101
|
Kang JH, Hwang JY, Seo JW, Kim HS, Shin US. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:247-254. [PMID: 30033252 DOI: 10.1016/j.msec.2018.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
In recent years, there has been a significant increase in strategies for the development of small intestine (and colon)-specific oral drug-delivery systems to maximize the efficiency of therapeutic agents and reduce side effects. However, only a few strategies are capable of working in the complicated environment of the human intestinal tract. In this study, the preparation of a basic pH/temperature-responsive co-polymer (p-NIVIm) and its in-vitro-drug delivery function in the pH range of 1-8 and temperature range of 25-42 °C are reported. The basic copolymer was prepared by radical copolymerization of N-isopropyl acryl amide (NIPAAm) and N-vinylimidazole (VIm). The lower critical solution temperature (LCST) of p-NIVIm was higher in stomach pH (~1.0) conditions (36.5-42 °C) and lower in small intestine and/or colon pH (~8.0) conditions (35.8-38.2 °C). The ability to uptake a model protein (BSA) at body temperature and to release it in conditions of 37 °C and pH 1-8 was determined. The drug loading capacity (0.231 mg per 1.0 mg copolymer) and efficiency (92.4%) were high at 37 °C/pH 7. The drug carrier showed a slow release pattern at pH 1 (~0.084 mg; ~35%) and then a sudden release pattern (~0.177 mg; ~73%) at pH 8. The cytotoxicity of p-NIVIm to MCF-7 cells in vitro was minimal at concentrations <168.9 μg/mL after 72 h. The prepared copolymer with its pH-/temperature-responsive protein-entrapping and -releasing behavior at body temperature may potentially be applied as a novel small intestine (and colon)-specific oral drug delivery system.
Collapse
Affiliation(s)
- Ji-Hye Kang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea
| | - Ji-Young Hwang
- Department of Biomedical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Jae-Won Seo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea
| | - Han-Sem Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea
| | - Ueon Sang Shin
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Chungnam, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
102
|
Mandal HK, Patel BK, Dasmandal S, Mahapatra A. Kinetic investigations on the alkaline hydrolysis of tris-(1,10-phenenthroline)Fe(II) with guar gum–surfactant interactions. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2017.1334564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Biman Kumar Patel
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Somnath Dasmandal
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Ambikesh Mahapatra
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
103
|
Saroj S, Rajput SJ. Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candidates: Recent trends and applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
104
|
Chang J, Zhang L, Gu X, Liu L, Li Z, Miao G, Liu X, Liu P, Xue H, Liu C, Fu Q. The rhubarb total free anthraquinone oral colon-specific drug delivery granules: Comparative pharmacokinetics study with rhubarb by UPLC-MS/MS after oral administration. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
105
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
106
|
Jain SK, Tiwari A, Jain A, Verma A, Saraf S, Panda PK, Gour G. Application Potential of Polymeric Nanoconstructs for Colon-Specific Drug Delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/978-1-5225-4781-5.ch002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous applications of colon-specific drug delivery have been found in a wide array of diseases like irritable bowel syndrome (IBS), inflammatory bowel diseases (ulcerative colitis and Crohn's disease), colorectal cancer, and diverticulitis. Drug delivery to the colon has different anatomic and pathophysiological barriers. In recent advancements, these barriers were overcome by using biodegradable polymeric nanoconstructs, which are exhibiting minimal systemic adverse effects. Various polymeric nanoconstructs (PNCs) such as nanoparticles, micelles, and dendrimers have been exploited for effective targeting to pathological sites of colon. PNCs on oral administration not only protect the bioactive from physicochemical degradation but also prevent premature leakage in the upper parts of gastrointestinal tract. The chapter summarizes various PNCs-based approaches for colon-specific drug delivery.
Collapse
|
107
|
Abstract
Integration of nanotechnology and biomedicine has offered great opportunities for the development of nanoscaled therapeutic platforms. Amongst various nanocarriers, mesoporous silica nanoparticles (MSNs) is one of the most developed and promising inorganic materials-based drug delivery system for clinical translations due to their simple composition and nanoporous structure. MSNs possess unique structural features, for example, well-defined morphology, large surface areas, uniform size, controllable structure, flexible pore volume, tunable pore sizes, extraordinarily high loading efficiency, and excellent biocompatibility. Progress in structure control and functionalization may endow MSNs with functionalities that enable medical applications of these integrated nanoparticles such as molecularly targeted drug delivery, multicomponent synergistic therapy, in vivo imaging and therapeutic capability, on-demand/stimuli-responsive drug release, etc. In this chapter, the authors overview MSNs' characteristics and the scientific efforts developed till date involving drug delivery and biomedical applications.
Collapse
|
108
|
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv Cancer Res 2017; 137:115-170. [PMID: 29405974 PMCID: PMC6550462 DOI: 10.1016/bs.acr.2017.11.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective and safe delivery of anticancer agents is among the major challenges in cancer therapy. The majority of anticancer agents are toxic to normal cells, have poor bioavailability, and lack in vivo stability. Recent advancements in nanotechnology provide safe and efficient drug delivery systems for successful delivery of anticancer agents via nanoparticles. The physicochemical and functional properties of the nanoparticle vary for each of these anticancer agents, including chemotherapeutics, nucleic acid-based therapeutics, small molecule inhibitors, and photodynamic agents. The characteristics of the anticancer agents influence the design and development of nanoparticle carriers. This review focuses on strategies of nanoparticle-based drug delivery for various anticancer agents. Recent advancements in the field are also highlighted, with suitable examples from our own research efforts and from the literature.
Collapse
Affiliation(s)
- Narsireddy Amreddy
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anish Babu
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ranganayaki Muralidharan
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Janani Panneerselvam
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Akhil Srivastava
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz Ahmed
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Meghna Mehta
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
109
|
Babaei M, Abnous K, Taghdisi SM, Amel Farzad S, Peivandi MT, Ramezani M, Alibolandi M. Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine (Lond) 2017; 12:1261-1279. [PMID: 28520529 DOI: 10.2217/nnm-2017-0028] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM In this study, we report the fabrication of epithelial cell adhesion molecule targeted 5-fluorouracil (5-FU) encapsulated PEGylated mesoporous silica nanoparticles (NPs) hybridized with gold NPs (PEG-Au@Si-5-FU) as gatekeeper for theranostic applications. MATERIALS & METHODS The prepared targeted and nontargeted formulations were evaluated in vitro in terms of their cellular internalization and toxicity. The prepared theranostic hybrid system was also implemented for computed tomography of HepG2 tumor-bearing nude mice in vivo. RESULTS Fluorescence microscopy and MTT assay demonstrated that the developed epithelial cell adhesion molecule-PEG-Au@Si-5-FU had higher cytotoxicity than nontargeted PEG-Au@Si-5-FU in 2D and 3D HepG2 cell cultures. Moreover, the targeted hybrid system was preferentially accumulated in HepG2 tumor cells in vitro and in vivo. CONCLUSION This work introduces a novel strategy for developing multimodal NPs via nanoparticulate hybrid materials.
Collapse
Affiliation(s)
- Maryam Babaei
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Amel Farzad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Ramezani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
110
|
Sikkandhar MG, Nedumaran AM, Ravichandar R, Singh S, Santhakumar I, Goh ZC, Mishra S, Archunan G, Gulyás B, Padmanabhan P. Theranostic Probes for Targeting Tumor Microenvironment: An Overview. Int J Mol Sci 2017; 18:E1036. [PMID: 28492519 PMCID: PMC5454948 DOI: 10.3390/ijms18051036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Long gone is the time when tumors were thought to be insular masses of cells, residing independently at specific sites in an organ. Now, researchers gradually realize that tumors interact with the extracellular matrix (ECM), blood vessels, connective tissues, and immune cells in their environment, which is now known as the tumor microenvironment (TME). It has been found that the interactions between tumors and their surrounds promote tumor growth, invasion, and metastasis. The dynamics and diversity of TME cause the tumors to be heterogeneous and thus pose a challenge for cancer diagnosis, drug design, and therapy. As TME is significant in enhancing tumor progression, it is vital to identify the different components in the TME such as tumor vasculature, ECM, stromal cells, and the lymphatic system. This review explores how these significant factors in the TME, supply tumors with the required growth factors and signaling molecules to proliferate, invade, and metastasize. We also examine the development of TME-targeted nanotheranostics over the recent years for cancer therapy, diagnosis, and anticancer drug delivery systems. This review further discusses the limitations and future perspective of nanoparticle based theranostics when used in combination with current imaging modalities like Optical Imaging, Magnetic Resonance Imaging (MRI) and Nuclear Imaging (Positron Emission Tomography (PET) and Single Photon Emission Computer Tomography (SPECT)).
Collapse
Affiliation(s)
- Musafar Gani Sikkandhar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Anu Maashaa Nedumaran
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Roopa Ravichandar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Induja Santhakumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Zheng Cong Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|