101
|
Harris KD, Bartho P, Chadderton P, Curto C, de la Rocha J, Hollender L, Itskov V, Luczak A, Marguet SL, Renart A, Sakata S. How do neurons work together? Lessons from auditory cortex. Hear Res 2010; 271:37-53. [PMID: 20603208 DOI: 10.1016/j.heares.2010.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/10/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between "desynchronized" state characterized by low amplitude, high-frequency local field potentials and a "synchronized" state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information.
Collapse
Affiliation(s)
- Kenneth D Harris
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Wolfe J, Houweling AR, Brecht M. Sparse and powerful cortical spikes. Curr Opin Neurobiol 2010; 20:306-12. [PMID: 20400290 DOI: 10.1016/j.conb.2010.03.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/18/2022]
Abstract
Activity in cortical networks is heterogeneous, sparse and often precisely timed. The functional significance of sparseness and precise spike timing is debated, but our understanding of the developmental and synaptic mechanisms that shape neuronal discharge patterns has improved. Evidence for highly specialized, selective and abstract cortical response properties is accumulating. Singe-cell stimulation experiments demonstrate a high sensitivity of cortical networks to the action potentials of some, but not all, single neurons. It is unclear how this sensitivity of cortical networks to small perturbations comes about and whether it is a generic property of cortex. The unforeseen sensitivity to cortical spikes puts serious constraints on the nature of neural coding schemes.
Collapse
Affiliation(s)
- Jason Wolfe
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Germany.
| | | | | |
Collapse
|
103
|
Jadhav SP, Feldman DE. Texture coding in the whisker system. Curr Opin Neurobiol 2010; 20:313-8. [PMID: 20299205 DOI: 10.1016/j.conb.2010.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/15/2010] [Indexed: 11/25/2022]
Abstract
The whisker somatosensory system in awake, behaving rodents is a powerful model for studying neurobiology of sensation, from molecules to circuits to behavior. Recent studies reveal how key tactile features are detected in awake animals and encoded by spike trains in somatosensory cortex (S1). Here we summarize progress on detection of surface texture (roughness). Texture appears to be inferred from the statistics of complex, irregular whisker micromotion on surfaces, specifically by mean speed or by patterns of discrete, high-velocity whisker slips. These are encoded in S1 by mean firing rate and by sparse, synchronous, slip-evoked spike volleys, respectively. An alternative model of place coding for texture based on differential whisker resonance is less well supported, but is not ruled out.
Collapse
Affiliation(s)
- Shantanu P Jadhav
- W.M. Keck Center for Integrative Neuroscience and Department of Physiology, University of California at San Francisco, 94143, USA
| | | |
Collapse
|
104
|
Developmental localization of potassium chloride co-transporter 2 (KCC2), GABA and vesicular GABA transporter (VGAT) in the postnatal mouse somatosensory cortex. Neurosci Res 2010; 67:137-48. [PMID: 20219572 DOI: 10.1016/j.neures.2010.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Gamma-amino butyric acid (GABA) mediates the hyperpolarization of membrane potential, negatively regulating glutamatergic activity in the adult brain, whereas, mediates depolarization in the immature brain. This developmental shift in GABA actions is induced by the expression of potassium chloride co-transporter 2 (KCC2). In this study, we focused on the developing mouse somatosensory cortex, where the barrel structure in layer 4 is altered by the whisker-lesion during the critical period, before postnatal day 4 (P4). First, to clarify the time-course of postnatal changes in GABA actions, we investigated the developmental localization of KCC2. Second, to reveal its spatial and temporal relationship with GABA synapse formation, we examined the developmental localization of GABA and vesicular GABA transporter. KCC2 was localized within the pyramidal cells in layer 5 after P3, granule cells in layer 4 after P5 and neurons in layers 2 and 3 after P7, indicating that KCC2 was expressed in the chronological order of neuronal settling at the destination. The onset of KCC2 localization was almost concomitant with the formation of GABA synapses, suggesting that GABA was inhibitory after GABA synapse formation. Furthermore, extrasynaptically released GABA might be involved in the maintenance of activity-dependent plasticity as an excitatory transmitter during the critical period.
Collapse
|
105
|
Sakata S, Harris KD. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 2009; 64:404-18. [PMID: 19914188 DOI: 10.1016/j.neuron.2009.09.020] [Citation(s) in RCA: 429] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2009] [Indexed: 01/02/2023]
Abstract
Spontaneous activity plays an important role in the function of neural circuits. Although many similarities between spontaneous and sensory-evoked neocortical activity have been reported, little is known about consistent differences between them. Here, using simultaneously recorded cortical populations and morphologically identified pyramidal cells, we compare the laminar structure of spontaneous and sensory-evoked population activity in rat auditory cortex. Spontaneous and evoked patterns both exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, with densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. However, the propagation of spontaneous and evoked activity differed, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. The similarity of sparseness patterns for both neural events and distinct spread of activity may reflect similarity of local processing and differences in the flow of information through cortical circuits, respectively.
Collapse
Affiliation(s)
- Shuzo Sakata
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | | |
Collapse
|
106
|
Lee LJ, Chen WJ, Chuang YW, Wang YC. Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system. Exp Neurol 2009; 219:524-32. [PMID: 19619534 DOI: 10.1016/j.expneurol.2009.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/10/2009] [Accepted: 07/11/2009] [Indexed: 12/01/2022]
Abstract
The significance of very early experience in the maturation of whisker-to-barrel system comes primarily from neonatal whisker or infraorbital nerve lesion studies conducted prior to the formation of cortical barrels. However, the surgical procedures damage the sensory pathway; it is difficult to examine the consequence after the recovery of sensory deprivation. To address this issue, we performed a neonatal whisker-cut (WC) paradigm and examined their behavioral performance during P30 to P35. With fully regrown whiskers, the rats that had whisker cut from the date of birth (P0) to postnatal day (P) 3 (WC 0-3) exhibited shorter crossable distance in the gap-crossing test. However, the rats had whisker cut at P3 only (WC 3) behaved normally in this test, suggesting the critical period for the development of whisker-specific tactile function is P0-P3, agreed with previous findings demonstrated by lesion methods. In the WC 0-3 rats, the cortical areas in the layer IV somatosensory region in relation to the trimmed whiskers were enlarged and the spiny stellate neurons within had larger dendritic span and greater spine density. Furthermore, more long and multiple-head spines were found in these rats. With abnormal structure and function in the somatosensory system, the WC 0-3 rats showed higher explorative activity and more frequent social interactions. Our results have demonstrated that the early tactile deprivation, similar to early visual deprivation, perturbed the developmental program of the brain and affected later behaviors in various aspects.
Collapse
Affiliation(s)
- Li-Jen Lee
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
107
|
Giaume C, Maravall M, Welker E, Bonvento G. The barrel cortex as a model to study dynamic neuroglial interaction. Neuroscientist 2009; 15:351-66. [PMID: 19542529 DOI: 10.1177/1073858409336092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that glial cells, in particular astrocytes, interact dynamically with neurons. The well-known anatomofunctional organization of neurons in the barrel cortex offers a suitable and promising model to study such neuroglial interaction. This review summarizes and discusses recent in vitro as well as in vivo works demonstrating that astrocytes receive, integrate, and respond to neuronal signals. In addition, they are active elements of brain metabolism and exhibit a certain degree of plasticity that affects neuronal activity. Altogether these findings indicate that the barrel cortex presents glial compartments overlapping and interacting with neuronal compartments and that these properties help define barrels as functional and independent units. Finally, this review outlines how the use of the barrel cortex as a model might in the future help to address important questions related to dynamic neuroglia interaction.
Collapse
|
108
|
Petersen RS, Panzeri S, Maravall M. Neural coding and contextual influences in the whisker system. BIOLOGICAL CYBERNETICS 2009; 100:427-446. [PMID: 19189120 DOI: 10.1007/s00422-008-0290-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 12/18/2008] [Indexed: 05/27/2023]
Abstract
A fundamental problem in neuroscience, to which Prof. Segundo has made seminal contributions, is to understand how action potentials represent events in the external world. The aim of this paper is to review the issue of neural coding in the context of the rodent whiskers, an increasingly popular model system. Key issues we consider are: the role of spike timing; mechanisms of spike timing; decoding and context-dependence. Significant insight has come from the development of rigorous, information theoretic frameworks for tackling these questions, in conjunction with suitably designed experiments. We review both the theory and experimental studies. In contrast to the classical view that neurons are noisy and unreliable, it is becoming clear that many neurons in the subcortical whisker pathway are remarkably reliable and, by virtue of spike timing with millisecond-precision, have high bandwidth for conveying sensory information. In this way, even small (approximately 200 neuron) subcortical modules are able to support the sensory processing underlying sophisticated whisker-dependent behaviours. Future work on neural coding in cortex will need to consider new findings that responses are highly dependent on context, including behavioural and internal states.
Collapse
|
109
|
Silva Tenório A, Oliveira IDVA, Guedes RCA. Early vibrissae removal facilitates cortical spreading depression propagation in the brain of well‐nourished and malnourished developing rats. Int J Dev Neurosci 2009; 27:431-7. [DOI: 10.1016/j.ijdevneu.2009.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/24/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022] Open
Affiliation(s)
- Angélica Silva Tenório
- Department of NutritionLaboratory of PhysiologyUniversidade Federal de Pernambuco50670901RecifePEBrazil
| | | | | |
Collapse
|
110
|
Jadhav SP, Wolfe J, Feldman DE. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat Neurosci 2009; 12:792-800. [PMID: 19430473 DOI: 10.1038/nn.2328] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 04/06/2009] [Indexed: 11/09/2022]
|
111
|
Fox CW, Mitchinson B, Pearson MJ, Pipe AG, Prescott TJ. Contact type dependency of texture classification in a whiskered mobile robot. Auton Robots 2009. [DOI: 10.1007/s10514-009-9109-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
112
|
Neonatal fluoxetine exposure affects the neuronal structure in the somatosensory cortex and somatosensory-related behaviors in adolescent rats. Neurotox Res 2009; 15:212-23. [PMID: 19384594 DOI: 10.1007/s12640-009-9022-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/29/2008] [Accepted: 12/12/2008] [Indexed: 10/20/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI)-type antidepressants are often prescribed to depressive pregnant women for their less adverse side effects. However, growing evidences have shown increased congenital malformations and poor neonatal adaptation in the perinatal SSRI-exposed human infants as well as animal pups. In this study, we examined the effects of early exposure of fluoxetine, the most popular SSRI-type antidepressant, on the developing somatosensory system. Physiological saline or fluoxetine (10 mg/kg) was subcutaneously injected into neonatal rats from P0 to P6. Somatosensory-related behaviors were examined in adolescence (P30-P35). Morphological features of the primary somatosensory cortex were checked at P7 and P35. The tactile and thermal perceptions as well as locomotor activity were affected by neonatal fluoxetine treatment. At the morphological level, the number of branch tips of thalamocortical afferents to the somatosensory cortex was reduced in the fluoxetine-treated rats. Furthermore, the spiny stellate neurons in the layer IV somatosensory cortex had reduced dendritic span and complexity with fewer branches, shorter dendritic length, and smaller dendritic field. The spine density of spiny stellate neurons was significantly reduced whereas the spine length of mushroom- and branched-type was increased. Taken together, these results indicate that neonatal fluoxetine administration has long-lasting effects on the function and structure in the somatosensory system. Sensory information processing may be disturbed in the neonatal fluoxetine-treated animals due to the structural deformation in the thalamocortical afferents and dendritic structures of the spiny stellate neurons in the layer IV somatosensory cortex.
Collapse
|
113
|
Abstract
Rats use their whiskers to rapidly and accurately measure the texture of objects. The authors evaluate recent evidence about how whisker movement across a surface produces texture-specific motion signals, and how the signals are represented by the brain.
Collapse
Affiliation(s)
- Mathew E Diamond
- Cognitive Neuroscience Sector, International School for Advanced Studies, Trieste, Italy.
| | | | | |
Collapse
|
114
|
|
115
|
Aronoff R, Petersen CCH. Layer, column and cell-type specific genetic manipulation in mouse barrel cortex. Front Neurosci 2008; 2:64-71. [PMID: 18982108 PMCID: PMC2570061 DOI: 10.3389/neuro.01.001.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 05/02/2008] [Indexed: 11/24/2022] Open
Abstract
Sensory information is processed in distributed neuronal networks connected by intricate synaptic circuits. Studies of the rodent brain can provide insight into synaptic mechanisms of sensory perception and associative learning. In particular, the mouse whisker sensorimotor system has recently begun to be investigated through combinations of imaging and electrophysiology, providing data correlating neural activity with behaviour. In order to go beyond such correlative studies and to pinpoint the contributions of individual genes to brain function, it is critical to make highly controlled and specific manipulations. Here, we review recent progress towards genetic manipulation of targeted genes in specific neuronal cell types located in a selected cortical layer of a well-defined cortical column of mouse barrel cortex. The unprecedented precision of such genetic manipulation within highly specific neural circuits may contribute significantly to progress in understanding the molecular and synaptic determinants of simple forms of sensory perception and associative learning.
Collapse
Affiliation(s)
- Rachel Aronoff
- Laboratory of Sensory Processing, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne Lausanne, Switzerland
| | | |
Collapse
|
116
|
Mégevand P, Quairiaux C, Lascano AM, Kiss JZ, Michel CM. A mouse model for studying large-scale neuronal networks using EEG mapping techniques. Neuroimage 2008; 42:591-602. [PMID: 18585931 DOI: 10.1016/j.neuroimage.2008.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/17/2008] [Accepted: 05/07/2008] [Indexed: 11/15/2022] Open
Abstract
Human functional imaging studies are increasingly focusing on the identification of large-scale neuronal networks, their temporal properties, their development, and their plasticity and recovery after brain lesions. A method targeting large-scale networks in rodents would open the possibility to investigate their neuronal and molecular basis in detail. We here present a method to study such networks in mice with minimal invasiveness, based on the simultaneous recording of epicranial EEG from 32 electrodes regularly distributed over the head surface. Spatiotemporal analysis of the electrical potential maps similar to human EEG imaging studies allows quantifying the dynamics of the global neuronal activation with sub-millisecond resolution. We tested the feasibility, stability and reproducibility of the method by recording the electrical activity evoked by mechanical stimulation of the mystacial vibrissae. We found a series of potential maps with different spatial configurations that suggested the activation of a large-scale network with generators in several somatosensory and motor areas of both hemispheres. The spatiotemporal activation pattern was stable both across mice and in the same mouse across time. We also performed 16-channel intracortical recordings of the local field potential across cortical layers in different brain areas and found tight spatiotemporal concordance with the generators estimated from the epicranial maps. Epicranial EEG mapping thus allows assessing sensory processing by large-scale neuronal networks in living mice with minimal invasiveness, complementing existing approaches to study the neurophysiological mechanisms of interaction within the network in detail and to characterize their developmental, experience-dependent and lesion-induced plasticity in normal and transgenic animals.
Collapse
Affiliation(s)
- Pierre Mégevand
- Fundamental Neuroscience Department, Geneva University Medical School, Rue Michel-Servet 1, 1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
117
|
Hirata A, Castro-Alamancos MA. Cortical transformation of wide-field (multiwhisker) sensory responses. J Neurophysiol 2008; 100:358-70. [PMID: 18480364 DOI: 10.1152/jn.90538.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the barrel cortex of rodents, cells respond to a principal whisker (PW) and more weakly to several adjacent whiskers (AWs). Here we show that compared with PW responses, simultaneous wide-field stimulation of the PW and several AWs enhances short-latency responses and suppresses long-latency responses. Multiwhisker enhancement and suppression is first seen at the level of the cortex in layer 4 and not in the ventroposterior medial thalamus. Within the cortex, enhancement is manifested as a reduction in spike latency in layer 4 but also as an increase in spike probability in layer 2/3. Intracellular recordings revealed that multiwhisker enhancement of short-latency responses is caused by synaptic summation that can be explained by synaptic cooperativity (i.e., convergence of synaptic inputs activated by different whiskers). Conversely, multiwhisker suppression of long-latency responses is due to increased recruitment of inhibition in cortical cells. Interestingly, the ability to differentiate multiwhisker and PW responses is lost during rapid sensory adaptation caused by high-frequency whisker stimulation. The results reveal that simultaneous and temporally dispersed wide-field sensory inputs are discriminated at the level of single cells in barrel cortex with high temporal resolution, but the ability to compute this difference is highly dynamic and dependent on the level of adaptation in the thalamocortical network.
Collapse
Affiliation(s)
- Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
118
|
Major G, Polsky A, Denk W, Schiller J, Tank DW. Spatiotemporally Graded NMDA Spike/Plateau Potentials in Basal Dendrites of Neocortical Pyramidal Neurons. J Neurophysiol 2008; 99:2584-601. [PMID: 18337370 DOI: 10.1152/jn.00011.2008] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic inputs clustered over ∼20–40 μm can elicit local N-methyl-d-aspartate (NMDA) spike/plateau potentials in terminal dendrites of cortical pyramidal neurons, inspiring the notion that a single terminal dendrite can function as a decision-making computational subunit. A typical terminal basal dendrite is ∼100–200 μm long: could it function as multiple decision-making subunits? We test this by sequential focal stimulation of multiple sites along terminal basal dendrites of layer 5 pyramidal neurons in rat somatosensory cortical brain slices, using iontophoresis or uncaging of brief glutamate pulses. There was an approximately sevenfold spatial gradient in average spike/plateau amplitude measured at the soma, from ∼3 mV for distal inputs to ∼23 mV for proximal inputs. Spike/plateaus were NMDA receptor (NMDAR) conductance-dominated at all locations. Large Ca2+ transients accompanied spike/plateaus over a ∼10- to 40-μm zone around the input site; smaller Ca2+ transients extended approximately uniformly to the dendritic tip. Spike/plateau duration grew with increasing glutamate and depolarization; high Ca2+ zone size grew with spike/plateau duration. The minimum high Ca2+ zone half-width (just above NMDA spike threshold) increased from distal (∼10 μm) to proximal locations (∼25 μm), as did the NMDA spike glutamate threshold. Depolarization reduced glutamate thresholds. Simulations exploring multi-site interactions based on this demonstrate that if appropriately timed and localized inputs occur in vivo, a single basal dendrite could correspond to a cascade of multiple co-operating dynamic decision-making subunits able to retain information for hundreds of milliseconds, with increasing influence on neural output from distal to proximal. Dendritic NMDA spike/plateaus are thus well-suited to support graded persistent firing.
Collapse
|