101
|
Shi G, Sohn KC, Choi TY, Choi DK, Lee SS, Ou BS, Kim S, Lee YH, Yoon TJ, Kim SJ, Lee Y, Seo YJ, Lee JH, Kim CD. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes. Exp Cell Res 2010; 316:3263-71. [PMID: 20875405 DOI: 10.1016/j.yexcr.2010.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/23/2010] [Accepted: 09/20/2010] [Indexed: 01/26/2023]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.
Collapse
Affiliation(s)
- Ge Shi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Ambler CA, Watt FM. Adult epidermal Notch activity induces dermal accumulation of T cells and neural crest derivatives through upregulation of jagged 1. Development 2010; 137:3569-79. [PMID: 20940224 PMCID: PMC2964092 DOI: 10.1242/dev.050310] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2010] [Indexed: 12/13/2022]
Abstract
Notch signalling regulates epidermal differentiation and tumour formation via non-cell autonomous mechanisms that are incompletely understood. This study shows that epidermal Notch activation via a 4-hydroxy-tamoxifen-inducible transgene caused epidermal thickening, focal detachment from the underlying dermis and hair clumping. In addition, there was dermal accumulation of T lymphocytes and stromal cells, some of which localised to the blisters at the epidermal-dermal boundary. The T cell infiltrate was responsible for hair clumping but not for other Notch phenotypes. Notch-induced stromal cells were heterogeneous, expressing markers of neural crest, melanocytes, smooth muscle and peripheral nerve. Although Slug1 expression was expanded in the epidermis, the stromal cells did not arise through epithelial-mesenchymal transition. Epidermal Notch activation resulted in upregulation of jagged 1 in both epidermis and dermis. When Notch was activated in the absence of epidermal jagged 1, jagged 1 was not upregulated in the dermis, and epidermal thickening, blister formation, accumulation of T cells and stromal cells were inhibited. Gene expression profiling revealed that epidermal Notch activation resulted in upregulation of several growth factors and cytokines, including TNFα, the expression of which was dependent on epidermal jagged 1. We conclude that jagged 1 is a key mediator of non-cell autonomous Notch signalling in skin.
Collapse
Affiliation(s)
- Carrie A. Ambler
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- School of Biological and Biomedical Sciences and NorthEast England Stem Cell Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Fiona M. Watt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
103
|
Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D)-induced skin carcinogenesis in vivo. PLoS One 2010; 5:e13578. [PMID: 21042537 PMCID: PMC2962652 DOI: 10.1371/journal.pone.0013578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 09/22/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D) mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS Surprisingly, mice with activated Kras(G12D) and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.
Collapse
|
104
|
Jezierski A, Gruslin A, Tremblay R, Ly D, Smith C, Turksen K, Sikorska M, Bani-Yaghoub M. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev Rep 2010; 6:199-214. [PMID: 20221716 DOI: 10.1007/s12015-010-9116-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, human amniotic fluid (AF) cells have attracted a great deal of attention as an alternative cell source for transplantation and tissue engineering. AF contains a variety of cell types derived from fetal tissues, of which a small percentage is believed to represent stem cell sub-population(s). In contrast to human embryonic stem (ES) cells, AF cells are not subject to extensive legal or ethical considerations; nor are they limited by lineage commitment characteristic of adult stem cells. However, to become therapeutically valuable, better protocols for the isolation of AF stem cell sub-populations need to be developed. This study was designed to examine the molecular components involved in self-renewal, neural commitment and differentiation of AF cells obtained at different gestational ages. Our results showed that, although morphologically heterogeneous, AF cells derived from early gestational periods ubiquitously expressed KERATIN 8 (K8), suggesting that the majority of these cells may have an epithelial origin. In addition, AF cells expressed various components of NOTCH signaling (ligands, receptors and target genes), a pathway involved in stem cell maintenance, determination and differentiation. A sub-population of K8 positive cells (<10%) co-expressed NESTIN, a marker detected in the neuroepithelium, neural stem cells and neural progenitors. Throughout the gestational periods, a much smaller AF cell sub-population (<1%) expressed pluripotency markers, OCT4a, NANOG and SOX2, from which SOX2 positive AF cells could be isolated through single cell cloning. The SOX2 expressing AF clones showed the capacity to give rise to a neuron-like phenotype in culture, expressing neuronal markers such as MAP2, NFL and NSE. Taken together, our findings demonstrated the presence of fetal cells with stem cell characteristics in the amniotic fluid, highlighting the need for further research on their biology and clinical applications.
Collapse
Affiliation(s)
- Anna Jezierski
- Neurogenesis and Brain Repair, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, Canada
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Melanocyte stem cells express receptors for canonical Wnt-signaling pathway on their surface. Biochem Biophys Res Commun 2010; 396:837-42. [DOI: 10.1016/j.bbrc.2010.04.167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/30/2010] [Indexed: 11/18/2022]
|
106
|
Khan S, Muzaffar S, Tariq M, Khan A, Basit S, Ahmad W. Mapping of a novel locus for an autosomal recessive form of palmoplantar keratoderma on chromosome 3q27.2-q29. Br J Dermatol 2010; 163:711-8. [DOI: 10.1111/j.1365-2133.2010.09881.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
107
|
House JS, Zhu S, Ranjan R, Linder K, Smart RC. C/EBPalpha and C/EBPbeta are required for Sebocyte differentiation and stratified squamous differentiation in adult mouse skin. PLoS One 2010; 5:e9837. [PMID: 20352127 PMCID: PMC2843749 DOI: 10.1371/journal.pone.0009837] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/02/2010] [Indexed: 12/31/2022] Open
Abstract
C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.
Collapse
Affiliation(s)
- John S House
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
108
|
Expression of the homeobox gene, HOPX, is modulated by cell differentiation in human keratinocytes and is involved in the expression of differentiation markers. Eur J Cell Biol 2010; 89:537-46. [PMID: 20226564 DOI: 10.1016/j.ejcb.2010.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/30/2009] [Accepted: 01/15/2010] [Indexed: 11/20/2022] Open
Abstract
Homeodomain only protein X (HOPX), an unusual homeodomain protein, was originally identified as a key regulator of cardiac development. We first demonstrated that the expression of HOPX was dependent on the differentiation of human keratinocytes and has an effect on the expression of differentiation markers. HOPX was suppressed in proliferating human keratinocytes and was gradually induced by calcium-triggered differentiation of human keratinocytes. In the epidermis, HOPX is highly expressed in the terminally differentiated suprabasal layers. Among the transcript variants of HOPX, the variant 3 driven by promoter A was the main transcript and it was regulated by cell differentiation in human keratinocytes. The expression of HOPX was induced through the phorbol-12-myristate-13-acetate (PMA)-dependent protein kinase C (PKC) signaling pathway, and not by the demethylating agent, 5-aza-dC (5-aza-2'-deoxycitidine) suggesting the suppression of HOPX is not associated with DNA methylation in human keratinocytes. The RNA interference (RNAi) silencing experiment showed that the knockdown of HOPX expression resulted in the increase of such differentiation markers as involucrin and loricrin. Exogenous expression of HOPX down-regulated the expression of differentiation marker genes in immortalized human keratinocytes (HaCaT). Collectively, HOPX is modulated by cell differentiation in human keratinocytes and this might contribute to homeostasis of keratinocytes by controlling differentiation-dependent genes.
Collapse
|
109
|
Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G, Ferrero I, Demehri S, Song LL, Farr AG, Leonard WJ, Kopan R, Miele L, Hohl D, Finke D, Radtke F. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 2010; 5:e9258. [PMID: 20174635 PMCID: PMC2823782 DOI: 10.1371/journal.pone.0009258] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Background The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. Methodology and Principal Findings To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. Significance Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.
Collapse
MESH Headings
- Animals
- Cytokines/metabolism
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/mortality
- Dermatitis, Atopic/physiopathology
- Flow Cytometry
- Granulocyte Colony-Stimulating Factor/genetics
- Granulocyte Colony-Stimulating Factor/metabolism
- Humans
- Immunoglobulins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Mice, Transgenic
- Models, Biological
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/mortality
- Myeloproliferative Disorders/physiopathology
- Receptor, Notch1/genetics
- Receptor, Notch1/physiology
- Receptor, Notch2/genetics
- Receptor, Notch2/physiology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Signal Transduction/physiology
- Skin/metabolism
- Skin/pathology
- Skin/physiopathology
- Survival Analysis
- Survival Rate
- Thymic Stromal Lymphopoietin
Collapse
Affiliation(s)
- Alexis Dumortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
| | - André-Dante Durham
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
| | - Matteo Di Piazza
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
| | - Sophie Vauclair
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
| | - Gisèle Ferrand
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
| | - Isabel Ferrero
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | - Shadmehr Demehri
- Department of Developmental Biology and Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lynda Li Song
- Breast Cancer Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Andrew G. Farr
- Department of Biological Structure and Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raphael Kopan
- Department of Developmental Biology and Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucio Miele
- Breast Cancer Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Daniel Hohl
- Department of Dermatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Daniela Finke
- Center for Biomedicine, Department of Clinical and Biological Sciences (DKBW), University of Basel, Basel, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL SV ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
110
|
Loss of Calcineurin Aα Alters Keratinocyte Survival and Differentiation. J Invest Dermatol 2010; 130:135-40. [DOI: 10.1038/jid.2009.222] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
111
|
Abstract
Skin epithelia must rejuvenate constantly during normal homeostasis and repair damage after wounding. Fulfilling these roles necessitates reservoirs of stem cells that persist for life. This review focuses on the elusive stem cell niche of the epidermis, long thought to reside within the basal layer that is sandwiched between the basement membrane and the suprabasal interface.
Collapse
Affiliation(s)
- Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
112
|
Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, Sinha S, Nie Q, Dai X. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem 2009; 284:29125-35. [PMID: 19700410 DOI: 10.1074/jbc.m109.008847] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovol2 belongs to the Ovo family of evolutionarily conserved zinc finger transcription factors that act downstream of key developmental signaling pathways including Wg/Wnt and BMP/TGF-beta. We previously reported Ovol2 expression in the basal layer of epidermis, where epidermal stem/progenitor cells reside. In this work, we use HaCaT human keratinocytes to investigate the cellular and molecular functions of Ovol2. We show that depletion of Ovol2 leads to transient cell expansion but a loss of cells with long term proliferation potential. Mathematical modeling and experimental findings suggest that both faster cycling and precocious withdrawal from the cell cycle underlie this phenotype. Ovol2 depletion also accelerates extracellular signal-induced terminal differentiation in two- and three-dimensional culture models. By chromatin immunoprecipitation, luciferase reporter, and functional rescue assays, we demonstrate that Ovol2 directly represses two critical downstream targets, c-Myc and Notch1, thereby suppressing keratinocyte transient proliferation and terminal differentiation, respectively. These findings shed light on how an epidermal cell maintains a proliferation-competent and differentiation-resistant state.
Collapse
Affiliation(s)
- Julie Wells
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Diao JS, Xia W, Guo SZ. Resume normal structure of epidermis and prevent hypertrophic scars formation. Med Hypotheses 2009; 74:205-6. [PMID: 19692187 DOI: 10.1016/j.mehy.2009.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
|
114
|
Abstract
Understanding the complexity of cancer depends on an elucidation of the underlying regulatory networks, at the cellular and intercellular levels and in their temporal dimension. This Opinion article focuses on the multilevel crosstalk between the Notch pathway and the p53 and p63 pathways. These two coordinated signalling modules are at the interface of external damaging signals and control of stem cell potential and differentiation. Positive or negative reciprocal regulation of the two pathways can vary with cell type and cancer stage. Therefore, selective or combined targeting of the two pathways could improve the efficacy and reduce the toxicity of cancer therapies.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges CH-1066, Switzerland.
| |
Collapse
|
115
|
Diao JS, Zhang X, Xia WS, Zheng Y, Ren J, Wang YM, Gong Z, Xia W, Guo SZ. Aberrant Notch signaling: A potential pathomechanism of vitiligo. Med Hypotheses 2009; 73:70-2. [DOI: 10.1016/j.mehy.2009.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 12/31/2008] [Accepted: 02/02/2009] [Indexed: 12/15/2022]
|
116
|
Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10:207-17. [PMID: 19209183 DOI: 10.1038/nrm2636] [Citation(s) in RCA: 890] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skin epidermis and its array of appendages undergo ongoing renewal by a process called homeostasis. Stem cells in the epidermis have a crucial role in maintaining tissue homeostasis by providing new cells to replace those that are constantly lost during tissue turnover or following injury. Different resident skin stem cell pools contribute to the maintenance and repair of the various epidermal tissues of the skin, including interfollicular epidermis, hair follicles and sebaceous glands. Interestingly, the basic mechanisms and signalling pathways that orchestrate epithelial morphogenesis in the skin are reused during adult life to regulate skin homeostasis.
Collapse
Affiliation(s)
- Cédric Blanpain
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, 808, route de Lennik, 1070 Bruxelles, Belgium
| | | |
Collapse
|
117
|
Ambler CA, Määttä A. Epidermal stem cells: location, potential and contribution to cancer. J Pathol 2009; 217:206-16. [DOI: 10.1002/path.2468] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
118
|
Fuchs E, Nowak JA. Building epithelial tissues from skin stem cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 73:333-50. [PMID: 19022769 DOI: 10.1101/sqb.2008.73.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The skin epidermis and its appendages provide a protective barrier that guards against loss of fluids, physical trauma, and invasion by harmful microbes. To perform these functions while confronting the harsh environs of the outside world, our body surface undergoes constant rejuvenation through homeostasis. In addition, it must be primed to repair wounds in response to injury. The adult skin maintains epidermal homeostasis, hair regeneration, and wound repair through the use of its stem cells. What are the properties of skin stem cells, when do they become established during embryogenesis, and how are they able to build tissues with such remarkably distinct architectures? How do stem cells maintain tissue homeostasis and repair wounds and how do they regulate the delicate balance between proliferation and differentiation? What is the relationship between skin cancer and mutations that perturbs the regulation of stem cells? In the past 5 years, the field of skin stem cells has bloomed as we and others have been able to purify and dissect the molecular properties of these tiny reservoirs of goliath potential. We report here progress on these fronts, with emphasis on our laboratory's contributions to the fascinating world of skin stem cells.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
119
|
Osawa M, Fisher DE. Notch and melanocytes: diverse outcomes from a single signal. J Invest Dermatol 2008; 128:2571-2574. [PMID: 18927539 DOI: 10.1038/jid.2008.289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Notch signaling is an evolutionally conserved pathway that serves as a critical regulator of cell fate. From a series of studies, including a report in this issue, researchers have begun to elucidate the critical functions of Notch signaling in the regulation of melanocyte lineage development. With evidence of a recently identified role for Notch signaling in melanomagenesis, characterization of downstream molecular events may offer potential avenues for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Masatake Osawa
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Melanoma Program, Department of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; Pediatric Hematology/Oncology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
120
|
Abstract
Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy.
Collapse
Affiliation(s)
- G P Dotto
- Department of Biochemistry, Lausanne University, Epalinges, Switzerland.
| |
Collapse
|
121
|
Collins CA, Watt FM. Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling. Dev Biol 2008; 324:55-67. [PMID: 18805411 DOI: 10.1016/j.ydbio.2008.08.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
Retinoic acid (RA) signalling is essential for epidermal differentiation; however, the mechanisms by which it acts are largely unexplored. Partitioning of RA between different nuclear receptors is regulated by RA-binding proteins. We show that cellular RA-binding proteins CRABP1 and CRABP2 and the fatty acid-binding protein FABP5 are dynamically expressed during skin development and in adult tissue. CRABP1 is expressed in embryonic dermis and in the stroma of skin tumours, but confined to the hair follicle dermal papilla in normal postnatal skin. CRABP2 and FABP5 are expressed in the differentiating cells of sebaceous gland, interfollicular epidermis and hair follicles, with FABP5 being a prominent marker of sebaceous glands and anagen follicle bulbs. All three proteins are upregulated in response to RA treatment or Notch activation and are negatively regulated by Wnt/beta-catenin signalling. Ectopic follicles induced by beta-catenin arise from areas of the sebaceous gland that have lost CRABP2 and FABP5; conversely, inhibition of hair follicle formation by N-terminally truncated Lef1 results in upregulation of CRABP2 and FABP5. Our findings demonstrate that there is dynamic regulation of RA signalling in different regions of the skin and provide evidence for interactions between the RA, beta-catenin and Notch pathways.
Collapse
Affiliation(s)
- Charlotte A Collins
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|