101
|
Abstract
In this essay I describe my personal journey from reductionist to systems cell biology and describe how this in turn led to a 3-year sea voyage to explore complex ocean communities. In describing this journey, I hope to convey some important principles that I gleaned along the way. I realized that cellular functions emerge from multiple molecular interactions and that new approaches borrowed from statistical physics are required to understand the emergence of such complex systems. Then I wondered how such interaction networks developed during evolution. Because life first evolved in the oceans, it became a natural thing to start looking at the small organisms that compose the plankton in the world's oceans, of which 98% are … individual cells—hence the Tara Oceans voyage, which finished on 31 March 2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more than 30,000 samples from 153 sampling stations.
Collapse
Affiliation(s)
- Eric Karsenti
- European Molecular Biology Laboratory, D69117 Heidelberg, Germany.
| |
Collapse
|
102
|
Kumar P, Wittmann T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol 2012; 22:418-28. [PMID: 22748381 DOI: 10.1016/j.tcb.2012.05.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
+TIPs are a heterogeneous class of proteins that specifically bind to growing microtubule ends. Because dynamic microtubules are essential for many intracellular processes, +TIPs play important roles in regulating microtubule dynamics and microtubule interactions with other intracellular structures. End-binding proteins (EBs) recognize a structural cap at growing microtubule ends, and have emerged as central adaptors that mediate microtubule plus-end tracking of potentially all other +TIPs. The majority of these +TIPs bind to EBs through a short hydrophobic (S/T)x(I/L)P sequence motif (SxIP) and surrounding electrostatic interactions. These recent discoveries have resulted in a rapid expansion of the number of possible +TIPs. In this review, we outline our current understanding of the molecular mechanism of plus-end tracking and provide an overview of SxIP-recruited +TIPs.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | |
Collapse
|
103
|
Meunier S, Vernos I. Microtubule assembly during mitosis - from distinct origins to distinct functions? J Cell Sci 2012; 125:2805-14. [PMID: 22736044 DOI: 10.1242/jcs.092429] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mitotic spindle is structurally and functionally defined by its main component, the microtubules (MTs). The MTs making up the spindle have various functions, organization and dynamics: astral MTs emanate from the centrosome and reach the cell cortex, and thus have a major role in spindle positioning; interpolar MTs are the main constituent of the spindle and are key for the establishment of spindle bipolarity, chromosome congression and central spindle assembly; and kinetochore-fibers are MT bundles that connect the kinetochores with the spindle poles and segregate the sister chromatids during anaphase. The duplicated centrosomes were long thought to be the origin of all of these MTs. However, in the last decade, a number of studies have contributed to the identification of non-centrosomal pathways that drive MT assembly in dividing cells. These pathways are now known to be essential for successful spindle assembly and to participate in various processes such as K-fiber formation and central spindle assembly. In this Commentary, we review the recent advances in the field and discuss how different MT assembly pathways might cooperate to successfully form the mitotic spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Microtubule Function and Cell Division group, Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
104
|
Roscioli E, Di Francesco L, Bolognesi A, Giubettini M, Orlando S, Harel A, Schininà ME, Lavia P. Importin-β negatively regulates multiple aspects of mitosis including RANGAP1 recruitment to kinetochores. J Cell Biol 2012; 196:435-50. [PMID: 22331847 PMCID: PMC3283988 DOI: 10.1083/jcb.201109104] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/18/2012] [Indexed: 12/23/2022] Open
Abstract
Importin-β is the main vector for interphase nuclear protein import and plays roles after nuclear envelope breakdown. Here we show that importin-β regulates multiple aspects of mitosis via distinct domains that interact with different classes of proteins in human cells. The C-terminal region (which binds importin-α) inhibits mitotic spindle pole formation. The central region (harboring nucleoporin-binding sites) regulates microtubule dynamic functions and interaction with kinetochores. Importin-β interacts through this region with NUP358/RANBP2, which in turn binds SUMO-conjugated RANGAP1 in nuclear pores. We show that this interaction continues after nuclear pore disassembly. Overexpression of importin-β, or of the nucleoporin-binding region, inhibited RANGAP1 recruitment to mitotic kinetochores, an event that is known to require microtubule attachment and the exportin CRM1. Co-expressing either importin-β-interacting RANBP2 fragments, or CRM1, restored RANGAP1 to kinetochores and rescued importin-β-dependent mitotic dynamic defects. These results reveal previously unrecognized importin-β functions at kinetochores exerted via RANBP2 and opposed by CRM1.
Collapse
Affiliation(s)
- Emanuele Roscioli
- Institute of Molecular Biology and Pathology, CNR National Research Council, 00185 Rome, Italy
| | - Laura Di Francesco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Bolognesi
- Institute of Molecular Biology and Pathology, CNR National Research Council, 00185 Rome, Italy
| | - Maria Giubettini
- Institute of Molecular Biology and Pathology, CNR National Research Council, 00185 Rome, Italy
| | - Serena Orlando
- Institute of Molecular Biology and Pathology, CNR National Research Council, 00185 Rome, Italy
| | - Amnon Harel
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, CNR National Research Council, 00185 Rome, Italy
| |
Collapse
|
105
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|
106
|
Gardner MK, Zanic M, Gell C, Bormuth V, Howard J. Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 2012; 147:1092-103. [PMID: 22118464 DOI: 10.1016/j.cell.2011.10.037] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 07/11/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
Microtubules are dynamic filaments whose ends alternate between periods of slow growth and rapid shortening as they explore intracellular space and move organelles. A key question is how regulatory proteins modulate catastrophe, the conversion from growth to shortening. To study this process, we reconstituted microtubule dynamics in the absence and presence of the kinesin-8 Kip3 and the kinesin-13 MCAK. Surprisingly, we found that, even in the absence of the kinesins, the microtubule catastrophe frequency depends on the age of the microtubule, indicating that catastrophe is a multistep process. Kip3 slowed microtubule growth in a length-dependent manner and increased the rate of aging. In contrast, MCAK eliminated the aging process. Thus, both kinesins are catastrophe factors; Kip3 mediates fine control of microtubule length by narrowing the distribution of maximum lengths prior to catastrophe, whereas MCAK promotes rapid restructuring of the microtubule cytoskeleton by making catastrophe a first-order random process.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
107
|
|
108
|
Johnston WL, Dennis JW. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 2011; 50:333-49. [PMID: 22083685 DOI: 10.1002/dvg.20823] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
In egg-laying animals, embryonic development takes place within the highly specialized environment provided by the eggshell and its underlying extracellular matrix. Far from being simply a passive physical support, the eggshell is a key player in many early developmental events. Herein, we review current understanding of eggshell structure, biosynthesis, and function in zygotic development of the nematode, C. elegans. Beginning at sperm contact or entry, eggshell layers are produced sequentially. The earlier outer layers are required for secretion or organization of inner layers, and layers differ in composition and function. Developmental events that depend on the eggshell include polyspermy barrier generation, high fidelity meiotic chromosome segregation, osmotic barrier synthesis, polar body extrusion, anterior-posterior polarization, and organization of membrane and cortical proteins. The C. elegans eggshell is proving to be an excellent, tractable system to study the molecular cues of the extracellular matrix that instruct cell polarity and early development.
Collapse
Affiliation(s)
- Wendy L Johnston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | |
Collapse
|
109
|
Margolin G, Gregoretti IV, Cickovski TM, Li C, Shi W, Alber MS, Goodson HV. The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model. Mol Biol Cell 2011; 23:642-56. [PMID: 22190741 PMCID: PMC3279392 DOI: 10.1091/mbc.e11-08-0688] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ETOC: The behavior of a dimer-scale computational model predicts that short interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks govern both catastrophe and rescue. Microtubule (MT) dynamic instability is fundamental to many cell functions, but its mechanism remains poorly understood, in part because it is difficult to gain information about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale computational model of MT assembly that is consistent with tubulin structure and biochemistry, displays dynamic instability, and covers experimentally relevant spans of time. It allows us to correlate macroscopic behaviors (dynamic instability parameters) with microscopic structures (tip conformations) and examine protofilament structure as the tip spontaneously progresses through both catastrophe and rescue. The model's behavior suggests that several commonly held assumptions about MT dynamics should be reconsidered. Moreover, it predicts that short, interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks influence both catastrophe and rescue. We conclude that experimentally observed microtubule behavior can best be explained by a “stochastic cap” model in which tubulin subunits hydrolyze GTP according to a first-order reaction after they are incorporated into the lattice; catastrophe and rescue result from stochastic fluctuations in the size, shape, and extent of lateral bonding of the cap.
Collapse
Affiliation(s)
- Gennady Margolin
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Yadav V, Mukherji S. Length-dependent dynamics of microtubules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:062902. [PMID: 22304138 DOI: 10.1103/physreve.84.062902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 10/14/2011] [Indexed: 05/31/2023]
Abstract
Certain regulatory proteins influence the polymerization dynamics of microtubules by inducing catastrophe with a rate that depends on the microtubule length. Using a discrete formulation, here we show that, for a catastrophe rate proportional to the microtubule length, the steady-state probability distributions of length decay much faster with length than an exponential decay as seen in the absence of these proteins.
Collapse
Affiliation(s)
- Vandana Yadav
- Department of Physics, Indian Institute of Technology, Kanpur 208 016, India
| | | |
Collapse
|
111
|
The site of RanGTP generation can act as an organizational cue for mitotic microtubules. Biol Cell 2011; 103:421-34. [PMID: 21692748 DOI: 10.1042/bc20100135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND INFORMATION RanGTP, which is generated on chromosomes during mitosis, is required for microtubule spindle assembly. Due to its restricted spatial generation within the cell it has been suggested that RanGTP acts as a spatial cue to organize site-specific spindle assembly within the cell. However, the absence of a detectable sharp gradient of RanGTP in somatic cells has led to suggestions that it may only act as a spatial cue in large cells and that it may operate as a general activator of the mitotic cytosol in somatic cells. RESULTS We report that ectopic generation of RanGTP at the plasma membrane stimulates the formation of organized arrays of microtubules at the plasma membrane. CONCLUSIONS These results suggest that the site of RanGTP generation in a mitotic somatic cell can generate critical spatial information that specifies where microtubules grow towards and where microtubules are organized. As RanGTP is normally generated on chromosomes, these results suggest that RanGTP may play an important role in specifying that spindle assembly occurs around chromosomes.
Collapse
|
112
|
Meunier S, Vernos I. K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat Cell Biol 2011; 13:1406-14. [PMID: 22081094 DOI: 10.1038/ncb2372] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 09/30/2011] [Indexed: 02/07/2023]
Abstract
Chromosome segregation requires the formation of K-fibres, microtubule bundles that attach sister kinetochores to spindle poles. Most K-fibre microtubules originate around the chromosomes through a non-centrosomal RanGTP-dependent pathway and become oriented with the plus ends attached to the kinetochore and the minus ends focused at the spindle poles. The capture and stabilization of microtubule plus ends at the kinetochore has been extensively studied but very little is known on how their minus-end dynamics are controlled. Here we show that MCRS1 is a RanGTP-regulated factor essential for non-centrosomal microtubule assembly. MCRS1 localizes to the minus ends of chromosomal microtubules and K-fibres, where it protects them from depolymerization. Our data reveal the existence of a mechanism that stabilizes the minus ends of chromosomal microtubules and K-fibres, and is essential for the assembly of a functional bipolar spindle.
Collapse
Affiliation(s)
- Sylvain Meunier
- Cell and Developmental Biology Program, Centre for Genomic Regulation, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | |
Collapse
|
113
|
Musacchio A. Travel notes from the equatorial circle. Cell 2011; 146:499-501. [PMID: 21854975 DOI: 10.1016/j.cell.2011.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accurate chromosome segregation during mitosis and meiosis is essential for cell viability. Two papers in this issue of Cell (Kitajima et al., 2011; Magidson et al., 2011) describe chromosome movements during cell division with unprecedented accuracy, revealing previously unrecognized features of chromosome spindle alignment and paving the way to quantitative phenotypic and mechanistic analyses of chromosome alignment during prometaphase.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, Dortmund 44227, Germany.
| |
Collapse
|
114
|
Kitajima TS, Ohsugi M, Ellenberg J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 2011; 146:568-81. [PMID: 21854982 DOI: 10.1016/j.cell.2011.07.031] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Chromosomes must establish stable biorientation prior to anaphase to achieve faithful segregation during cell division. The detailed process by which chromosomes are bioriented and how biorientation is coordinated with spindle assembly and chromosome congression remain unclear. Here, we provide complete 3D kinetochore-tracking datasets throughout cell division by high-resolution imaging of meiosis I in live mouse oocytes. We show that in acentrosomal oocytes, chromosome congression forms an intermediate chromosome configuration, the prometaphase belt, which precedes biorientation. Chromosomes then invade the elongating spindle center to form the metaphase plate and start biorienting. Close to 90% of all chromosomes undergo one or more rounds of error correction of their kinetochore-microtubule attachments before achieving correct biorientation. This process depends on Aurora kinase activity. Our analysis reveals the error-prone nature of homologous chromosome biorientation, providing a possible explanation for the high incidence of aneuploid eggs observed in mammals, including humans.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | | | | |
Collapse
|
115
|
|
116
|
Magidson V, O’Connell CB, Lončarek J, Paul R, Mogilner A, Khodjakov A. The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 2011; 146:555-67. [PMID: 21854981 PMCID: PMC3291198 DOI: 10.1016/j.cell.2011.07.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 04/17/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022]
Abstract
Error-free chromosome segregation requires stable attachment of sister kinetochores to the opposite spindle poles (amphitelic attachment). Exactly how amphitelic attachments are achieved during spindle assembly remains elusive. We employed photoactivatable GFP and high-resolution live-cell confocal microscopy to visualize complete 3D movements of individual kinetochores throughout mitosis in nontransformed human cells. Combined with electron microscopy, molecular perturbations, and immunofluorescence analyses, this approach reveals unexpected details of chromosome behavior. Our data demonstrate that unstable lateral interactions between kinetochores and microtubules dominate during early prometaphase. These transient interactions lead to the reproducible arrangement of chromosomes in an equatorial ring on the surface of the nascent spindle. A computational model predicts that this toroidal distribution of chromosomes exposes kinetochores to a high density of microtubules which facilitates subsequent formation of amphitelic attachments. Thus, spindle formation involves a previously overlooked stage of chromosome prepositioning which promotes formation of amphitelic attachments.
Collapse
Affiliation(s)
| | | | | | - Raja Paul
- Departments of Neurobiology, Physiology, and Behavior, and Mathematics, University of California, Davis, CA 95616, USA
| | - Alex Mogilner
- Departments of Neurobiology, Physiology, and Behavior, and Mathematics, University of California, Davis, CA 95616, USA
| | - Alexey Khodjakov
- Wadsworth Center, PO Box 509, Albany, NY 12201-509, USA
- Rensselaer Polytechnic Institute, Troy NY 12180, USA
| |
Collapse
|
117
|
Wadsworth P, Lee WL, Murata T, Baskin TI. Variations on theme: spindle assembly in diverse cells. PROTOPLASMA 2011; 248:439-46. [PMID: 20830494 PMCID: PMC5290749 DOI: 10.1007/s00709-010-0205-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 05/18/2023]
Abstract
The mitotic spindle faithfully separates the genetic material, and has been reverently observed for well over a century. Across eukaryotes, while the mechanisms for moving chromosomes seem quite conserved, mechanisms for assembling the spindle often seem distinct. Two major pathways for spindle assembly are known, one based on centrosomes and the other based on chromatin, and these pathways are usually considered to be fundamentally different. We review observations of spindle assembly in animals, fungi, and plants, and argue that microtubule assembly at a particular location, centrosomes, or chromatin, reflects contingent, cell-type specific factors, rather than reflecting a fundamental distinction in the process of spindle building. We hypothesize that the essential process for spindle assembly is the motor-driven organization of microtubules that accumulate in the form of dense bundles at or near the chromosomes.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
118
|
Ganguly A, Cabral F. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta Rev Cancer 2011; 1816:164-71. [PMID: 21741453 DOI: 10.1016/j.bbcan.2011.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Mechanisms to explain tumor cell resistance to drugs that target the microtubule cytoskeleton have relied on the assumption that the drugs act either to suppress microtubule dynamics or to perturb the balance between assembled and nonassembled tubulin. Recently, however, it was found that these drugs also alter the stability of microtubule attachment to centrosomes, and do so at the same concentrations that are needed to inhibit cell division. Based on this new information, a new model is presented that explains resistance resulting from a variety of molecular changes that have been reported in the literature. The improved understanding of drug action and resistance has important implications for chemotherapy with these agents.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, 6431 Fannin Street, houston, TX 77030, USA
| | | |
Collapse
|
119
|
Abstract
Roles of the GTPase Ran in cell life and division rely on a largely conserved mechanism, i.e. Ran's ability to interact with transport vectors. Modes of control of downstream factors, however, are diversified at particular times of the cell cycle. Specificity and fine-tuning emerge most clearly during mitosis. In the present article, we focus on the distinction between global mitotic control by the chromosomal Ran gradient and specific spatial and temporal control operated by localized Ran network members at sites of the mitotic apparatus in human cells.
Collapse
|
120
|
A first-passage-time theory for search and capture of chromosomes by microtubules in mitosis. Bull Math Biol 2011; 73:2483-506. [PMID: 21301981 DOI: 10.1007/s11538-011-9633-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
The mitotic spindle is an important intermediate structure in eukaryotic cell division, in which each of a pair of duplicated chromosomes is attached through microtubules to centrosomal bodies located close to the two poles of the dividing cell. Several mechanisms are at work toward the formation of the spindle, one of which is the 'capture' of chromosome pairs, held together by kinetochores, by randomly searching microtubules. Although the entire cell cycle can be up to 24 hours long, the mitotic phase typically takes only less than an hour. How does the cell keep the duration of mitosis within this limit? Previous theoretical studies have suggested that the chromosome search and capture is optimized by tuning the microtubule dynamic parameters to minimize the search time. In this paper, we examine this conjecture. We compute the mean search time for a single target by microtubules from a single nucleating site, using a systematic and rigorous theoretical approach, for arbitrary kinetic parameters. The result is extended to multiple targets and nucleating sites by physical arguments. Estimates of mitotic time scales are then obtained for different cells using experimental data. In yeast and mammalian cells, the observed changes in microtubule kinetics between interphase and mitosis are beneficial in reducing the search time. In Xenopus extracts, by contrast, the opposite effect is observed, in agreement with the current understanding that large cells use additional mechanisms to regulate the duration of the mitotic phase.
Collapse
|
121
|
Ma N, Matsunaga S, Morimoto A, Sakashita G, Urano T, Uchiyama S, Fukui K. The nuclear scaffold protein SAF-A is required for kinetochore-microtubule attachment and contributes to the targeting of Aurora-A to mitotic spindles. J Cell Sci 2011; 124:394-404. [PMID: 21242313 DOI: 10.1242/jcs.063347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Segregation of chromosomes during cell division requires correct formation of mitotic spindles. Here, we show that a scaffold attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein-U, contributes to the attachment of spindle microtubules (MTs) to kinetochores and spindle organization. During mitosis, SAF-A was localized at the spindles, spindle midzone and cytoplasmic bridge. Depletion of SAF-A by RNA interference induced mitotic delay and defects in chromosome alignment and spindle assembly. We found that SAF-A specifically co-immunoprecipitated with the chromosome peripheral protein nucleolin and the spindle regulators Aurora-A and TPX2, indicating that SAF-A is associated with nucleolin and the Aurora-A-TPX2 complex. SAF-A was colocalized with TPX2 and Aurora-A in spindle poles and MTs. Elimination of TPX2 or Aurora-A from cells abolished the association of SAF-A with the mitotic spindle. Interestingly, SAF-A can bind to MTs and contributes to the targeting of Aurora-A to mitotic spindle MTs. Our finding indicates that SAF-A is a novel spindle regulator that plays an essential role in kinetochore-MT attachment and mitotic spindle organization.
Collapse
Affiliation(s)
- Nan Ma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
122
|
Mogilner A, Craig E. Towards a quantitative understanding of mitotic spindle assembly and mechanics. J Cell Sci 2011; 123:3435-45. [PMID: 20930139 DOI: 10.1242/jcs.062208] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 'simple' view of the mitotic spindle is that it self-assembles as a result of microtubules (MTs) randomly searching for chromosomes, after which the spindle length is maintained by a balance of outward tension exerted by molecular motors on the MTs connecting centrosomes and chromosomes, and compression generated by other motors on the MTs connecting the spindle poles. This picture is being challenged now by mounting evidence indicating that spindle assembly and maintenance rely on much more complex interconnected networks of microtubules, molecular motors, chromosomes and regulatory proteins. From an engineering point of view, three design principles of this molecular machine are especially important: the spindle assembles quickly, it assembles accurately, and it is mechanically robust--yet malleable. How is this design achieved with randomly interacting and impermanent molecular parts? Here, we review recent interdisciplinary studies that have started to shed light on this question. We discuss cooperative mechanisms of spindle self-assembly, error correction and maintenance of its mechanical properties, speculate on analogy between spindle and lamellipodial dynamics, and highlight the role of quantitative approaches in understanding the mitotic spindle design.
Collapse
Affiliation(s)
- Alex Mogilner
- Department of Neurobiology, Physiology and Behavior, and Department of Mathematics, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
123
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
124
|
Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J 2010; 29:4070-82. [PMID: 21102558 DOI: 10.1038/emboj.2010.294] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic cells segregate their chromosomes accurately to opposite poles during mitosis, which is necessary for maintenance of their genetic integrity. This process mainly relies on the forces generated by kinetochore-microtubule (KT-MT) attachment. During prometaphase, the KT initially interacts with a single MT extending from a spindle pole and then moves towards a spindle pole. Subsequently, MTs from the other spindle pole also interact with the KT. Eventually, one sister KT becomes attached to MTs from one pole while the other sister to those from the other pole (sister KT bi-orientation). If sister KTs interact with MTs with aberrant orientation, this must be corrected to attain proper bi-orientation (error correction) before the anaphase is initiated. Here, I discuss how KTs initially interact with MTs and how this interaction develops into bi-orientation; both processes are fundamentally crucial for proper chromosome segregation in the subsequent anaphase.
Collapse
|
125
|
Tischer C, Ten Wolde PR, Dogterom M. Providing positional information with active transport on dynamic microtubules. Biophys J 2010; 99:726-35. [PMID: 20682249 DOI: 10.1016/j.bpj.2010.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/15/2010] [Accepted: 05/12/2010] [Indexed: 12/24/2022] Open
Abstract
Microtubules (MTs) are dynamic protein polymers that change their length by switching between growing and shrinking states in a process termed dynamic instability. It has been suggested that the dynamic properties of MTs are central to the organization of the eukaryotic intracellular space, and that they are involved in the control of cell morphology, but the actual mechanisms are not well understood. Here, we present a theoretical analysis in which we explore the possibility that a system of dynamic MTs and MT end-tracking molecular motors is providing specific positional information inside cells. We compute the MT length distribution for the case of MT-length-dependent switching between growing and shrinking states, and analyze the accumulation of molecular motors at the tips of growing MTs. Using these results, we show that a transport system consisting of dynamic MTs and associated motor proteins can deliver cargo proteins preferentially to specific positions within the cell. Comparing our results with experimental data in the model organism fission yeast, we propose that the suggested mechanisms could play important roles in setting length scales during cellular morphogenesis.
Collapse
Affiliation(s)
- Christian Tischer
- Institute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
126
|
Fache V, Gaillard J, Van Damme D, Geelen D, Neumann E, Stoppin-Mellet V, Vantard M. Arabidopsis kinetochore fiber-associated MAP65-4 cross-links microtubules and promotes microtubule bundle elongation. THE PLANT CELL 2010; 22:3804-15. [PMID: 21119057 PMCID: PMC3015114 DOI: 10.1105/tpc.110.080606] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 10/27/2010] [Accepted: 11/10/2010] [Indexed: 05/02/2023]
Abstract
The acentrosomal plant mitotic spindle is uniquely structured in that it lacks opposing centrosomes at its poles and is equipped with a connective preprophase band that regulates the spatial framework for spindle orientation and mobility. These features are supported by specialized microtubule-associated proteins and motors. Here, we show that Arabidopsis thaliana MAP65-4, a non-motor microtubule associated protein (MAP) that belongs to the evolutionarily conserved MAP65 family, specifically associates with the forming mitotic spindle during prophase and with the kinetochore fibers from prometaphase to the end of anaphase. In vitro, MAP65-4 induces microtubule (MT) bundling through the formation of cross-bridges between adjacent MTs both in polar and antipolar orientations. The association of MAP65-4 with an MT bundle is concomitant with its elongation. Furthermore, MAP65-4 modulates the MT dynamic instability parameters of individual MTs within a bundle, mainly by decreasing the frequency of catastrophes and increasing the frequency of rescue events, and thereby supports the progressive lengthening of MT bundles over time. These properties are in line with its role of initiating kinetochore fibers during prospindle formation.
Collapse
Affiliation(s)
- Vincent Fache
- Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, 38054 Grenoble, France
| | - Jérémie Gaillard
- Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, 38054 Grenoble, France
| | - Daniel Van Damme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Ghent University, B-9000 Ghent, Belgium
| | - Emmanuelle Neumann
- Institut de Biologie Structurale, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Université Joseph Fourier, 38027 Grenoble, France
| | - Virginie Stoppin-Mellet
- Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, 38054 Grenoble, France
| | - Marylin Vantard
- Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, 38054 Grenoble, France
| |
Collapse
|
127
|
McEwen BF, Dong Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 2010; 67:2163-72. [PMID: 20336345 PMCID: PMC2883615 DOI: 10.1007/s00018-010-0322-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/16/2022]
Abstract
Kinetochore function is mediated through its interaction with microtubule plus ends embedded in the kinetochore outer plate. Here, we compare and evaluate current models for kinetochore microtubule attachment, beginning with a brief review of the molecular, biochemical, cellular, and structural studies upon which these models are based. The majority of these studies strongly support a model in which the kinetochore outer plate is a network of fibers that form multiple weak attachments to each microtubule, chiefly through the Ndc80 complex. Multiple weak attachments enable kinetochores to remain attached to microtubule plus ends that are continually growing and shrinking. It is unlikely that rings or "kinetochore fibrils" have a significant role in kinetochore microtubule attachment, but such entities could have a role in stabilizing attachment, modifying microtubule dynamics, and harnessing the energy released from microtubule disassembly. It is currently unclear whether kinetochores control and coordinate the dynamics of individual kinetochore microtubules.
Collapse
Affiliation(s)
- Bruce F McEwen
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | | |
Collapse
|
128
|
Maiato H. Mitosis: wisdom, knowledge, and information. Cell Mol Life Sci 2010; 67:2141-3. [PMID: 20213271 PMCID: PMC11115681 DOI: 10.1007/s00018-010-0320-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| |
Collapse
|
129
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA. Reaction-diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 2010; 49:4170-98. [PMID: 20518023 PMCID: PMC3697936 DOI: 10.1002/anie.200905513] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.
Collapse
Affiliation(s)
- Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Marta Byrska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Bartosz A. Grzybowski
- Department of Chemistry, Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, Homepage: http://www.dysa.northwestern.edu
| |
Collapse
|
130
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski B. Reaktions-Diffusions-Systeme für intrazellulären Transport und Kontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
131
|
Dehmelt L, Bastiaens PIH. Spatial organization of intracellular communication: insights from imaging. Nat Rev Mol Cell Biol 2010; 11:440-52. [DOI: 10.1038/nrm2903] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
132
|
Kitamura E, Tanaka K, Komoto S, Kitamura Y, Antony C, Tanaka TU. Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev Cell 2010; 18:248-59. [PMID: 20159595 PMCID: PMC2828607 DOI: 10.1016/j.devcel.2009.12.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 10/28/2009] [Accepted: 12/17/2009] [Indexed: 11/28/2022]
Abstract
In early mitosis, microtubules can be generated at kinetochores as well as at spindle poles. However, the role and regulation of kinetochore-derived microtubules have been unclear. In general, metaphase spindle microtubules are oriented such that their plus ends bind to kinetochores. However, we now have evidence that, during early mitosis in budding yeast, microtubules are generated at kinetochores with distal plus ends. These kinetochore-derived microtubules interact along their length with microtubules that extend from a spindle pole, facilitating kinetochore loading onto the lateral surface of spindle pole microtubules. Once kinetochores are loaded, microtubules are no longer generated at kinetochores, and those that remain disappear rapidly and do not contribute to the metaphase spindle. Stu2 (the ortholog of vertebrate XMAP215/ch-TOG) localizes to kinetochores and plays a central role in regulating kinetochore-derived microtubules. Our work provides insight into microtubule generation at kinetochores and the mechanisms that facilitate initial kinetochore interaction with spindle pole microtubules.
Collapse
Affiliation(s)
- Etsushi Kitamura
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
133
|
Civelekoglu-Scholey G, Tao L, Brust-Mascher I, Wollman R, Scholey JM. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. ACTA ACUST UNITED AC 2010; 188:49-68. [PMID: 20065089 PMCID: PMC2812851 DOI: 10.1083/jcb.200908150] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We tested the classical hypothesis that astral, prometaphase bipolar mitotic spindles are maintained by balanced outward and inward forces exerted on spindle poles by kinesin-5 and -14 using modeling of in vitro and in vivo data from Drosophila melanogaster embryos. Throughout prometaphase, puncta of both motors aligned on interpolar microtubules (MTs [ipMTs]), and motor perturbation changed spindle length, as predicted. Competitive motility of purified kinesin-5 and -14 was well described by a stochastic, opposing power stroke model incorporating motor kinetics and load-dependent detachment. Motor parameters from this model were applied to a new stochastic force-balance model for prometaphase spindles, providing a good fit to data from embryos. Maintenance of virtual spindles required dynamic ipMTs and a narrow range of kinesin-5 to kinesin-14 ratios matching that found in embryos. Functional perturbation and modeling suggest that this range can be extended significantly by a disassembling lamin-B envelope that surrounds the prometaphase spindle and augments the finely tuned, antagonistic kinesin force balance to maintain robust prometaphase spindles as MTs assemble and chromosomes are pushed to the equator.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
134
|
Gatlin JC, Bloom K. Microtubule motors in eukaryotic spindle assembly and maintenance. Semin Cell Dev Biol 2010; 21:248-54. [PMID: 20109569 DOI: 10.1016/j.semcdb.2010.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/19/2010] [Indexed: 01/26/2023]
Abstract
The spindle is a microtubule-based structure that facilitates chromosome segregation during mitosis and meiosis. Spindle assembly from dynamic microtubule building blocks is a major challenge for the dividing cell and a process that critically requires microtubule motors. In this review we focus on the mechanisms by which microtubule motors shape the spindle. Specifically, we address how motors are thought to move and arrange microtubules to form the characteristic bipolar morphology shared by all eukaryotic spindles as well as motor-dependent mechanisms of microtubule length regulation.
Collapse
Affiliation(s)
- Jesse C Gatlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | | |
Collapse
|
135
|
Abstract
For over a century, scientists have strived to understand the mechanisms that govern the accurate segregation of chromosomes during mitosis. The most intriguing feature of this process, which is particularly prominent in higher eukaryotes, is the complex behaviour exhibited by the chromosomes. This behaviour is based on specific and highly regulated interactions between the chromosomes and spindle microtubules. Recent discoveries, enabled by high-resolution imaging combined with the various genetic, molecular, cell biological and chemical tools, support the idea that establishing and controlling the dynamic interaction between chromosomes and microtubules is a major factor in genomic fidelity.
Collapse
|
136
|
Moutinho-Pereira S, Matos I, Maiato H. Drosophila S2 cells as a model system to investigate mitotic spindle dynamics, architecture, and function. Methods Cell Biol 2010; 97:243-57. [PMID: 20719275 DOI: 10.1016/s0091-679x(10)97014-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to perpetuate their genetic content, eukaryotic cells have developed a microtubule-based machine known as the mitotic spindle. Independently of the system studied, mitotic spindles share at least one common characteristic--the dynamic nature of microtubules. This property allows the constant plasticity needed to assemble a bipolar structure, make proper kinetochore-microtubule attachments, segregate chromosomes, and finally disassemble the spindle and reform an interphase microtubule array. Here, we describe a variety of experimental approaches currently used in our laboratory to study microtubule dynamics during mitosis using Drosophila melanogaster S2 cells as a model. By using quantitative live cell imaging microscopy in combination with an advantageous labeling background, we illustrate how several cooperative pathways are used to build functional mitotic spindles. We illustrate different ways of perturbing spindle microtubule dynamics, including pharmacological inhibition and RNA interference of proteins that directly or indirectly impair microtubule dynamics. Additionally, we demonstrate the advantage of using fluorescent speckle microscopy to investigate an intrinsic property of spindle microtubules known as poleward flux. Finally, we developed a set of laser microsurgery-based experiments that allow, with unique spatiotemporal resolution, the study of specific spindle structures (e.g., centrosomes, microtubules, and kinetochores) and their respective roles during mitosis.
Collapse
Affiliation(s)
- Sara Moutinho-Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
137
|
Abstract
Cytoskeletal systems are networks of polymers found in all eukaryotic and many prokaryotic cells. Their purpose is to transmit and integrate information across cellular dimensions and help turn a disorderly mob of macromolecules into a spatially organized, living cell. Information, in this context, includes physical and chemical properties relevant to cellular physiology, including: the number and activity of macromolecules, cell shape, and mechanical force. Most animal cells are 10-50 microns in diameter, whereas the macromolecules that comprise them are 10,000-fold smaller (2-20 nm). To establish long-range order over cellular length scales, individual molecules must, therefore, self-assemble into larger polymers, with lengths (0.1-20 m) comparable to the size of a cell. These polymers must then be cross-linked into organized networks that fill the cytoplasm. Such cell-spanning polymer networks enable different parts of the cytoplasm to communicate directly with each other, either by transmitting forces or by carrying cargo from one spot to another.
Collapse
Affiliation(s)
- R Dyche Mullins
- N312F Genentech Hall, UCSF School of Medicine, 600 16th Street, San Francisco, California 94158, USA.
| |
Collapse
|
138
|
Goshima G, Kimura A. New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol 2009; 22:44-9. [PMID: 20022736 DOI: 10.1016/j.ceb.2009.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
The structure, dynamics, and mechanics of mitotic and meiotic spindles have been progressively elucidated through the advancements in microscopic technology, identification of the genes involved, and construction of theoretical frameworks. Here, we review recent works that have utilized quantitative image analysis to advance our understanding of the complex spindle structure of animal cells. In particular, we discuss how microtubules (MTs) are nucleated and distributed inside the spindle. Accumulating evidence supports the presence of MT-dependent MT generation within the spindle. This mechanism would produce dense arrays of intraspindle MTs with various lengths, which may contribute to efficient spindle assembly and stabilize the metaphase spindle. RNA interference (RNAi) screens with quantitative image analysis led to the identification of the augmin complex that plays a key role in this MT generation process.
Collapse
Affiliation(s)
- Gohta Goshima
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
139
|
O'Connell CB, Loncarek J, Kaláb P, Khodjakov A. Relative contributions of chromatin and kinetochores to mitotic spindle assembly. ACTA ACUST UNITED AC 2009; 187:43-51. [PMID: 19805628 PMCID: PMC2762104 DOI: 10.1083/jcb.200903076] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
During mitosis and meiosis in animal cells, chromosomes actively participate in spindle assembly by generating a gradient of Ran guanosine triphosphate (RanGTP). A high concentration of RanGTP promotes microtubule nucleation and stabilization in the vicinity of chromatin. However, the relative contributions of chromosome arms and centromeres/kinetochores in this process are not known. In this study, we address this issue using cells undergoing mitosis with unreplicated genomes (MUG). During MUG, chromatin is rapidly separated from the forming spindle, and both centrosomal and noncentrosomal spindle assembly pathways are active. MUG chromatin is coated with RCC1 and establishes a RanGTP gradient. However, a robust spindle forms around kinetochores/centromeres outside of the gradient peak. When stable kinetochore microtubule attachment is prevented by Nuf2 depletion in both MUG and normal mitosis, chromatin attracts astral microtubules but cannot induce spindle assembly. These results support a model in which kinetochores play the dominant role in the chromosome-mediated pathway of mitotic spindle assembly.
Collapse
Affiliation(s)
- Christopher B O'Connell
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | | | | | | |
Collapse
|
140
|
Allard JF, Wasteneys GO, Cytrynbaum EN. Mechanisms of self-organization of cortical microtubules in plants revealed by computational simulations. Mol Biol Cell 2009; 21:278-86. [PMID: 19910489 PMCID: PMC2808237 DOI: 10.1091/mbc.e09-07-0579] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microtubules confined to the two-dimensional cortex of elongating plant cells must form a parallel yet dispersed array transverse to the elongation axis for proper cell wall expansion. Some of these microtubules exhibit free minus-ends, leading to migration at the cortex by hybrid treadmilling. Collisions between microtubules can result in plus-end entrainment ("zippering") or rapid depolymerization. Here, we present a computational model of cortical microtubule organization. We find that plus-end entrainment leads to self-organization of microtubules into parallel arrays, whereas catastrophe-inducing collisions do not. Catastrophe-inducing boundaries (e.g., upper and lower cross-walls) can tune the orientation of an ordered array to a direction transverse to elongation. We also find that changes in dynamic instability parameters, such as in mor1-1 mutants, can impede self-organization, in agreement with experimental data. Increased entrainment, as seen in clasp-1 mutants, conserves self-organization, but delays its onset and fails to demonstrate increased ordering. We find that branched nucleation at acute angles off existing microtubules results in distinctive sparse arrays and infer either that microtubule-independent or coparallel nucleation must dominate. Our simulations lead to several testable predictions, including the effects of reduced microtubule severing in katanin mutants.
Collapse
Affiliation(s)
- Jun F Allard
- Institute of Applied Mathematics and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | | | | |
Collapse
|
141
|
Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy. Proc Natl Acad Sci U S A 2009; 106:15708-13. [PMID: 19717443 DOI: 10.1073/pnas.0908261106] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mitotic spindle self-assembles in prometaphase by a combination of centrosomal pathway, in which dynamically unstable microtubules search in space until chromosomes are captured, and a chromosomal pathway, in which microtubules grow from chromosomes and focus to the spindle poles. Quantitative mechanistic understanding of how spindle assembly can be both fast and accurate is lacking. Specifically, it is unclear how, if at all, chromosome movements and combining the centrosomal and chromosomal pathways affect the assembly speed and accuracy. We used computer simulations and high-resolution microscopy to test plausible pathways of spindle assembly in realistic geometry. Our results suggest that an optimal combination of centrosomal and chromosomal pathways, spatially biased microtubule growth, and chromosome movements and rotations is needed to complete prometaphase in 10-20 min while keeping erroneous merotelic attachments down to a few percent. The simulations also provide kinetic constraints for alternative error correction mechanisms, shed light on the dual role of chromosome arm volume, and compare well with experimental data for bipolar and multipolar HT-29 colorectal cancer cells.
Collapse
|
142
|
Li N, Yuan K, Yan F, Huo Y, Zhu T, Liu X, Guo Z, Yao X. PinX1 is recruited to the mitotic chromosome periphery by Nucleolin and facilitates chromosome congression. Biochem Biophys Res Commun 2009; 384:76-81. [PMID: 19393617 PMCID: PMC7983530 DOI: 10.1016/j.bbrc.2009.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 11/26/2022]
Abstract
Mitotic chromosome movements are orchestrated by interactions between spindle microtubules and chromosomes. It is well known that kinetochore is the major site where microtubule-chromosome attachment occurs. However, the functions of other domains of chromosome such as chromosome periphery have remained elusive. Our previous studies show that PinX1 distributes to chromosome periphery and kinetochore during mitosis, and harbors the microtubule binding activity. Here we report that PinX1 interacts with Nucleolin, a chromosome periphery protein, through its C-termini. Deconvolution microscopic analyses show PinX1 mainly co-localizes with Nucleolin at chromosome periphery in prometaphase. Moreover, depletion of Nucleolin abolishes chromosome periphery localizations of PinX1, suggesting a functional interrelationship between PinX1 and Nucleolin. Importantly, repression of PinX1 and Nucleolin abrogates chromosome segregation in real-time mitosis, validating the functional importance of PinX1-Nucleolin interaction. We propose PinX1 is recruited to chromosome periphery by Nucleolin and a complex of PinX1 and Nucleolin is essential for faithful chromosome congression.
Collapse
Affiliation(s)
- Na Li
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
| | - Kai Yuan
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Feng Yan
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yuda Huo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
| | - Tongge Zhu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
| | - Xing Liu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at the Nanoscale, Hefei 230027, China
| |
Collapse
|
143
|
Cai S, O'Connell CB, Khodjakov A, Walczak CE. Chromosome congression in the absence of kinetochore fibres. Nat Cell Biol 2009; 11:832-8. [PMID: 19525938 PMCID: PMC2895821 DOI: 10.1038/ncb1890] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/17/2009] [Indexed: 11/09/2022]
Abstract
Proper chromosome congression (the process of aligning chromosomes on the spindle) contributes to accurate and faithful chromosome segregation. It is widely accepted that congression requires ‘K-fibres’, microtubule bundles that extend from the kinetochores to spindle poles1, 2. Here we demonstrate that chromosomes in human cells co-depleted for HSET (kinesin-14)3, 4 and hNuf2 (a component of the Ndc80/Hec1 complex)5 can congress to the metaphase plate in the absence of K-fibres. However, the chromosomes were not stably maintained at the metaphase plate under these conditions. Chromosome congression in HSET+hNuf2 co-depleted cells required the plus-end directed motor CENP-E (kinesin-7)6, which has been implicated in the gliding of mono-oriented kinetochores alongside adjacent K-fibres7. Thus, proper end-on attachment of kinetochores to microtubules is not necessary for chromosome congression. Instead, our data support the idea that congression allows unattached chromosomes to move to the middle of the spindle where they have a higher probability of establishing connections with both spindle poles. These bi-oriented connections are also utilized to maintain stable chromosome alignment at the spindle equator.
Collapse
Affiliation(s)
- Shang Cai
- Indiana University, Bloomington, 47405, USA
| | | | | | | |
Collapse
|
144
|
Holt JE, Jones KT. Control of homologous chromosome division in the mammalian oocyte. Mol Hum Reprod 2009; 15:139-47. [DOI: 10.1093/molehr/gap007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
145
|
Rizk RS, Bohannon KP, Wetzel LA, Powers J, Shaw SL, Walczak CE. MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol Biol Cell 2009; 20:1639-51. [PMID: 19158381 DOI: 10.1091/mbc.e08-09-0985] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Within the mitotic spindle, there are multiple populations of microtubules with different turnover dynamics, but how these different dynamics are maintained is not fully understood. MCAK is a member of the kinesin-13 family of microtubule-destabilizing enzymes that is required for proper establishment and maintenance of the spindle. Using quantitative immunofluorescence and fluorescence recovery after photobleaching, we compared the differences in spindle organization caused by global suppression of microtubule dynamics, by treating cells with low levels of paclitaxel, versus specific perturbation of spindle microtubule subsets by MCAK inhibition. Paclitaxel treatment caused a disruption in spindle microtubule organization marked by a significant increase in microtubules near the poles and a reduction in K-fiber fluorescence intensity. This was correlated with a faster t(1/2) of both spindle and K-fiber microtubules. In contrast, MCAK inhibition caused a dramatic reorganization of spindle microtubules with a significant increase in astral microtubules and reduction in K-fiber fluorescence intensity, which correlated with a slower t(1/2) of K-fibers but no change in the t(1/2) of spindle microtubules. Our data support the model that MCAK perturbs spindle organization by acting preferentially on a subset of microtubules, and they support the overall hypothesis that microtubule dynamics is differentially regulated in the spindle.
Collapse
Affiliation(s)
- Rania S Rizk
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
146
|
Caldwell CM, Kaplan KB. The role of APC in mitosis and in chromosome instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 656:51-64. [PMID: 19928352 DOI: 10.1007/978-1-4419-1145-2_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The established role of APC in regulating microtubules and actin in polarized epithelia naturally raises the possibility that APC similarly influences the mitotic cytoskeleton. The recent accumulation of experimental evidence in mitotic cells supports this supposition. APC associates with mitotic spindle microtubules, most notably at the plus-ends of microtubules that interact with kinetochores. Genetic experiments implicate APC in the regulation of spindle microtubule dynamics, probably through its interaction with the microtubule plus-end binding protein, EB1. Moreover, functional data show that APC modulates kinetochore-microtubule attachments and is required for the spindle checkpoint to detect transiently misaligned chromosomes. Together this evidence points to a role for APC in maintaining mitotic fidelity. Such a role is particularly significant when considered in the context of the chromosome instability observed in colorectal tumors bearing mutations in APC. The prevalence of APC truncation mutants in colorectal tumors and the ability of these alleles to act dominantly to inhibit the mitotic spindle place chromosome instability at the earliest stage of colorectal cancer progression (i.e., prior to deregulation of beta-catenin). This may contribute to the autosomal dominant predisposition of patients with familial adenomatous polyposis to develop colon cancer. In this chapter, we will review the literature linking APC to regulation of mitotic fidelity and discuss the implications for dividing epithelial cells in the intestine.
Collapse
|
147
|
Modeling the temporal evolution of the spindle assembly checkpoint and role of Aurora B kinase. Proc Natl Acad Sci U S A 2008; 105:20215-20. [PMID: 19091947 DOI: 10.1073/pnas.0810706106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Faithful separation of chromosomes prior to cell division at mitosis is a highly regulated process. One family of serine/threonine kinases that plays a central role in regulation is the Aurora family. Aurora B plays a role in the spindle assembly checkpoint, in part, by destabilizing the localization of BubR1 and Mad2 at centrosomes and responds to changes in tension caused by aberrant microtubule kinetochore attachments. Aurora B is overexpressed in a subset of cancers and is required for mitosis, making it an attractive anticancer target. Here, we use mathematical modeling to extend a current model of the spindle assembly checkpoint to incorporate all signaling kinetochores within a cell rather than just one and the role of Aurora B within the resulting model. We find that the current model of the spindle assembly checkpoint is robust to variation in its key diffusion-limited parameters. Furthermore, when Aurora B inhibition is considered within the model, for a certain range of inhibitor concentrations, a prolonged prometaphase/metaphase is observed. This level of inhibitor concentrations has not yet been studied experimentally, to the authors' best knowledge. Therefore, experimental verification of the results discussed here could provide a deeper understanding of how kinetochores and Aurora B cooperate in the spindle assembly checkpoint.
Collapse
|
148
|
Athale CA, Dinarina A, Mora-Coral M, Pugieux C, Nedelec F, Karsenti E. Regulation of Microtubule Dynamics by Reaction Cascades Around Chromosomes. Science 2008; 322:1243-7. [DOI: 10.1126/science.1161820] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
149
|
Colombié N, Cullen CF, Brittle AL, Jang JK, Earnshaw WC, Carmena M, McKim K, Ohkura H. Dual roles of Incenp crucial to the assembly of the acentrosomal metaphase spindle in female meiosis. Development 2008; 135:3239-46. [PMID: 18755775 DOI: 10.1242/dev.022624] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spindle formation in female meiosis differs from mitosis in many animals, as it takes place independently of centrosomes, and the molecular requirements of this pathway remain to be understood. Here, we report two crucial roles of Incenp, an essential subunit of the chromosomal passenger complex (the Aurora B complex), in centrosome-independent spindle formation in Drosophila female meiosis. First, the initial assembly of spindle microtubules is drastically delayed in an incenp mutant. This clearly demonstrates, for the first time, a crucial role for Incenp in chromosome-driven spindle microtubule assembly in living oocytes. Additionally, Incenp is necessary to stabilise the equatorial region of the metaphase I spindle, in contrast to mitosis, where the equivalent function becomes prominent after anaphase onset. Our analysis suggests that Subito, a kinesin-6 protein, cooperates with Incenp for this latter function, but not in microtubule assembly. We propose that the two functions of Incenp are part of the mechanisms that compensate for the lack of centrosomes during meiotic spindle formation.
Collapse
Affiliation(s)
- Nathalie Colombié
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Tanaka TU. Bi-orienting chromosomes: acrobatics on the mitotic spindle. Chromosoma 2008; 117:521-33. [PMID: 18677502 DOI: 10.1007/s00412-008-0173-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/05/2008] [Accepted: 06/07/2008] [Indexed: 11/28/2022]
Abstract
To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite poles during mitosis. This process mainly depends on the forces generated by microtubules that attach to kinetochores. During prometaphase, kinetochores initially interact with a single microtubule that extends from a spindle pole and then move towards a spindle pole. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles (sister kinetochore bi-orientation). If sister kinetochores interact with microtubules in wrong orientation, this must be corrected before the onset of anaphase. Here, I discuss the processes leading to bi-orientation and the mechanisms ensuring this pivotal state that is required for proper chromosome segregation.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- Wellcome Trust Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dundee, Scotland.
| |
Collapse
|