein level. Histologically, these markers were confined to overlapping, but spatially distinct CD68(+) areas of the intima. We subsequently quantified the presence of these markers in relation to morphological determinants of plaque stability. In line with their pro-inflammatory characteristics, M1 macrophages dominated the rupture-prone shoulder regions of the plaque over M2 polarized cells, while the fibrous caps of lesions showed no significant differences between subsets. In contrast, vascular adventitial tissue displayed a pronounced M2 activation profile. As expected, areas of intraplaque hemorrhage clearly associated with CD163 staining. Rather than being limited to complicated lesions, this M2 marker was also readily detectable in stable plaques. Finally, foamy macrophages displayed an ambiguous repertoire that incorporates individual M1 and M2 markers. CONCLUSION M1 and M2 macrophage populations are present throughout atherogenesis. These subsets display disparity when it comes to their prevalence in morphological compartments of the vessel wall. Our current findings warrant continued investigation into the functional implications of polarized macrophage populations in human atherosclerosis.
Collapse
|
144
|
Schutters K, Kusters DHM, Chatrou MLL, Montero-Melendez T, Donners M, Deckers NM, Krysko DV, Vandenabeele P, Perretti M, Schurgers LJ, Reutelingsperger CPM. Cell surface-expressed phosphatidylserine as therapeutic target to enhance phagocytosis of apoptotic cells. Cell Death Differ 2012; 20:49-56. [PMID: 22955945 DOI: 10.1038/cdd.2012.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Impaired efferocytosis has been shown to be associated with, and even to contribute to progression of, chronic inflammatory diseases such as atherosclerosis. Enhancing efferocytosis has been proposed as strategy to treat diseases involving inflammation. Here we present the strategy to increase 'eat me' signals on the surface of apoptotic cells by targeting cell surface-expressed phosphatidylserine (PS) with a variant of annexin A5 (Arg-Gly-Asp-annexin A5, RGD-anxA5) that has gained the function to interact with α(v)β(3) receptors of the phagocyte. We describe design and characterization of RGD-anxA5 and show that introduction of RGD transforms anxA5 from an inhibitor into a stimulator of efferocytosis. RGD-anxA5 enhances engulfment of apoptotic cells by phorbol-12-myristate-13-acetate-stimulated THP-1 (human acute monocytic leukemia cell line) cells in vitro and resident peritoneal mouse macrophages in vivo. In addition, RGD-anxA5 augments secretion of interleukin-10 during efferocytosis in vivo, thereby possibly adding to an anti-inflammatory environment. We conclude that targeting cell surface-expressed PS is an attractive strategy for treatment of inflammatory diseases and that the rationally designed RGD-anxA5 is a promising therapeutic agent.
Collapse
Affiliation(s)
- K Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht 6200 MD, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Döring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol 2012; 3:230. [PMID: 22754539 PMCID: PMC3385355 DOI: 10.3389/fphys.2012.00230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich Munich, Germany
| | | |
Collapse
|
146
|
Somers EC, Zhao W, Lewis EE, Wang L, Wing JJ, Sundaram B, Kazerooni EA, McCune WJ, Kaplan MJ. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. PLoS One 2012; 7:e37000. [PMID: 22606325 PMCID: PMC3351452 DOI: 10.1371/journal.pone.0037000] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/11/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) patients have a striking increase in cardiovascular (CV) comorbidity not fully explained by the Framingham risk score. Recent evidence from in vitro studies suggests that type I interferons (IFN) could promote premature CV disease (CVD) in SLE. We assessed the association of type I IFN signatures with functional and anatomical evidence of vascular damage, and with biomarkers of CV risk in a cohort of lupus patients without overt CVD. METHODOLOGY/PRINCIPAL FINDINGS Serum type I IFN activity (induction of five IFN-inducible genes; IFIGs) from 95 SLE patient and 38 controls was quantified by real-time PCR. Flow mediated dilatation (FMD) of the brachial artery and carotid intima media thickness (CIMT) were quantified by ultrasound, and coronary calcification by computed tomography. Serum vascular biomarkers were measured by ELISA. We evaluated the effect of type I IFNs on FMD, CIMT and coronary calcification by first applying principal components analysis to combine data from five IFIGs into summary components that could be simultaneously modeled. Three components were derived explaining 97.1% of the total IFIG variation. Multivariable linear regression was utilized to investigate the association between the three components and other covariates, with the outcomes of FMD and CIMT; zero-inflated Poisson regression was used for modeling of coronary calcification. After controlling for traditional CV risk factors, enhanced serum IFN activity was significantly associated with decreased endothelial function in SLE patients and controls (p<0.05 for component 3), increased CIMT among SLE patients (p<0.01 for components 1 and 2), and severity of coronary calcification among SLE patients (p<0.001 for component 3). CONCLUSIONS Type I IFNs are independently associated with atherosclerosis development in lupus patients without history of overt CVD and after controlling for Framingham risk factors. This study further supports the hypothesis that type I IFNs promote premature vascular damage in SLE.
Collapse
Affiliation(s)
- Emily C. Somers
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wenpu Zhao
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily E. Lewis
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lu Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeffrey J. Wing
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Baskaran Sundaram
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ella A. Kazerooni
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - W. Joseph McCune
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (WJM); (MJK)
| | - Mariana J. Kaplan
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (WJM); (MJK)
| |
Collapse
|
147
|
Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One 2012; 7:e35877. [PMID: 22558252 PMCID: PMC3338496 DOI: 10.1371/journal.pone.0035877] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
microRNA-155 (miR155) is a central regulator of immune responses that is induced by inflammatory mediators. Although miR155 is considered to be a pro-inflammatory microRNA, in vitro reports show anti-inflammatory effects in lipid-loaded cells. In this study we examined the role of miR155 in atherosclerosis in vivo using bone marrow transplantation from miR155 deficient or wildtype mice to hyperlipidemic mice. Hematopoietic deficiency of miR155 enhanced atherosclerotic plaque development and decreased plaque stability, as evidenced by increased myeloid inflammatory cell recruitment to the plaque. The increased inflammatory state was mirrored by a decrease in circulating CD4+CD25+FoxP3+ regulatory T cells, and an increase in granulocytes (CD11b+Ly6G+) in blood of miR155−/− transplanted mice. Moreover, we show for the first time a crucial role of miR155 in monocyte subset differentiation, since hematopoietic deficiency of miR155 increases the ‘inflammatory’ monocyte subset (CD11b+Ly6G−Ly6Chi) and reduces ‘resident’ monocytes (CD11b+Ly6G−Ly6Clow) in the circulation. Furthermore, cytokine production by resident peritoneal macrophages of miR155−/− transplanted hyperlipidemic mice was skewed towards a more pro-inflammatory state since anti-inflammatory IL-10 production was reduced. In conclusion, in this hyperlipidemic mouse model miR155 acts as an anti-inflammatory, atheroprotective microRNA. Additionally, besides a known role in lymphoid cell development, we show a crucial role of miR155 in myeloid lineage differentiation.
Collapse
|
148
|
Aparicio-Vergara M, Shiri-Sverdlov R, Koonen DPY, Hofker MH. Bone marrow transplantation as an established approach for understanding the role of macrophages in atherosclerosis and the metabolic syndrome. Curr Opin Lipidol 2012; 23:111-21. [PMID: 22274753 DOI: 10.1097/mol.0b013e3283508c4f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Bone marrow transplantation (BMT) technology is a firmly established tool for studying atherosclerosis. Only recently it is helping us to understand the inflammatory mechanisms leading to the development of obesity, insulin resistance and type 2 diabetes. Here we review the use of BMT as a tool for studying the metabolic syndrome. RECENT FINDINGS Bone marrow-derived cells, and particularly monocytes and macrophages, have been a major subject in the study of atherogenesis, and they are highly amenable for research purposes because of their application in bone marrow transplantations. For example, the many pathways studied using BMT have helped unmask ABC transporters as the genes controlling reverse cholesterol transport and foam cell formation, as well as other genes like CCR2 and IκBα controlling leukocyte development, migration and activation. The invasion of leukocytes, not only in the vessel wall, but also in adipose tissue and liver, shares many common mechanisms relevant to atherosclerosis and metabolic diseases. SUMMARY BMT is an efficient and versatile tool for assessing the roles of specific genes that are restricted to hematopoietic cells, and especially the monocytes and macrophages in metabolic syndrome and its related pathologies.
Collapse
Affiliation(s)
- Marcela Aparicio-Vergara
- Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
149
|
Döring Y, Manthey HD, Drechsler M, Lievens D, Megens RTA, Soehnlein O, Busch M, Manca M, Koenen RR, Pelisek J, Daemen MJ, Lutgens E, Zenke M, Binder CJ, Weber C, Zernecke A. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 2012; 125:1673-83. [PMID: 22388324 DOI: 10.1161/circulationaha.111.046755] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Inflammation has been closely linked to auto-immunogenic processes in atherosclerosis. Plasmacytoid dendritic cells (pDCs) are specialized to produce type-I interferons in response to pathogenic single-stranded nucleic acids, but can also sense self-DNA released from dying cells or in neutrophil extracellular traps complexed to the antimicrobial peptide Cramp/LL37 in autoimmune disease. However, the exact role of pDCs in atherosclerosis remains elusive. METHODS AND RESULTS Here we demonstrate that pDCs can be detected in murine and human atherosclerotic lesions. Exposure to oxidatively modified low-density lipoprotein enhanced the capacity of pDCs to phagocytose and prime antigen-specific T cell responses. Plasmacytoid DCs can be stimulated to produce interferon-α by Cramp/DNA complexes, and we further identified increased expression of Cramp and formation of neutrophil extracellular traps in atherosclerotic arteries. Whereas Cramp/DNA complexes aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice, pDC depletion and Cramp-deficiency in bone marrow reduced atherosclerosis and anti-double-stranded DNA antibody titers. Moreover, the specific activation of pDCs and interferon-α treatment promoted plaque growth, associated with enhanced anti-double-stranded-DNA antibody titers. Accordingly, anti-double-stranded DNA antibodies were elevated in patients with symptomatic versus asymptomatic carotid artery stenosis. CONCLUSIONS Self-DNA (eg, released from dying cells or in neutrophil extracellular traps) and an increased expression of the antimicrobial peptide Cramp/LL37 in atherosclerotic lesions may thus stimulate a pDC-driven pathway of autoimmune activation and the generation of anti-double-stranded-DNA antibodies, critically aggravating atherosclerosis lesion formation. These key factors may thus represent novel therapeutic targets.
Collapse
Affiliation(s)
- Yvonne Döring
- Rudolf Virchow Center, DFG Research Center for Experimental Medicine, University of Würzburg, Josef-Schneider Strasse 2, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Zernecke A. MicroRNAs in the regulation of immune cell functions--implications for atherosclerotic vascular disease. Thromb Haemost 2012; 107:626-33. [PMID: 22318366 DOI: 10.1160/th11-08-0603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/27/2011] [Indexed: 12/29/2022]
Abstract
Regarded as a chronic inflammatory disease of the vessel wall, the development of atherosclerotic lesions is shaped by immune responses and their regulation. Macrophages and dendritic cells are positioned at the crossroad of innate and adaptive immune responses by sensing atherogenic danger signals and by taking up and presenting antigens. T helper cells and auto-antibodies produced by B cells, together with their cytokine responses in turn modulate atheroprogression. In addition, platelets contribute to atherosclerosis by multiple pathways. microRNAs (miRNAs) that post-transcriptionally regulate gene expression may thus critically control immune cell differentiation and functions during plaque evolution. This review summarises the role of miRNAs in regulating lipid uptake and expression of inflammatory mediators in monocytes/macrophages and dendritic cells, in lymphocyte functions with a focus on T helper cell responses, as well as in platelet biology, and the implications of altering these functions in vascular pathology and atherosclerosis. T systematically survey miRNA functions in controlling molecular mechanisms and immune responses in atherosclerosis holds potential for the development of novel miRNA-based strategies for therapies targeting inflammation and immunity in atherosclerosis.
Collapse
Affiliation(s)
- A Zernecke
- Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider Str. 2, Haus D15, 97080 Würzburg, Germany.
| |
Collapse
|