101
|
Singh PP, Shukla M, White SA, Lafos M, Tong P, Auchynnikava T, Spanos C, Rappsilber J, Pidoux AL, Allshire RC. Hap2-Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin. Genes Dev 2020; 34:226-238. [PMID: 31919190 PMCID: PMC7000912 DOI: 10.1101/gad.332536.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Collapse
Affiliation(s)
- Puneet P. Singh
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Manu Shukla
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Sharon A. White
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcel Lafos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom;,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
102
|
Centromeric Non-Coding RNAs: Conservation and Diversity in Function. Noncoding RNA 2020; 6:ncrna6010004. [PMID: 31963472 PMCID: PMC7151564 DOI: 10.3390/ncrna6010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Chromosome segregation is strictly regulated for the proper distribution of genetic material to daughter cells. During this process, mitotic chromosomes are pulled to both poles by bundles of microtubules attached to kinetochores that are assembled on the chromosomes. Centromeres are specific regions where kinetochores assemble. Although these regions were previously considered to be silent, some experimental studies have demonstrated that transcription occurs in these regions to generate non-coding RNAs (ncRNAs). These centromeric ncRNAs (cenRNAs) are involved in centromere functions. Here, we describe the currently available information on the functions of cenRNAs in several species.
Collapse
|
103
|
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M, Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes (Basel) 2020; 11:E72. [PMID: 31936645 PMCID: PMC7017282 DOI: 10.3390/genes11010072] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.
Collapse
Affiliation(s)
- Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| |
Collapse
|
104
|
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 2020. [PMID: 31995554 DOI: 10.1371/journal.pbio.3000582.g006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
105
|
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 2020; 18:e3000582. [PMID: 31995554 PMCID: PMC7010299 DOI: 10.1371/journal.pbio.3000582] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/10/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
106
|
Khosraviani N, Ostrowski LA, Mekhail K. Roles for Non-coding RNAs in Spatial Genome Organization. Front Cell Dev Biol 2019; 7:336. [PMID: 31921848 PMCID: PMC6930868 DOI: 10.3389/fcell.2019.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic loci are non-randomly arranged in the nucleus of the cell. This order, which is important to overall genome expression and stability, is maintained by a growing number of factors including the nuclear envelope, various genetic elements and dedicated protein complexes. Here, we review evidence supporting roles for non-coding RNAs (ncRNAs) in the regulation of spatial genome organization and its impact on gene expression and cell survival. Specifically, we discuss how ncRNAs from single-copy and repetitive DNA loci contribute to spatial genome organization by impacting perinuclear chromosome tethering, major nuclear compartments, chromatin looping, and various chromosomal structures. Overall, our analysis of the literature highlights central functions for ncRNAs and their transcription in the modulation of spatial genome organization with connections to human health and disease.
Collapse
Affiliation(s)
- Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lauren A. Ostrowski
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, MaRS Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Canada Research Chairs Program, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
107
|
Ling YH, Lin Z, Yuen KWY. Genetic and epigenetic effects on centromere establishment. Chromosoma 2019; 129:1-24. [PMID: 31781852 DOI: 10.1007/s00412-019-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
Abstract
Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
108
|
Huang A, Kremser L, Schuler F, Wilflingseder D, Lindner H, Geley S, Lusser A. Phosphorylation of Drosophila CENP-A on serine 20 regulates protein turn-over and centromere-specific loading. Nucleic Acids Res 2019; 47:10754-10770. [PMID: 31535131 PMCID: PMC6847487 DOI: 10.1093/nar/gkz809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Centromeres are specialized chromosomal regions epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A is required for kinetochore formation which is essential for chromosome segregation during mitosis. Spatial restriction of CENP-A to the centromere is tightly controlled. Its overexpression results in ectopic incorporation and the formation of potentially deleterious neocentromeres in yeast, flies and in various human cancers. While the contribution of posttranslational modifications of CENP-A to these processes has been studied in yeast and mammals to some extent, very little is known about Drosophila melanogaster. Here, we show that CENP-A is phosphorylated at serine 20 (S20) by casein kinase II and that in mitotic cells, the phosphorylated form is enriched on chromatin. Importantly, our results reveal that S20 phosphorylation regulates the turn-over of prenucleosomal CENP-A by the SCFPpa-proteasome pathway and that phosphorylation promotes removal of CENP-A from ectopic but not from centromeric sites in chromatin. We provide multiple lines of evidence for a crucial role of S20 phosphorylation in controlling restricted incorporation of CENP-A into centromeric chromatin in flies. Modulation of the phosphorylation state of S20 may provide the cells with a means to fine-tune CENP-A levels in order to prevent deleterious loading to extra-centromeric sites.
Collapse
Affiliation(s)
- Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Austria
| | - Leopold Kremser
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Fabian Schuler
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Herbert Lindner
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Austria
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
109
|
Mills WK, Lee YCG, Kochendoerfer AM, Dunleavy EM, Karpen GH. RNA from a simple-tandem repeat is required for sperm maturation and male fertility in Drosophila melanogaster. eLife 2019; 8:48940. [PMID: 31687931 PMCID: PMC6879302 DOI: 10.7554/elife.48940] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022] Open
Abstract
Tandemly-repeated DNAs, or satellites, are enriched in heterochromatic regions of eukaryotic genomes and contribute to nuclear structure and function. Some satellites are transcribed, but we lack direct evidence that specific satellite RNAs are required for normal organismal functions. Here, we show satellite RNAs derived from AAGAG tandem repeats are transcribed in many cells throughout Drosophila melanogaster development, enriched in neurons and testes, often localized within heterochromatic regions, and important for viability. Strikingly, we find AAGAG transcripts are necessary for male fertility, and that AAGAG RNA depletion results in defective histone-protamine exchange, sperm maturation and chromatin organization. Since these events happen late in spermatogenesis when the transcripts are not detected, we speculate that AAGAG RNA in primary spermatocytes ‘primes’ post-meiosis steps for sperm maturation. In addition to demonstrating essential functions for AAGAG RNAs, comparisons between closely related Drosophila species suggest that satellites and their transcription evolve quickly to generate new functions.
Collapse
Affiliation(s)
- Wilbur Kyle Mills
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Yuh Chwen G Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | | | - Elaine M Dunleavy
- Centre for Chromosome Biology, National University of Ireland, Galway, Ireland
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
110
|
Bracewell R, Chatla K, Nalley MJ, Bachtrog D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. eLife 2019; 8:e49002. [PMID: 31524597 PMCID: PMC6795482 DOI: 10.7554/elife.49002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
Centromeres are the basic unit for chromosome inheritance, but their evolutionary dynamics is poorly understood. We generate high-quality reference genomes for multiple Drosophila obscura group species to reconstruct karyotype evolution. All chromosomes in this lineage were ancestrally telocentric and the creation of metacentric chromosomes in some species was driven by de novo seeding of new centromeres at ancestrally gene-rich regions, independently of chromosomal rearrangements. The emergence of centromeres resulted in a drastic size increase due to repeat accumulation, and dozens of genes previously located in euchromatin are now embedded in pericentromeric heterochromatin. Metacentric chromosomes secondarily became telocentric in the pseudoobscura subgroup through centromere repositioning and a pericentric inversion. The former (peri)centric sequences left behind shrunk dramatically in size after their inactivation, yet contain remnants of their evolutionary past, including increased repeat-content and heterochromatic environment. Centromere movements are accompanied by rapid turnover of the major satellite DNA detected in (peri)centromeric regions.
Collapse
Affiliation(s)
- Ryan Bracewell
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Kamalakar Chatla
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Matthew J Nalley
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Doris Bachtrog
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
111
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
112
|
Piacentini L, Marchetti M, Bucciarelli E, Casale AM, Cappucci U, Bonifazi P, Renda F, Fanti L. A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres. Chromosoma 2019; 128:503-520. [PMID: 31203392 DOI: 10.1007/s00412-019-00711-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Marcella Marchetti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Paolo Bonifazi
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy
| | - Fioranna Renda
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.,Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Laura Fanti
- Istituto Pasteur Italia, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università "Sapienza", Rome, Italy.
| |
Collapse
|
113
|
Centromeric non-coding RNA as a hidden epigenetic factor of the point centromere. Curr Genet 2019; 65:1165-1171. [PMID: 31073666 DOI: 10.1007/s00294-019-00988-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022]
Abstract
To ensure proper chromosome segregation during cell division, the centromere in many organisms is transcribed to produce a low level of long non-coding RNA to regulate the activity of the kinetochore. In the budding yeast point centromere, our recent work has shown that the level of centromeric RNAs (cenRNAs) is tightly regulated and repressed by the kinetochore protein Cbf1 and histone H2A variant H2A.ZHtz1, and de-repressed during S phase of the cell cycle. Too little or too much cenRNAs will disrupt centromere activity. Here, we discuss the current advance in the understanding of the action and regulation of cenRNAs at the point centromere of Saccharomyces cerevisiae. We further show that budding yeast cenRNAs are cryptic unstable transcripts (CUTs) that can be degraded by the nuclear RNA decay pathway. CenRNA provides an example that even CUTs, when present at the right time with the right level, can serve important cellular functions.
Collapse
|
114
|
Miga KH. Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population. Genes (Basel) 2019; 10:E352. [PMID: 31072070 PMCID: PMC6562703 DOI: 10.3390/genes10050352] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability, contemporary high-resolution disease association studies are unable to detect causal variants in these regions. Nevertheless, recently uncovered associations between satellite DNA variation and human disease support that these regions present a substantial and biologically important fraction of human sequence variation. Therefore, there is a pressing and unmet need to detect and incorporate this uncharacterized sequence variation into broad studies of human evolution and medical genomics. Here I discuss the current knowledge of satellite DNA variation in the human genome, focusing on centromeric satellites and their potential implications for disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, CA 95064, USA.
| |
Collapse
|
115
|
Chang CH, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, Chen CC, Erceg J, Beliveau BJ, Wu CT, Larracuente AM, Mellone BG. Islands of retroelements are major components of Drosophila centromeres. PLoS Biol 2019; 17:e3000241. [PMID: 31086362 PMCID: PMC6516634 DOI: 10.1371/journal.pbio.3000241] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nuno M. C. Martins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryce Santinello
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian J. Beliveau
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genome Sciences, University of Washington Seattle, Seattle, Washington, United States of America
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut Storrs, Connecticut, United States of America
| |
Collapse
|
116
|
The nucleosomes that mark centromere location on chromosomes old and new. Essays Biochem 2019; 63:15-27. [DOI: 10.1042/ebc20180060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
Abstract
Abstract
Proper segregation of chromosomes is an essential component of cell division. The centromere is the locus at which the kinetochore—the proteinaceous complex that ties chromosomes to microtubules—forms during mitosis and meiosis. Thus, the centromere is critical for equal segregation of chromosomes. The centromere is characterized by both protein and DNA elements: the histone H3 variant CENP-A epigenetically defines the location of the centromere while centromeric DNA sequences are neither necessary nor sufficient for centromere function. Paradoxically, the DNA sequences play a critical role in new centromere formation. In this essay, we discuss the contribution of both epigenetics and genetics at the centromere. Understanding these contributions is vital to efforts to control centromere formation on synthetic/artificial chromosomes and centromere strength on natural ones.
Collapse
|
117
|
Nakagawa T, Okita AK. Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Curr Genet 2019; 65:1089-1098. [PMID: 30997531 DOI: 10.1007/s00294-019-00975-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.
Collapse
Affiliation(s)
- Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
118
|
Massey DJ, Kim D, Brooks KE, Smolka MB, Koren A. Next-Generation Sequencing Enables Spatiotemporal Resolution of Human Centromere Replication Timing. Genes (Basel) 2019; 10:genes10040269. [PMID: 30987063 PMCID: PMC6523654 DOI: 10.3390/genes10040269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Centromeres serve a critical function in preserving genome integrity across sequential cell divisions, by mediating symmetric chromosome segregation. The repetitive, heterochromatic nature of centromeres is thought to be inhibitory to DNA replication, but has also led to their underrepresentation in human reference genome assemblies. Consequently, centromeres have been excluded from genomic replication timing analyses, leaving their time of replication unresolved. However, the most recent human reference genome, hg38, included models of centromere sequences. To establish the experimental requirements for achieving replication timing profiles for centromeres, we sequenced G1- and S-phase cells from five human cell lines, and aligned the sequence reads to hg38. We were able to infer DNA replication timing profiles for the centromeres in each of the five cell lines, which showed that centromere replication occurs in mid-to-late S phase. Furthermore, we found that replication timing was more variable between cell lines in the centromere regions than expected, given the distribution of variation in replication timing genome-wide. These results suggest the potential of these, and future, sequence models to enable high-resolution studies of replication in centromeres and other heterochromatic regions.
Collapse
Affiliation(s)
- Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Dongsung Kim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Kayla E Brooks
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
119
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
120
|
Ohzeki J, Larionov V, Earnshaw WC, Masumoto H. De novo formation and epigenetic maintenance of centromere chromatin. Curr Opin Cell Biol 2019; 58:15-25. [PMID: 30654232 DOI: 10.1016/j.ceb.2018.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Accurate chromosome segregation is essential for cell proliferation. The centromere is a specialized chromosomal locus, on which the kinetochore structure is formed. The centromere/kinetochore is required for the equal separation of sister chromatids to daughter cells. Here, we review recent findings on centromere-specific chromatin, including its constitutive protein components, its de novo formation and maintenance mechanisms, and our progress in analyses with synthetic human artificial chromosomes (HACs).
Collapse
Affiliation(s)
- Junichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Vladimir Larionov
- Genome Structure and Function Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan.
| |
Collapse
|
121
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
122
|
Shukla M, Tong P, White SA, Singh PP, Reid AM, Catania S, Pidoux AL, Allshire RC. Centromere DNA Destabilizes H3 Nucleosomes to Promote CENP-A Deposition during the Cell Cycle. Curr Biol 2018; 28:3924-3936.e4. [PMID: 30503616 PMCID: PMC6303189 DOI: 10.1016/j.cub.2018.10.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/12/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
Active centromeres are defined by the presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location, CENP-A chromatin and kinetochores are maintained at that location through a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences. Intrinsic properties of centromeric DNA may favor the assembly of CENP-A rather than H3 nucleosomes. Here we investigate histone dynamics on centromere DNA. We show that during S phase, histone H3 is deposited as a placeholder at fission yeast centromeres and is subsequently evicted in G2, when we detect deposition of the majority of new CENP-ACnp1. We also find that centromere DNA has an innate property of driving high rates of turnover of H3-containing nucleosomes, resulting in low nucleosome occupancy. When placed at an ectopic chromosomal location in the absence of any CENP-ACnp1 assembly, centromere DNA appears to retain its ability to impose S phase deposition and G2 eviction of H3, suggesting that features within centromere DNA program H3 dynamics. Because RNA polymerase II (RNAPII) occupancy on this centromere DNA coincides with H3 eviction in G2, we propose a model in which RNAPII-coupled chromatin remodeling promotes replacement of H3 with CENP-ACnp1 nucleosomes.
Collapse
Affiliation(s)
- Manu Shukla
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Pin Tong
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sharon A White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Puneet P Singh
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Angus M Reid
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sandra Catania
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alison L Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
123
|
Black EM, Giunta S. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases. Genes (Basel) 2018; 9:E615. [PMID: 30544645 PMCID: PMC6315641 DOI: 10.3390/genes9120615] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities. While the centromere has an essential role in chromosome segregation during mitosis, the long and repetitive nature of the highly identical repeats has greatly hindered in-depth genetic studies, and complete annotation of all human centromeres is still lacking. Here, we review our current understanding of human centromere genetics and epigenetics as well as recent investigations into the role of centromere DNA in disease, with a special focus on cancer, aging, and human immunodeficiency⁻centromeric instability⁻facial anomalies (ICF) syndrome. We also highlight the causes and consequences of genomic instability at these large repetitive arrays and describe the possible sources of centromere fragility. The novel connection between alpha-satellite DNA instability and human pathological conditions emphasizes the importance of obtaining a truly complete human genome assembly and accelerating our understanding of centromere repeats' role in physiology and beyond.
Collapse
Affiliation(s)
- Elizabeth M Black
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
124
|
Abstract
Accurate chromosome segregation is a fundamental process in cell biology. During mitosis, chromosomes are segregated into daughter cells through interactions between centromeres and microtubules in the mitotic spindle. Centromere domains have evolved to nucleate formation of the kinetochore, which is essential for establishing connections between chromosomal DNA and microtubules during mitosis. Centromeres are typically formed on highly repetitive DNA that is not conserved in sequence or size among organisms and can differ substantially between individuals within the same organism. However, transcription of repetitive DNA has emerged as a highly conserved property of the centromere. Recent work has shown that both the topological effect of transcription on chromatin and the nascent noncoding RNAs contribute to multiple aspects of centromere function. In this review, we discuss the fundamental aspects of centromere transcription, i.e., its dual role in chromatin remodeling/CENP-A deposition and kinetochore assembly during mitosis, from a cell cycle perspective.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
125
|
Talbert PB, Henikoff S. Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends Genet 2018; 34:587-599. [DOI: 10.1016/j.tig.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
|
126
|
McNulty SM, Sullivan BA. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res 2018; 26:115-138. [PMID: 29974361 DOI: 10.1007/s10577-018-9582-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Repetitive DNA, formerly referred to by the misnomer "junk DNA," comprises a majority of the human genome. One class of this DNA, alpha satellite, comprises up to 10% of the genome. Alpha satellite is enriched at all human centromere regions and is competent for de novo centromere assembly. Because of the highly repetitive nature of alpha satellite, it has been difficult to achieve genome assemblies at centromeres using traditional next-generation sequencing approaches, and thus, centromeres represent gaps in the current human genome assembly. Moreover, alpha satellite DNA is transcribed into repetitive noncoding RNA and contributes to a large portion of the transcriptome. Recent efforts to characterize these transcripts and their function have uncovered pivotal roles for satellite RNA in genome stability, including silencing "selfish" DNA elements and recruiting centromere and kinetochore proteins. This review will describe the genomic and epigenetic features of alpha satellite DNA, discuss recent findings of noncoding transcripts produced from distinct alpha satellite arrays, and address current progress in the functional understanding of this oft-neglected repetitive sequence. We will discuss unique challenges of studying human satellite DNAs and RNAs and point toward new technologies that will continue to advance our understanding of this largely untapped portion of the genome.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Division of Human Genetics, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
127
|
Bobkov GOM, Gilbert N, Heun P. Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J Cell Biol 2018; 217:1957-1972. [PMID: 29626011 PMCID: PMC5987708 DOI: 10.1083/jcb.201611087] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/11/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
How transcription contributes to the loading of the centromere histone CENP-A is unclear. Bobkov et al. report that transcription-mediated chromatin remodeling enables the transition of centromeric CENP-A from chromatin association to full nucleosome incorporation. Centromeres are essential for chromosome segregation and are specified epigenetically by the presence of the histone H3 variant CENP-A. In flies and humans, replenishment of the centromeric mark is uncoupled from DNA replication and requires the removal of H3 “placeholder” nucleosomes. Although transcription at centromeres has been previously linked to the loading of new CENP-A, the underlying molecular mechanism remains poorly understood. Here, we used Drosophila melanogaster tissue culture cells to show that centromeric presence of actively transcribing RNA polymerase II temporally coincides with de novo deposition of dCENP-A. Using a newly developed dCENP-A loading system that is independent of acute transcription, we found that short inhibition of transcription impaired dCENP-A incorporation into chromatin. Interestingly, initial targeting of dCENP-A to centromeres was unaffected, revealing two stability states of newly loaded dCENP-A: a salt-sensitive association with the centromere and a salt-resistant chromatin-incorporated form. This suggests that transcription-mediated chromatin remodeling is required for the transition of dCENP-A to fully incorporated nucleosomes at the centromere.
Collapse
Affiliation(s)
- Georg O M Bobkov
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
128
|
Ichida K, Suzuki K, Fukui T, Takayama Y, Kakizawa N, Watanabe F, Ishikawa H, Muto Y, Kato T, Saito M, Futsuhara K, Miyakura Y, Noda H, Ohmori T, Konishi F, Rikiyama T. Overexpression of satellite alpha transcripts leads to chromosomal instability via segregation errors at specific chromosomes. Int J Oncol 2018; 52:1685-1693. [PMID: 29568894 DOI: 10.3892/ijo.2018.4321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/22/2018] [Indexed: 11/05/2022] Open
Abstract
The impairment of the stability of the chromosomal structure facilitates the abnormal segregation of chromosomes, thus increasing the risk of carcinogenesis. Chromosomal stability during segregation is managed by appropriate methylation at the centromere of chromosomes. Insufficient methylation, or hypomethylation, results in chromosomal instability. The centromere consists of satellite alpha repetitive sequences, which are ideal targets for DNA hypomethylation, resulting in the overexpression of satellite alpha transcript (SAT). The overexpression of SAT has been reported to induce the abnormal segregation of chromosomes. In this study, we verified the oncogenic pathway via chromosomal instability involving DNA hypomethylation and the overexpression of SAT. For this purpose, we constructed lentiviral vectors expressing SAT and control viruses and then infected human mammary epithelial cells with these vectors. The copy number alterations and segregation errors of chromosomes were evaluated by microarray-based comparative genomic hybridization (array CGH) and immunocytochemistry, respectively. The levels of hypomethylation of satellite alpha sequences were determined by MethyLight polymerase chain reaction. Clinical specimens from 45 patients with breast cancer were recruited to verify the data in vitro. The results of immunocytochemistry revealed that the incidence of segregation errors was significantly higher in the cells overexpressing SAT than in the controls. An array CGH identified the specific chromosomes of 8q and 20q as frequent sites of copy number alterations in cells with SAT overexpression, although no such sites were noted in the controls, which was consistent with the data from clinical specimens. A regression analysis revealed that the expression of SAT was significantly associated with the levels of hypomethylation of satellite alpha sequences. On the whole, the overexpression of SAT led to chromosomal instability via segregation errors at specific chromosomes in connection with DNA hypomethylation, which was also recognized in clinical specimens of patients with breast cancer. Thus, this oncogenic pathway may be involved in the development of breast cancer.
Collapse
Affiliation(s)
- Kosuke Ichida
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Taro Fukui
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Yuji Takayama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Nao Kakizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Hideki Ishikawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Yuta Muto
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Takaharu Kato
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Kazushige Futsuhara
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Yasuyuki Miyakura
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Tochigi 329-0498, Japan
| | | | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama-shi, Saitama 330-8503, Japan
| |
Collapse
|
129
|
Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr Opin Cell Biol 2018; 52:58-65. [PMID: 29454259 DOI: 10.1016/j.ceb.2018.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
During female meiosis, only one of four meiotic products is retained in the egg. It was previously proposed that chromosomes might compete for inclusion in the egg via their centromere 'strength'. Recent findings have revealed the primary requirements for such 'centromere drive'. First, CDC42 signaling from the oocyte cortex renders the meiotic I spindle asymmetric. Second, 'stronger' centromeres preferentially detach from microtubules in cortical proximity, making them more likely to orient away from the cortex, and be included in the egg. Third, centromeric satellite DNA expansions result in greater recruitment of centromeric proteins. Despite these mechanistic insights, it is still unclear if centromere drive elicits rapid evolution of centromeric proteins, thereby driving cellular incompatibilities and wreaking havoc on centromere stability.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, USA. mailto:
| |
Collapse
|
130
|
Mills WE, Spence JM, Fukagawa T, Farr CJ. Site-Specific Cleavage by Topoisomerase 2: A Mark of the Core Centromere. Int J Mol Sci 2018; 19:E534. [PMID: 29439406 PMCID: PMC5855756 DOI: 10.3390/ijms19020534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
In addition to its roles in transcription and replication, topoisomerase 2 (topo 2) is crucial in shaping mitotic chromosomes and in ensuring the orderly separation of sister chromatids. As well as its recruitment throughout the length of the mitotic chromosome, topo 2 accumulates at the primary constriction. Here, following cohesin release, the enzymatic activity of topo 2 acts to remove residual sister catenations. Intriguingly, topo 2 does not bind and cleave all sites in the genome equally; one preferred site of cleavage is within the core centromere. Discrete topo 2-centromeric cleavage sites have been identified in α-satellite DNA arrays of active human centromeres and in the centromere regions of some protozoans. In this study, we show that topo 2 cleavage sites are also a feature of the centromere in Schizosaccharomyces pombe, the metazoan Drosophila melanogaster and in another vertebrate species, Gallus gallus (chicken). In vertebrates, we show that this site-specific cleavage is diminished by depletion of CENP-I, an essential constitutive centromere protein. The presence, within the core centromere of a wide range of eukaryotes, of precise sites hypersensitive to topo 2 cleavage suggests that these mark a fundamental and conserved aspect of this functional domain, such as a non-canonical secondary structure.
Collapse
Affiliation(s)
- Walter E Mills
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| | - Jennifer M Spence
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
131
|
Cao S, Zhou K, Zhang Z, Luger K, Straight AF. Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Mol Biol Cell 2018; 29:751-762. [PMID: 29343552 PMCID: PMC6003232 DOI: 10.1091/mbc.e17-10-0596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic centromeres are defined by the presence of nucleosomes containing the histone H3 variant, centromere protein A (CENP-A). Once incorporated at centromeres, CENP-A nucleosomes are remarkably stable, exhibiting no detectable loss or exchange over many cell cycles. It is currently unclear whether this stability is an intrinsic property of CENP-A containing chromatin or whether it arises from proteins that specifically associate with CENP-A chromatin. Two proteins, CENP-C and CENP-N, are known to bind CENP-A human nucleosomes directly. Here we test the hypothesis that CENP-C or CENP-N stabilize CENP-A nucleosomes in vitro and in living cells. We show that CENP-N stabilizes CENP-A nucleosomes alone and additively with CENP-C in vitro. However, removal of CENP-C and CENP-N from cells, or mutating CENP-A so that it no longer interacts with CENP-C or CENP-N, had no effect on centromeric CENP-A stability in vivo. Thus, the stability of CENP-A nucleosomes in chromatin does not arise solely from its interactions with CENP-C or CENP-N.
Collapse
Affiliation(s)
- Shengya Cao
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Keda Zhou
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Zhening Zhang
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309 .,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
132
|
Quénet D. Histone Variants and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:1-39. [DOI: 10.1016/bs.ircmb.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
133
|
Thakur J, Henikoff S. Unexpected conformational variations of the human centromeric chromatin complex. Genes Dev 2018; 32:20-25. [PMID: 29386331 PMCID: PMC5828391 DOI: 10.1101/gad.307736.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
We combined classical salt fractionation with chromatin immunoprecipitation to recover human centromeric chromatin under native conditions. We found that >85% of the total centromeric chromatin is insoluble under conditions typically used for native chromatin extraction. To map both soluble and insoluble chromatin in situ, we combined CUT&RUN (cleavage under targets and release using nuclease), a targeted nuclease method, with salt fractionation. Using this approach, we observed unexpected structural and conformational variations of centromere protein A (CENP-A)-containing complexes on different α-satellite dimeric units within highly homogenous arrays. Our results suggest that slight α-satellite sequence differences control the structure and occupancy of the associated centromeric chromatin complex.
Collapse
Affiliation(s)
- Jitendra Thakur
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
134
|
The Hidden Genomic and Transcriptomic Plasticity of Giant Marker Chromosomes in Cancer. Genetics 2017; 208:951-961. [PMID: 29279323 DOI: 10.1534/genetics.117.300552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/11/2017] [Indexed: 01/16/2023] Open
Abstract
Genome amplification in the form of rings or giant rod-shaped marker chromosomes (RGMs) is a common genetic alteration in soft tissue tumors. The mitotic stability of these structures is often rescued by perfectly functioning analphoid neocentromeres, which therefore significantly contribute to cancer progression. Here, we disentangled the genomic architecture of many neocentromeres stabilizing marker chromosomes in well-differentiated liposarcoma and lung sarcomatoid carcinoma samples. In cells carrying heavily rearranged RGMs, these structures were assembled as patchworks of multiple short amplified sequences, disclosing an extremely high level of complexity and definitely ruling out the existence of regions prone to neocentromere seeding. Moreover, by studying two well-differentiated liposarcoma samples derived from the onset and the recurrence of the same tumor, we documented an expansion of the neocentromeric domain that occurred during tumor progression, which reflects a strong selective pressure acting toward the improvement of the neocentromeric functionality in cancer. In lung sarcomatoid carcinoma cells we documented, extensive "centromere sliding" phenomena giving rise to multiple, closely mapping neocentromeric epialleles on separate coexisting markers occur, likely due to the instability of neocentromeres arising in cancer cells. Finally, by investigating the transcriptional activity of neocentromeres, we came across a burst of chimeric transcripts, both by extremely complex genomic rearrangements, and cis/trans-splicing events. Post-transcriptional editing events have been reported to expand and variegate the genetic repertoire of higher eukaryotes, so they might have a determining role in cancer. The increased incidence of fusion transcripts, might act as a driving force for the genomic amplification process, together with the increased transcription of oncogenes.
Collapse
|
135
|
Hindriksen S, Lens SMA, Hadders MA. The Ins and Outs of Aurora B Inner Centromere Localization. Front Cell Dev Biol 2017; 5:112. [PMID: 29312936 PMCID: PMC5743930 DOI: 10.3389/fcell.2017.00112] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] Open
Abstract
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.
Collapse
Affiliation(s)
- Sanne Hindriksen
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Susanne M A Lens
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael A Hadders
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
136
|
Abstract
Centromeric transcription is a common eukaryotic centromere feature, yet it is unclear how transcription is linked to underlying repetitive satellite sequences. In this issue of Developmental Cell, McNulty et al. (2017) show for human centromeres that all α-satellite sequences are transcribed into chromatin-bound RNAs and are required for centromere assembly.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|