101
|
Fernández-Fueyo E, Acebes S, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Medrano FJ, Guallar V, Martínez AT. Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:3253-65. [PMID: 25478843 PMCID: PMC4257621 DOI: 10.1107/s1399004714022755] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 11/20/2022]
Abstract
The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn(2+)-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn(2+) oxidation by the internal propionate, but prevents the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd(2+) binds at the Mn(2+)-oxidation site and competitively inhibits oxidation of both Mn(2+) and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.
Collapse
Affiliation(s)
| | - Sandra Acebes
- Joint BSC–CRG–IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
| | | | - María Jesús Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Victor Guallar
- Joint BSC–CRG–IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
102
|
Singh G, Kaur K, Puri S, Sharma P. Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Appl Microbiol Biotechnol 2014; 99:155-64. [PMID: 25421562 DOI: 10.1007/s00253-014-6219-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Next to xylanases, laccases from fungi and alkali-tolerant bacteria are the most important biocatalysts that can be employed for eco-friendly biobleaching of hard and soft wood pulps in the paper industry. Laccases offer a potential alternative to conventional, environmental-polluting chlorine and chlorine-based bleaching and has no reductive effect on the final yield of pulp as compared to hemicellulases (xylanases and mannanases). In the last decade, reports on biobleaching with laccases are based on laboratory observations only. There are several critical challenges before this enzyme can be implemented for pulp bleaching at the industrial scale. This review discusses significant factors like redox potential, laccase mediator system (LMS)-synthetic or natural, pH, temperature, stability of enzyme, unwanted grafting reactions of laccase, and cost-intensive production at large scale which constitute a great hitch for the successful implementation of laccases at industrial level.
Collapse
Affiliation(s)
- Gursharan Singh
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Chandigarh, India,
| | | | | | | |
Collapse
|
103
|
Nousiainen P, Kontro J, Manner H, Hatakka A, Sipilä J. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genet Biol 2014; 72:137-149. [DOI: 10.1016/j.fgb.2014.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022]
|
104
|
Hildén K, Mäkelä MR, Steffen KT, Hofrichter M, Hatakka A, Archer DB, Lundell TK. Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genet Biol 2014; 72:131-136. [DOI: 10.1016/j.fgb.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022]
|
105
|
Reina R, Kellner H, Jehmlich N, Ullrich R, García-Romera I, Aranda E, Liers C. Differences in the secretion pattern of oxidoreductases from Bjerkandera adusta induced by a phenolic olive mill extract. Fungal Genet Biol 2014; 72:99-105. [DOI: 10.1016/j.fgb.2014.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 01/20/2023]
|
106
|
Gonzalez-Perez D, Garcia-Ruiz E, Ruiz-Dueñas FJ, Martinez AT, Alcalde M. Structural Determinants of Oxidative Stabilization in an Evolved Versatile Peroxidase. ACS Catal 2014. [DOI: 10.1021/cs501218v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Gonzalez-Perez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | - Angel T. Martinez
- Biological Research Centre, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
107
|
Yamada Y, Wang J, Kawagishi H, Hirai H. Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 2014; 78:2128-33. [PMID: 25117933 DOI: 10.1080/09168451.2014.946398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glyoxal oxidase (GLOX) is a source of the extracellular H2O2 required for the oxidation reactions catalyzed by the ligninolytic peroxidases. In the present study, the GLOX-encoding gene (glx) of Phanerochaete chrysosporium was cloned, and bee2 promoter of P. sordida YK-624 was used to drive the expression of glx. The expression plasmid was transformed into a P. sordida YK-624 uracil auxotrophic mutant (strain UV-64), and 16 clones were obtained as GLOX-introducing transformants. These transformants showed higher GLOX activities than wild-type P. sordida YK-624 and control transformants harboring marker plasmid. RT-PCR analysis indicated that the increased GLOX activity was associated with elevated recombinant glx expression. Moreover, these transformants showed higher ligninolytic activity than control transformants. These results suggest that the ligninolytic properties of white-rot fungi can be improved by recombinant expression of glx.
Collapse
Affiliation(s)
- Yuto Yamada
- a Department of Applied Biological Chemistry , Graduate School of Agriculture, Shizuoka University , Shizuoka , Japan
| | | | | | | |
Collapse
|
108
|
Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 2014; 98:6525-42. [DOI: 10.1007/s00253-014-5810-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
|
109
|
Gonzalez-Perez D, Alcalde M. Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae. Bioengineered 2014; 5:254-63. [PMID: 24830983 DOI: 10.4161/bioe.29167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ligninolytic enzymatic consortium produced by white-rot fungi is one of the most efficient oxidative systems found in nature, with many potential applications that range from the production of 2nd generation biofuels to chemicals synthesis. In the current study, two high redox potential oxidoreductase fusion genes (laccase -Lac- and versatile peroxidase -Vp-) that had been evolved in the laboratory were re-assembled in Saccharomyces cerevisiae. First, cell viability and secretion were assessed after co-transforming the Lac and Vp genes into yeast. Several expression cassettes were inserted in vivo into episomal bi-directional vectors in order to evaluate inducible promoter and/or terminator pairs of different strengths in an individual and combined manner. The synthetic white-rot yeast model harboring Vp(GAL1/CYC1)-Lac(GAL10/ADH1) displayed up to 1000 and 100 Units per L of peroxidase and laccase activity, respectively, representing a suitable point of departure for future synthetic biology studies.
Collapse
Affiliation(s)
| | - Miguel Alcalde
- Department of Biocatalysis; Institute of Catalysis, CSIC; Madrid, Spain
| |
Collapse
|
110
|
Xie S, Syrenne R, Sun S, Yuan JS. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel--from systems biology to synthetic design. Curr Opin Biotechnol 2014; 27:195-203. [PMID: 24657913 DOI: 10.1016/j.copbio.2014.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/24/2022]
Abstract
Efficient degradation and utilization of lignocellulosic biomass remains a challenge for sustainable and affordable biofuels. Various natural biomass utilization systems (NBUS) evolved the capacity to combat the recalcitrance of plant cell walls. The study of these NBUS could enable the development of efficient and cost-effective biocatalysts, microorganisms, and bioprocesses for biofuels and bioproducts. Here, we reviewed the recent research progresses for several NBUS, ranging from single cell microorganisms to consortiums such as cattle rumen and insect guts. These studies aided the discovery of biomass-degrading enzymes and the elucidation of the evolutionary and functional relevance in these systems. In particular, advances in the next generation 'omics' technologies offered new opportunities to explore NBUS in a high-throughput manner. Systems biology helped to facilitate the rapid biocatalyst discovery and detailed mechanism analysis, which could in turn guide the reverse design of engineered microorganisms and bioprocesses for cost-effective and efficient biomass conversion.
Collapse
Affiliation(s)
- Shangxian Xie
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | - Ryan Syrenne
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, United States
| | - Su Sun
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States
| | - Joshua S Yuan
- Texas A&M Agrilife Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
111
|
Zhao J, Zheng Y, Li Y. Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2014; 156:176-81. [PMID: 24502916 DOI: 10.1016/j.biortech.2014.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/01/2014] [Accepted: 01/04/2014] [Indexed: 05/27/2023]
Abstract
Yard trimmings were pretreated by Ceriporiopsis subvermispora, a white-rot fungus that selectively degrades lignin, to enhance methane production via solid-state anaerobic digestion. Effects of moisture content (MC), at 45%, 60%, and 75%, on the degradation of holocellulose and lignin in the fungal pretreatment step and on methane production in the digestion step were studied with comparison to the control group (autoclaved without inoculation) and raw yard trimmings. It was found that C. subvermispora had a high lignin degradation of 20.9% but limited cellulose degradation of 7.4% at 60% MC. Consequently, samples pretreated at 60% MC achieved the highest methane yield of 44.6L/kg volatile solid (VS) in the digestion step, which was 106% and 154% higher than the control group (21.6L/kg VS) and the raw yard trimmings (17.6L/kg VS), respectively. The increase in methane production was probably caused by the degradation of lignin during the pretreatment.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Yi Zheng
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA
| | - Yebo Li
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096, USA.
| |
Collapse
|
112
|
Fernández-Fueyo E, Castanera R, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol 2014; 72:150-161. [PMID: 24560615 DOI: 10.1016/j.fgb.2014.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 11/16/2022]
Abstract
Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and mnp5 were the only peroxidase genes upregulated under alkaline pH conditions. The differences in the transcription levels of the peroxidase genes when the culture temperature and pH parameters were changed suggest an adaptive expression according to environmental conditions. Finally, the intracellular proteome was analyzed, under the same conditions used in the secretomic analysis, and the protein product of the highly-transcribed gene mnp3 was detected. Therefore, it was concluded that the absence of MnP3 from the secretome of the P. ostreatus lignocellulose cultures was related to impaired secretion.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain
| | - Raul Castanera
- Department of Agrarian Production, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | | | - María F López-Lucendo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain
| | - Lucía Ramírez
- Department of Agrarian Production, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | - Antonio G Pisabarro
- Department of Agrarian Production, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28006 Madrid, Spain.
| |
Collapse
|
113
|
Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 2014; 35:342-54. [DOI: 10.3109/07388551.2013.878896] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
114
|
Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:6. [PMID: 24401177 PMCID: PMC3917704 DOI: 10.1186/1754-6834-7-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biofuel production from lignocellulosic material is hampered by biomass recalcitrance towards enzymatic hydrolysis due to the compact architecture of the plant cell wall and the presence of lignin. The purpose of this work is to study the ability of an industrially available laccase-mediator system to modify and remove lignin during pretreatment of wood (Eucalyptus globulus) feedstock, thus improving saccharification, and to analyze the chemical modifications produced in the whole material and especially in the recalcitrant lignin moiety. RESULTS Up to 50% lignin removal from ground eucalypt wood was attained by pretreatment with recombinant Myceliophthora thermophila laccase and methyl syringate as mediator, followed by alkaline peroxide extraction in a multistage sequence. The lignin removal directly correlated with increases (approximately 40%) in glucose and xylose yields after enzymatic hydrolysis. The pretreatment using laccase alone (without mediator) removed up to 20% of lignin from eucalypt wood. Pyrolysis-gas chromatography/mass spectrometry of the pretreated wood revealed modifications of the lignin polymer, as shown by lignin markers with shortened side chains and increased syringyl-to-guaiacyl ratio. Additional information on the chemical modifications produced was obtained by two-dimensional nuclear magnetic resonance of the whole wood swollen in dimethylsulfoxide-d6. The spectra obtained revealed the removal of guaiacyl and syringyl lignin units, although with a preferential removal of the former, and the lower number of aliphatic side-chains per phenylpropane unit (involved in main β-O-4' and β-β' inter-unit linkages), in agreement with the pyrolysis-gas chromatography/mass spectrometry results, without a substantial change in the wood polysaccharide signals. However, the most noticeable modification observed in the spectra was the formation of Cα-oxidized syringyl lignin units during the enzymatic treatment. Further insight into the modifications of lignin structure, affecting other inter-unit linkages and oxidized structures, was attained by nuclear magnetic resonance of the lignins isolated from the eucalypt feedstock after the enzymatic pretreatments. CONCLUSIONS This work shows the potential of an oxidative enzymatic pretreatment to delignify and improve cellulase saccharification of a hardwood feedstock (eucalypt wood) when applied directly on the ground lignocellulosic material, and reveals the main chemical changes in the pretreated material, and its recalcitrant lignin moiety, behind the above results.
Collapse
Affiliation(s)
- Alejandro Rico
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes, 10, E-41012 Seville, Spain
| |
Collapse
|
115
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT. Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:2. [PMID: 24387130 PMCID: PMC3902061 DOI: 10.1186/1754-6834-7-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/16/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND The genome of Pleurotus ostreatus, an important edible mushroom and a model ligninolytic organism of interest in lignocellulose biorefineries due to its ability to delignify agricultural wastes, was sequenced with the purpose of identifying and characterizing the enzymes responsible for lignin degradation. RESULTS Heterologous expression of the class II peroxidase genes, followed by kinetic studies, enabled their functional classification. The resulting inventory revealed the absence of lignin peroxidases (LiPs) and the presence of three versatile peroxidases (VPs) and six manganese peroxidases (MnPs), the crystal structures of two of them (VP1 and MnP4) were solved at 1.0 to 1.1 Å showing significant structural differences. Gene expansion supports the importance of both peroxidase types in the white-rot lifestyle of this fungus. Using a lignin model dimer and synthetic lignin, we showed that VP is able to degrade lignin. Moreover, the dual Mn-mediated and Mn-independent activity of P. ostreatus MnPs justifies their inclusion in a new peroxidase subfamily. The availability of the whole POD repertoire enabled investigation, at a biochemical level, of the existence of duplicated genes. Differences between isoenzymes are not limited to their kinetic constants. Surprising differences in their activity T50 and residual activity at both acidic and alkaline pH were observed. Directed mutagenesis and spectroscopic/structural information were combined to explain the catalytic and stability properties of the most interesting isoenzymes, and their evolutionary history was analyzed in the context of over 200 basidiomycete peroxidase sequences. CONCLUSIONS The analysis of the P. ostreatus genome shows a lignin-degrading system where the role generally played by LiP has been assumed by VP. Moreover, it enabled the first characterization of the complete set of peroxidase isoenzymes in a basidiomycete, revealing strong differences in stability properties and providing enzymes of biotechnological interest.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Francisco J Ruiz-Dueñas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Antonio Romero
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Kenneth E Hammel
- US Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Francisco Javier Medrano
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
116
|
Bao X, Huang X, Lu X, Li JJ. Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering. Enzyme Microb Technol 2014; 54:51-8. [DOI: 10.1016/j.enzmictec.2013.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/16/2022]
|
117
|
Daniel G. Fungal and Bacterial Biodegradation: White Rots, Brown Rots, Soft Rots, and Bacteria. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1158.ch002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, Box 7008, Uppsala, Sweden
| |
Collapse
|
118
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez AT. Engineering a fungal peroxidase that degrades lignin at very acidic pH. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:114. [PMID: 25788979 PMCID: PMC4364632 DOI: 10.1186/1754-6834-7-114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of recalcitrant substrates. One of the main limiting issues for the use of these two enzymes in lignocellulose biorefineries (for delignification and production of cellulose-based products or modification of industrial lignins to added-value products) is their progressive inactivation under acidic pH conditions, where they exhibit the highest oxidative activities. RESULTS In the screening of peroxidases from basidiomycete genomes, one MnP from Ceriporiopsis subvermispora was found to have a remarkable acidic stability. The crystal structure of this enzyme recently became available and, after comparison with Pleurotus ostreatus VP and Phanerochaete chrysosporium LiP structures, it was used as a robust scaffold to engineer a stable VP by introducing an exposed catalytic tryptophan, with different protein environments. The variants obtained largely maintain the acidic stability and strong Mn(2+)-oxidizing activity of the parent enzyme, and the ability to oxidize veratryl alcohol and Reactive Black 5 (two simple VP substrates) was introduced. The engineered peroxidases present more acidic optimal pH than the best VP from P. ostreatus, enabling higher catalytic efficiency oxidizing lignins, by lowering the reaction pH, as shown using a nonphenolic model dimer. CONCLUSIONS A peroxidase that degrades lignin at very acidic pH could be obtained by engineering an exposed catalytic site, able to oxidize the bulky and recalcitrant lignin polymers, in a different peroxidase type selected because of its high stability at acidic pH. The potential of this type of engineered peroxidases as industrial biocatalysts in lignocellulose biorefineries is strongly enhanced by the possibility to perform the delignification (or lignin modification) reactions under extremely acidic pH conditions (below pH 2), resulting in enhanced oxidative power of the enzymes.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
- />Department of Biotechnology, TU Delft, Julianalaan 136, 2628 BL Delft, Netherlands
| | | | - Angel T Martínez
- />Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
119
|
Chaturvedi V, Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 2013; 3:415-431. [PMID: 28324338 PMCID: PMC3781263 DOI: 10.1007/s13205-013-0167-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The hunt for alternative sources of energy generation that are inexpensive, ecofriendly, renewable and can replace fossil fuels is on, owing to the increasing demands of energy. One approach in this direction is the conversion of plant residues into biofuels wherein lignocellulose, which forms the structural framework of plants consisting of cellulose, hemicellulose and lignin, is first broken down and hydrolyzed into simple fermentable sugars, which upon fermentation form biofuels such as ethanol. A major bottleneck is to disarray lignin which is present as a protective covering and makes cellulose and hemicellulose recalcitrant to enzymatic hydrolysis. A number of biomass deconstruction or pretreatment processes (physical, chemical and biological) have been used to break the structural framework of plants and depolymerize lignin. This review surveys and discusses some major pretreatment processes pertaining to the pretreatment of plant biomass, which are used for the production of biofuels and other value added products. The emphasis is given on processes that provide maximum amount of sugars, which are subsequently used for the production of biofuels.
Collapse
Affiliation(s)
- Venkatesh Chaturvedi
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Pradeep Verma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh India
- Present Address: Department of Microbiology, Central University of Rajasthan, N.H. 8 Bandarsindri, Kishangarh, Ajmer, Rajasthan India
| |
Collapse
|
120
|
Mate DM, Gonzalez-Perez D, Falk M, Kittl R, Pita M, De Lacey AL, Ludwig R, Shleev S, Alcalde M. Blood tolerant laccase by directed evolution. ACTA ACUST UNITED AC 2013; 20:223-31. [PMID: 23438751 DOI: 10.1016/j.chembiol.2013.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
High-redox potential laccases are powerful biocatalysts with a wide range of applications in biotechnology. We have converted a thermostable laccase from a white-rot fungus into a blood tolerant laccase. Adapting the fitness of this laccase to the specific composition of human blood (above neutral pH, high chloride concentration) required several generations of directed evolution in a surrogate complex blood medium. Our evolved laccase was tested in both human plasma and blood, displaying catalytic activity while retaining a high redox potential at the T1 copper site. Mutations introduced in the second coordination sphere of the T1 site shifted the pH activity profile and drastically reduced the inhibitory effect of chloride. This proof of concept that laccases can be adapted to function in extreme conditions opens an array of opportunities for implantable nanobiodevices, chemical syntheses, and detoxification.
Collapse
Affiliation(s)
- Diana M Mate
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 2013; 105:1428-44. [PMID: 23921235 DOI: 10.3852/13-059] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The genomes of three representative Polyporales (Bjerkandera adusta, Phlebia brevispora and a member of the Ganoderma lucidum complex) were sequenced to expand our knowledge on the diversity of ligninolytic and related peroxidase genes in this Basidiomycota order that includes most wood-rotting fungi. The survey was completed by analyzing the heme-peroxidase genes in the already available genomes of seven more Polyporales species representing the antrodia, gelatoporia, core polyporoid and phlebioid clades. The study confirms the absence of ligninolytic peroxidase genes from the manganese peroxidase (MnP), lignin peroxidase (LiP) and versatile peroxidase (VP) families, in the brown-rot fungal genomes (all of them from the antrodia clade), which include only a limited number of predicted low redox-potential generic peroxidase (GP) genes. When members of the heme-thiolate peroxidase (HTP) and dye-decolorizing peroxidase (DyP) superfamilies (up to a total of 64 genes) also are considered, the newly sequenced B. adusta appears as the Polyporales species with the highest number of peroxidase genes due to the high expansion of both the ligninolytic peroxidase and DyP (super)families. The evolutionary relationships of the 111 genes for class-II peroxidases (from the GP, MnP, VP, LiP families) in the 10 Polyporales genomes is discussed including the existence of different MnP subfamilies and of a large and homogeneous LiP cluster, while different VPs mainly cluster with short MnPs. Finally, ancestral state reconstructions showed that a putative MnP gene, derived from a primitive GP that incorporated the Mn(II)-oxidation site, is the precursor of all the class-II ligninolytic peroxidases. Incorporation of an exposed tryptophan residue involved in oxidative degradation of lignin in a short MnP apparently resulted in evolution of the first VP. One of these ancient VPs might have lost the Mn(II)-oxidation site being at the origin of all the LiP enzymes, which are found only in species of the order Polyporales.
Collapse
|
122
|
Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 2013; 30:201-11. [DOI: 10.1007/s11274-013-1440-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
123
|
New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biotechnol 2013; 98:2053-65. [DOI: 10.1007/s00253-013-5041-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 11/27/2022]
|
124
|
Dynamic metabolic flux analysis of plant cell wall synthesis. Metab Eng 2013; 18:78-85. [DOI: 10.1016/j.ymben.2013.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/14/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
|
125
|
Hildén K, Mäkelä MR, Lankinen P, Lundell T. Agaricus bisporus and related Agaricus species on lignocellulose: Production of manganese peroxidase and multicopper oxidases. Fungal Genet Biol 2013; 55:32-41. [DOI: 10.1016/j.fgb.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/30/2013] [Accepted: 02/10/2013] [Indexed: 11/26/2022]
|
126
|
Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism. Biochem J 2013; 452:575-84. [DOI: 10.1042/bj20130251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine–VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine–VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.
Collapse
|
127
|
Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol 2013; 79:4316-24. [PMID: 23666335 DOI: 10.1128/aem.00699-13] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Irpex lacteus is a white rot basidiomycete proposed for a wide spectrum of biotechnological applications which presents an interesting, but still scarcely known, enzymatic oxidative system. Among these enzymes, the production, purification, and identification of a new dye-decolorizing peroxidase (DyP)-type enzyme, as well as its physico-chemical, spectroscopic, and catalytic properties, are described in the current work. According to its N-terminal sequence and peptide mass fingerprinting analyses, I. lacteus DyP showed high homology (>95%) with the hypothetical (not isolated or characterized) protein cpop21 from an unidentified species of the family Polyporaceae. The enzyme had a low optimal pH, was very stable to acid pH and temperature, and showed improved activity and stability at high H2O2 concentrations compared to other peroxidases. Other attractive features of I. lacteus DyP were its high catalytic efficiency oxidizing the recalcitrant anthraquinone and azo dyes assayed (kcat/Km of 1.6 × 10(6) s(-1) M(-1)) and its ability to oxidize nonphenolic aromatic compounds like veratryl alcohol. In addition, the effect of this DyP during the enzymatic hydrolysis of wheat straw was checked. The results suggest that I. lacteus DyP displayed a synergistic action with cellulases during the hydrolysis of wheat straw, increasing significantly the fermentable glucose recoveries from this substrate. These data show a promising biotechnological potential for this enzyme.
Collapse
|
128
|
Yakovlev IA, Hietala AM, Courty PE, Lundell T, Solheim H, Fossdal CG. Genes associated with lignin degradation in the polyphagous white-rot pathogen Heterobasidion irregulare show substrate-specific regulation. Fungal Genet Biol 2013; 56:17-24. [PMID: 23665189 DOI: 10.1016/j.fgb.2013.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/15/2022]
Abstract
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare.
Collapse
Affiliation(s)
- Igor A Yakovlev
- Norwegian Forest and Landscape Institute, PO Box 115, N-1431 Ås, Norway
| | | | | | | | | | | |
Collapse
|
129
|
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:41. [PMID: 23514094 PMCID: PMC3620520 DOI: 10.1186/1754-6834-6-41] [Citation(s) in RCA: 796] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. RESULTS Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name "Auxiliary Activities" in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). CONCLUSIONS The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
Collapse
Affiliation(s)
- Anthony Levasseur
- INRA, UMR1163 Biotechnologie des Champignons Filamenteux, Aix-Marseille Université, ESIL Polytech Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| |
Collapse
|
130
|
Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol 2013; 79:2560-71. [PMID: 23396333 DOI: 10.1128/aem.03182-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.
Collapse
|
131
|
Franssen MCR, Steunenberg P, Scott EL, Zuilhof H, Sanders JPM. Immobilised enzymes in biorenewables production. Chem Soc Rev 2013; 42:6491-533. [DOI: 10.1039/c3cs00004d] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
132
|
Valls C, Cadena EM, Blanca Roncero M. Obtaining biobleached eucalyptus cellulose fibres by using various enzyme combinations. Carbohydr Polym 2013; 92:276-82. [DOI: 10.1016/j.carbpol.2012.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/25/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
133
|
Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 2012; 36:1251-60. [DOI: 10.1007/s00449-012-0869-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
|
134
|
Rosado T, Bernardo P, Koci K, Coelho AV, Robalo MP, Martins LO. Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases. BIORESOURCE TECHNOLOGY 2012; 124:371-378. [PMID: 22995168 DOI: 10.1016/j.biortech.2012.08.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present work is to provide insight into the mechanism of laccase reactions using syringyl-type mediators. We studied the pH dependence and the kinetics of oxidation of syringyl-type phenolics using the low CotA and the high redox potential TvL laccases. Additionally, the efficiency of these compounds as redox mediators for the oxidation of non-phenolic lignin units was tested at different pH values and increasing mediator/non-phenolic ratios. Finally, the intermediates and products of reactions were identified by LC-MS and (1)H NMR. These approaches allow concluding on the (1) mechanism involved in the oxidation of phenolics by bacterial laccases, (2) importance of the chemical nature and properties of phenolic mediators, (3) apparent independence of the enzyme's properties on the yields of non-phenolics conversion, (4) competitive routes involved in the catalytic cycle of the laccase-mediator system with several new C-O coupling type structures being proposed.
Collapse
Affiliation(s)
- Tânia Rosado
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
135
|
Morales M, Mate MJ, Romero A, Martínez MJ, Martínez ÁT, Ruiz-Dueñas FJ. Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem 2012; 287:41053-67. [PMID: 23071108 DOI: 10.1074/jbc.m112.405548] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn(2+) and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s(-1) mM(-1), respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s(-1) mM(-1) for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower K(m) values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor.
Collapse
Affiliation(s)
- María Morales
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
136
|
Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012; 336:1715-9. [PMID: 22745431 DOI: 10.1126/science.1221748] [Citation(s) in RCA: 1042] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
Collapse
|
137
|
Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Role of Active Site Histidines in the Two Half-Reactions of the Aryl-Alcohol Oxidase Catalytic Cycle. Biochemistry 2012; 51:6595-608. [DOI: 10.1021/bi300505z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Fátima Lucas
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
| | - Patricia Ferreira
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and
Molecular and Cellular Biology and Institute of Biocomputation and
Physics of Complex Systems, University of Zaragoza, E-50009 Zaragoza, Spain
| | - Victor Guallar
- Joint BSC-IRB
Research Program
in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, E-08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010 Barcelona, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040
Madrid, Spain
| |
Collapse
|
138
|
Abstract
Deep phylogenetic sampling of 31 fungal genomes, including 12 new ones, reveals how wood-decaying enzymes evolved in white rot.
Collapse
Affiliation(s)
- Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Bioenergy Initiative, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
139
|
Paliwal R, Rawat AP, Rawat M, Rai JPN. Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 2012; 167:1865-89. [PMID: 22639362 DOI: 10.1007/s12010-012-9735-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
Bioligninolysis involves living organisms and/or their products in degradation of lignin, which is highly resistant, plant-originated polymer having three-dimensional network of dimethoxylated (syringyl), monomethoxylated (guaiacyl), and non-methoxylated (p-hydroxyphenyl) phenylpropanoid and acetylated units. As a major repository of aromatic chemical structures on earth, lignin bears paramount significance for its removal owing to potential application of bioligninolytic systems in industrial production. Early reports illustrating the discovery and cloning of ligninolytic biocatalysts in fungi was truly a landmark in the field of enzymatic delignification. However, the enzymology for bacterial delignification is hitherto poorly understood. Moreover, the lignin-degrading bacterial genes are still unknown and need further exploration. This review deals with the current knowledge about ligninolytic enzyme families produced by fungi and bacteria, their mechanisms of action, and genetic regulation and reservations, which render them attractive candidates in biotechnological applications.
Collapse
Affiliation(s)
- Rashmi Paliwal
- Ecotechnology Laboratory, Department of Environmental Science, G.B.Pant. University of Agriculture and Technology, Pantnagar 263145, India
| | | | | | | |
Collapse
|
140
|
Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli. Biotechnol Lett 2012; 34:1537-43. [DOI: 10.1007/s10529-012-0940-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
|
141
|
Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, Martínez MJ, Hammel KE, Martínez AT. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem 2012; 287:16903-16. [PMID: 22437835 DOI: 10.1074/jbc.m112.356378] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.
Collapse
Affiliation(s)
- Elena Fernández-Fueyo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
142
|
Jing D, Wang J. Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:15. [PMID: 22429569 PMCID: PMC3362757 DOI: 10.1186/1754-6834-5-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 03/20/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND Use of crude ligninase of bacterial origin is one of the most promising ways to improve the practical biodegradation of lignocellulosic biomass. However, lignin is composed of diverse monolignols with different abundance levels in different plant biomass and requires different proportions of ligninase to realize efficient degradation. To improve activity and reduce cost, the simultaneous submerged fermentation of laccase and lignin peroxidase (LiP) from a new bacterial strain, Streptomyces cinnamomensis, was studied by adopting formulation design, principal component analysis, regression analysis and unconstrained mathematical programming. RESULTS The activities of laccase and LiP from S. cinnamomensis cultured with the optimal medium formulations were improved to be five to eight folders of their initial activities, and the measured laccase:LiP activity ratios reached 0.1, 0.4 and 1.7 when cultured on medium with formulations designed to produce laccase:LiP complexes with theoretical laccase:LiP activity ratios of 0.05 to 0.1, 0.5 to 1 and 1.1 to 2. CONCLUSION Both the laccase and LiP activities and also the activity ratio of laccase to LiP could be controlled by the medium formulation as designed. Using a crude laccase-LiP complex with a specially designed laccase:LiP activity ratio has the potential to improve the degradation of various plant lignins composed of diverse monolignols with different abundance levels.
Collapse
Affiliation(s)
- Debing Jing
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Division of Food Biotechnology, Department of Food Sciences and Technology, BOKU University of Natural Resources and Applied Life Sciences, Vienna A-1190, Austria
| | - Jinghua Wang
- China Rural Technology Development Center, Beijing, 100045, China
| |
Collapse
|
143
|
Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase. Biochem J 2012; 441:487-98. [PMID: 21980920 DOI: 10.1042/bj20111199] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The VPs (versatile peroxidases) secreted by white-rot fungi are involved in the natural decay of lignin. In the present study, a fusion gene containing the VP from Pleurotus eryngii was subjected to six rounds of directed evolution, achieving a level of secretion in Saccharomyces cerevisiae (21 mg/l) as yet unseen for any ligninolytic peroxidase. The evolved variant for expression harboured four mutations and increased its total VP activity 129-fold. The signal leader processing by the STE13 protease at the Golgi compartment changed as a consequence of overexpression, retaining the additional N-terminal sequence Glu-Ala-Glu-Ala that enhanced secretion. The engineered N-terminally truncated variant displayed similar biochemical properties to those of the non-truncated counterpart in terms of kinetics, stability and spectroscopic features. Additional cycles of evolution raised the T50 8°C and significantly increased the enzyme's stability at alkaline pHs. In addition, the Km for H2O2 was enhanced up to 15-fold while the catalytic efficiency was maintained, and there was an improvement in peroxide stability (with half-lives for H2O2 of 43 min at a H2O2/enzyme molar ratio of 4000:1). Overall, the directed evolution approach described provides a set of strategies for selecting VPs with improvements in secretion, activity and stability.
Collapse
|
144
|
Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. MICROBIAL ECOLOGY 2012; 63:267-81. [PMID: 22213055 DOI: 10.1007/s00248-011-9998-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/12/2011] [Indexed: 05/05/2023]
Abstract
The phylum Fibrobacteres currently comprises one formal genus, Fibrobacter, and two cultured species, Fibrobacter succinogenes and Fibrobacter intestinalis, that are recognised as major bacterial degraders of lignocellulosic material in the herbivore gut. Historically, members of the genus Fibrobacter were thought to only occupy mammalian intestinal tracts. However, recent 16S rRNA gene-targeted molecular approaches have demonstrated that novel centres of variation within the genus Fibrobacter are present in landfill sites and freshwater lakes, and their relative abundance suggests a potential role for fibrobacters in cellulose degradation beyond the herbivore gut. Furthermore, a novel subphylum within the Fibrobacteres has been detected in the gut of wood-feeding termites, and proteomic analyses have confirmed their involvement in cellulose hydrolysis. The genome sequence of F. succinogenes rumen strain S85 has recently suggested that within this group of organisms a "third" way of attacking the most abundant form of organic carbon in the biosphere, cellulose, has evolved. This observation not only has evolutionary significance, but the superior efficiency of anaerobic cellulose hydrolysis by Fibrobacter spp., in comparison to other cellulolytic rumen bacteria that typically utilise membrane-bound enzyme complexes (cellulosomes), may be explained by this novel cellulase system. There are few bacterial phyla with potential functional importance for which there is such a paucity of phenotypic and functional data. In this review, we highlight current knowledge of the Fibrobacteres phylum, its taxonomy, phylogeny, ecology and potential as a source of novel glycosyl hydrolases of biotechnological importance.
Collapse
Affiliation(s)
- Emma Ransom-Jones
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | | | | |
Collapse
|
145
|
Hernández-Ortega A, Ferreira P, Merino P, Medina M, Guallar V, Martínez AT. Stereoselective Hydride Transfer by Aryl-Alcohol Oxidase, a Member of the GMC Superfamily. Chembiochem 2012; 13:427-35. [PMID: 22271643 DOI: 10.1002/cbic.201100709] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Aitor Hernández-Ortega
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
146
|
Nousiainen P, Kontro J, Maijala P, Uzan E, Hatakka A, Lomascolo A, Sipilä J. Lignin Model Compound Studies To Elucidate the Effect of “Natural” Mediators on Oxidoreductase-Catalyzed Degradation of Lignocellulosic Materials. FUNCTIONAL MATERIALS FROM RENEWABLE SOURCES 2012. [DOI: 10.1021/bk-2012-1107.ch012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- P. Nousiainen
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| | - J. Kontro
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| | - P. Maijala
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| | - E. Uzan
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| | - A. Hatakka
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| | - A. Lomascolo
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| | - J. Sipilä
- Department of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio1), Helsinki 00014, Finland
- Department of Food and Environmental Sciences, University of Helsinki, P.O.Box 56 (Viikinkaari 9), Helsinki 00014, Finland
- Aix-Marseille Univ., UMR 1163 Fungal Biotechnology, 163 avenue de Luminy, Case 925, 13009 Marseille, France
| |
Collapse
|
147
|
Valls C, Quintana E, Roncero MB. Assessing the environmental impact of biobleaching: effects of the operational conditions. BIORESOURCE TECHNOLOGY 2012; 104:557-564. [PMID: 22079687 DOI: 10.1016/j.biortech.2011.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
The environmental impact of enzyme bleaching stages applied to oxygen-delignified eucalypt kraft pulp was assessed via the chemical oxygen demand (COD), color, absorbance spectrum, residual enzyme activity and Microtox toxicity of the effluents from a laccase-HBT (1-hydoxybenzotriazole) treatment. The influence of the laccase and HBT doses, and reaction time, on these effluent properties was also examined. The laccase dose was found to be the individual variable most strongly affecting COD, whereas the oxidized form of HBT was the main source of increased color and toxicity in the effluents. Moreover, it inactivated the enzyme. Oxidation of the mediator was very fast and essentially dependent on the laccase dose. Using the laccase-mediator treatment after a xylanase stage improved pulp properties without affecting effluent properties. This result holds great promise with a view to the industrial implementation of biobleaching sequences involving the two enzymes in the future.
Collapse
Affiliation(s)
- Cristina Valls
- Textile and Paper Engineering Department, ETSEIAT, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Spain
| | | | | |
Collapse
|
148
|
Santhanam N, Badri DV, Decker SR, Manter DK, Reardon KF, Vivanco JM. Lignocellulose Decomposition by Microbial Secretions. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23047-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
149
|
Ionic liquid assisted enzymatic delignification of wood biomass: A new ‘green’ and efficient approach for isolating of cellulose fibers. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
150
|
Piscitelli A, Del Vecchio C, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G. Fungal laccases: Versatile tools for lignocellulose transformation. C R Biol 2011; 334:789-94. [DOI: 10.1016/j.crvi.2011.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|