101
|
Pei Z, Chen C, Chen J, Cruz-Chuh JD, Delarosa R, Deng Y, Fourie-O’Donohue A, Figueroa I, Guo J, Jin W, Khojasteh SC, Kozak KR, Latifi B, Lee J, Li G, Lin E, Liu L, Lu J, Martin S, Ng C, Nguyen T, Ohri R, Lewis Phillips G, Pillow TH, Rowntree RK, Stagg NJ, Stokoe D, Ulufatu S, Verma VA, Wai J, Wang J, Xu K, Xu Z, Yao H, Yu SF, Zhang D, Dragovich PS. Exploration of Pyrrolobenzodiazepine (PBD)-Dimers Containing Disulfide-Based Prodrugs as Payloads for Antibody–Drug Conjugates. Mol Pharm 2018; 15:3979-3996. [DOI: 10.1021/acs.molpharmaceut.8b00431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhonghua Pei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chunjiao Chen
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - Jinhua Chen
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Reginald Delarosa
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yuzhong Deng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Isabel Figueroa
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jun Guo
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiwei Jin
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - S. Cyrus Khojasteh
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brandon Latifi
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James Lee
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eva Lin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Liling Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jiawei Lu
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao
Free Trade Zone, Shanghai 200131, China
| | - Scott Martin
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Trung Nguyen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Gail Lewis Phillips
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K. Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicola J. Stagg
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Stokoe
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sheila Ulufatu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vishal A. Verma
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jing Wang
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zijin Xu
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- Wuxi Apptec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
102
|
Bhise K, Sau S, Kebriaei R, Rice SA, Stamper KC, Alsaab HO, Rybak MJ, Iyer AK. Combination of Vancomycin and Cefazolin Lipid Nanoparticles for Overcoming Antibiotic Resistance of MRSA. MATERIALS 2018; 11:ma11071245. [PMID: 30036944 PMCID: PMC6073369 DOI: 10.3390/ma11071245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Vancomycin is the treatment of choice for infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Clinically, combinations of vancomycin (VAN) and beta-lactams have been shown to improve patient outcomes compared to VAN alone for the treatment of MRSA bloodstream infections. However, VAN is known to cause nephrotoxicity, which could be ameliorated using biocompatible lipid drug delivery systems or liposomes. Previous attempts have been made for encapsulation of VAN in liposomes; however, drug loading has been poor, mainly because of the high aqueous solubility of VAN. In this study, we report a robust method to achieve high loading of VAN and cefazolin (CFZ) in unilamellar liposomes. Liposomes of sizes between 170–198 nm were prepared by modified reverse phase evaporation method and achieved high loading of 40% and 26% (weight/weight) for VAN and CFZ, respectively. Liposomal VAN reduced minimum inhibitory concentration (MIC) values 2-fold in comparison to commercial VAN. The combination of liposomal VAN (LVAN) and liposomal CFZ (LCFZ) demonstrated a 7.9-fold reduction compared to LVAN alone. Rhodamine dye-loaded liposomes demonstrated superior cellular uptake in macrophage-like RAW 264.7 cells. Fluorescent images of LVAN-encapsulating near-infrared (NIR) dye, S0456 (LVAN-S0456) clearly indicated that LVAN-S0456 had reduced renal excretion with very low fluorescent intensity in the kidneys. It is anticipated that the long circulation and reduced kidney clearance of LVAN-S0456 compared to VAN-S0456 injected in mice can lead to enhanced efficacy against MRSA infections with reduced nephrotoxicity. Overall, our developed formulations of VAN when administered alone or in combination with CFZ, provide a rational approach for combating MRSA infections.
Collapse
Affiliation(s)
- Ketki Bhise
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Samaresh Sau
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Seth A Rice
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Kyle C Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Hashem O Alsaab
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
- Department of Pharmacy Services, Detroit Medical Center, Detroit, MI 48201, USA.
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | - Arun K Iyer
- Use-Inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
103
|
Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf B Biointerfaces 2018; 167:8-19. [DOI: 10.1016/j.colsurfb.2018.03.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/02/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
104
|
Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. Ther Deliv 2018; 8:1003-1018. [PMID: 29061101 DOI: 10.4155/tde-2017-0062] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multifunctional nanoparticles (NPs), composed of organic and inorganic materials, have been explored as promising drug-delivery vehicles for cancer diagnosis and therapy. The success of nanosystems has been attributed to its smaller size, biocompatibility, selective tumor accumulation and reduced toxicity. The relationship among numbers of molecules in payload, NP diameter and encapsulation efficacy have crucial role in clinical translation. Advancement of bioengineering, and systematic fine-tuning of functional components to NPs have diversified their optical and theranostic properties. In this review, we summarize wide varieties of NPs, such as ultrasmall polymer-lipid hybrid NPs, dendrimers, liposomes, quantum dots, carbon nanotubes, gold NPs and iron oxide NPs. We also discuss their tumor targetability, tissue penetration, pharmacokinetics, and therapeutic and diagnostic properties. [Formula: see text].
Collapse
|
105
|
Kim S, Lee SY, Cho HJ. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma. Biochem Biophys Res Commun 2018; 501:765-770. [PMID: 29758197 DOI: 10.1016/j.bbrc.2018.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Organic/inorganic hydrid nanoparticles (NPs) composed of berberine (BER) and zinc oxide (ZnO) were developed for the therapy of lung cancers. Without the use of pharmaceutical excipients, NPs were fabricated with only dual anticancer agents (BER and ZnO) by facile blending method. The mean weight ratio between BER and ZnO in BER-ZnO NPs was 39:61 in this study. BER-ZnO NPs dispersed in water exhibited 200-300 nm hydrodynamic size under 5 mg/mL concentration. The exposure of both BER and ZnO in the outer layers of BER-ZnO NPs was identified by X-ray photoelectron spectroscopy analysis. The amorphization of BER and the maintenance of ZnO structure were observed in the results of X-ray powder diffractometer analysis. Improved antiproliferation efficacy, based on the chemo-photothermal therapeutic efficacy, of BER-ZnO NPs in A549 (human lung adenocarcinoma) cells was presented. According to the blood tests in rats after intravenous administration, BER-ZnO NPs did not induce severe hepatotoxicity, renal toxicity, and hemotoxicity. Developed BER-ZnO NPs can be used efficiently and safely for the chemo-photothermal therapy of lung cancers.
Collapse
Affiliation(s)
- Sungyun Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
106
|
Wang Z, Sau S, Alsaab HO, Iyer AK. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1441-1454. [PMID: 29678787 DOI: 10.1016/j.nano.2018.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/17/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) is a highly aggressive tumor subtype, lacking estrogen, progesterone and human epidermal growth factor-2 (HER-2) receptors. Thus, early detection and targeted therapy of TNBC is an urgent need. Herein, we have developed a CD44 targeting Hyaluronic Acid (HA) decorated biocompatible oligomer, containing FDA approved vitamin E TPGS and Styrene Maleic Anhydride (SMA) (HA-SMA-TPGS) for targeting TNBC. The self-assembling HA-SMA-TPGS was encapsulated with poorly water soluble, potent curcumin analogue (CDF) to form nanomicelles (NM), HA-SMA-TPGS-CDF has demonstrated excellent nanoparticle characteristics for parenteral delivery. The targeted NM can selectively kill TNBC cells through CD44 mediated apoptosis pathway. Tumor imaging using phase-2 clinical trial near infrared (NIR)-fluorescent dye (S0456) conjugate, HA-SMA-TPGS-S0456 showed excellent TNBC tumor accumulation with minimum liver and spleen uptake. To our best of knowledge, for the first time, we are reporting a promising platform for CD44 mediated multimodal NIR imaging and cytotoxin delivery to TNBC.
Collapse
Affiliation(s)
- Zhaoxian Wang
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
107
|
Ding S, O'Banion CP, Welfare JG, Lawrence DS. Cellular Cyborgs: On the Precipice of a Drug Delivery Revolution. Cell Chem Biol 2018; 25:648-658. [PMID: 29628434 DOI: 10.1016/j.chembiol.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/17/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Cell-based drug delivery systems offer the prospect of biocompatibility, large-loading capacity, long in vivo lifespan, and active targeting of diseased sites. However, these opportunities are offset by an array of challenges, including safeguarding the integrity of the drug cargo and the cellular host, as well as ensuring that drug release occurs at the appropriate time and place. Emerging strategies that address these, and related, issues, are described herein.
Collapse
Affiliation(s)
- Song Ding
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua G Welfare
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
108
|
Sau S, Alsaab HO, Bhise K, Alzhrani R, Nabil G, Iyer AK. Multifunctional nanoparticles for cancer immunotherapy: A groundbreaking approach for reprogramming malfunctioned tumor environment. J Control Release 2018; 274:24-34. [PMID: 29391232 PMCID: PMC5847475 DOI: 10.1016/j.jconrel.2018.01.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
Several cancer immunotherapy approaches have been recently introduced into the clinics and they have shown remarkable therapeutic potentials. The groundbreaking cancer immunotherapeutic agents function as a stimulant or modulator of the body immune system to fight against or kill cancers. Although targeted immunotherapies such as immune check point inhibitors (CTLA-4 or PD-1/PD-L1), DNA vaccination and CAR-T therapy are revolutionizing cancer treatment, the delivery efficacy can be further improved while their off-target toxicity can be mitigated through nanotechnology approaches. Recent research has demonstrated that nanotechnology has multifaceted role for (i) reeducating tumor associated macrophages (TAM) to function as tumor suppressor agent, (ii) serving as an efficient alternative for Chimeric Antigen Receptor (CAR)-T cell generation and transduction, and (iii) selective knockdown of Kras oncogene addiction by nano-Crisper-Cas9 delivery system. The function of host immune stimulatory signals and tumor immunotherapies can further be improved by repurposing of nanomedicine platform. This review summarizes the role of multifunctional polymeric, lipid, metallic and cell based nanoparticles for improving current immunotherapy.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA.
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 26571, Saudi Arabia
| | - Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Rami Alzhrani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 26571, Saudi Arabia
| | - Ghazal Nabil
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
109
|
Abstract
The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Peter Qiao
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
110
|
Sau S, Tatiparti K, Alsaab HO, Kashaw SK, Iyer AK. A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discov Today 2018; 23:1344-1356. [PMID: 29551455 DOI: 10.1016/j.drudis.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
Nanoparticle library engineered with tunable size, shape, and geometry will provide a better idea of targeting multicomponent of tumor microenvironment consisting of epithelial cells, tumor hypoxia, tumor immune cells and angiogenic blood vessels.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
111
|
Copper-Free 'Click' Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia. Int J Mol Sci 2018. [PMID: 29534020 PMCID: PMC5877699 DOI: 10.3390/ijms19030838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a difficult to treat disease due to the absence of the three unique receptors estrogen, progesterone and herceptin-2 (HER-2). To improve the current therapy and overcome the resistance of TNBC, there is unmet need to develop an effective targeted therapy. In this regard, one of the logical and economical approaches is to develop a tumor hypoxia-targeting drug formulation platform for selective delivery of payload to the drug-resistant and invasive cell population of TNBC tumors. Toward this, we developed a Carbonic Anhydrase IX (CA IX) receptor targeting human serum albumin (HSA) carriers to deliver the potent anticancer drug, Paclitaxel (PTX). We used Acetazolamide (ATZ), a small molecule ligand of CA IX to selectively deliver HSA-PTX in TNBC cells. A novel method of synthesis involving copper free ‘click’ chemistry (Dibenzocyclooctyl, DBCO) moiety with an azide-labeled reaction partner, known as Strain-Promoted Alkyne Azide Cycloaddition (SPAAC) along with a desolvation method for PTX loading were used in the present study to arrive at the CA IX selective nano-carriers, HSA-PTX-ATZ. The anticancer effect of HSA-PTX-ATZ is higher compared to HSA, PTX and non-targeted HSA-PTX in MDA-MB-231 and MDA-MB-468 cells. The cell killing effect is associated with induction of early and late phases of apoptosis. Overall, our proof-of-concept study shows a promising avenue for hypoxia-targeted drug delivery that can be adapted to several types of cancers.
Collapse
|
112
|
Liu-Shin L, Fung A, Malhotra A, Ratnaswamy G. Influence of disulfide bond isoforms on drug conjugation sites in cysteine-linked IgG2 antibody-drug conjugates. MAbs 2018; 10:583-595. [PMID: 29436897 PMCID: PMC5973704 DOI: 10.1080/19420862.2018.1440165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cysteine-linked antibody-drug conjugates (ADCs) produced from IgG2 monoclonal antibodies (mAbs) are more heterogeneous than ADCs generated from IgG1 mAbs, as IgG2 ADCs are composed of a wider distribution of molecules, typically containing 0 – 12 drug-linkers per antibody. The three disulfide isoforms (A, A/B, and B) of IgG2 antibodies confer differences in solvent accessibilities of the interchain disulfides and contribute to the structural heterogeneity of cysteine-linked ADCs. ADCs derived from either IgG2-A or IgG2-B mAbs were compared to better understand the role of disulfide isoforms on attachment sites and distribution of conjugated species. Our characterization of these ADCs demonstrated that the disulfide configuration affects the kinetics of disulfide bond reduction, but has minimal effect on the primary sites of reduction. The IgG2-A mAbs yielded ADCs with higher drug-to-antibody ratios (DARs) due to the easier reduction of its interchain disulfides. However, hinge-region cysteines were the primary conjugation sites for both IgG2-A and IgG2-B mAbs.
Collapse
Affiliation(s)
- Lily Liu-Shin
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA.,b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL
| | - Adam Fung
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA
| | - Arun Malhotra
- b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL
| | - Gayathri Ratnaswamy
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA
| |
Collapse
|
113
|
Kuhlmann L, Cummins E, Samudio I, Kislinger T. Cell-surface proteomics for the identification of novel therapeutic targets in cancer. Expert Rev Proteomics 2018; 15:259-275. [DOI: 10.1080/14789450.2018.1429924] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Emma Cummins
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Ismael Samudio
- The Centre for Drug Research and Development, Division of Biologics, Vancouver, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
114
|
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 2018; 10:222-243. [PMID: 29293399 DOI: 10.1080/19420862.2017.1412025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.
Collapse
Affiliation(s)
- Anil Wagh
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Hangtian Song
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Ming Zeng
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Li Tao
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Tapan K Das
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| |
Collapse
|
115
|
Yasunaga M, Manabe S, Furuta M, Ogata K, Koga Y, Takashima H, Nishida T, Matsumura Y. Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.2.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
116
|
Skalickova S, Loffelmann M, Gargulak M, Kepinska M, Docekalova M, Uhlirova D, Stankova M, Fernandez C, Milnerowicz H, Ruttkay-Nedecky B, Kizek R. Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E435. [PMID: 29292780 PMCID: PMC5746925 DOI: 10.3390/nano7120435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the prostate cancer cells. The prostate cancer targeting was mediated by the AntiSar antibodies decorated surface of the nanocage. Formation of the chitosan nanoparticles was determined using a ninhydrin assay and differential pulse voltammetry. Obtained results showed the strong effect of tripolyphosphine on the nanoparticle formation. The zinc ions affected strong chitosan backbone coiling both in inner and outer chitosan nanoparticle structure. Zinc electrochemical signal depended on the level of the complex formation and the potential shift from -960 to -950 mV. Formed complex is suitable for doxorubicin delivery. It was observed the 20% entrapment efficiency of doxorubicin and strong dependence of drug release after 120 min in the blood environment. The functionality of the designed nanotransporter was proven. The purposed determination showed linear dependence in the concentration range of Anti-sarcosine IgG labeled gold nanoparticles from 0 to 1000 µg/mL and the regression equation was found to be y = 3.8x - 66.7 and R² = 0.99. Performed ELISA confirmed the ability of Anti-sarcosine IgG labeled chitosan nanoparticles with loaded doxorubicin to bind to the sarcosine molecule. Observed hemolytic activity of the nanotransporter was 40%. Inhibition activity of our proposed nanotransporter was evaluated to be 0% on the experimental model of S. cerevisiae. Anti-sarcosine IgG labeled chitosan nanoparticles, with loaded doxorubicin stabilized by Zn ions, are a perspective type of nanocarrier for targeted drug therapy managed by specific interaction with sarcosine and metallothionein for prostate cancer.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Martin Loffelmann
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Michael Gargulak
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Marta Kepinska
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Michaela Docekalova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Dagmar Uhlirova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Martina Stankova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK.
| | - Halina Milnerowicz
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| |
Collapse
|
117
|
Dhakal D, Dhakal Y, Sohng JK. Book Review: Antibody-Drug Conjugates: Fundamentals, Drug Development, and Clinical Outcomes to Target Cancer. Front Pharmacol 2017. [PMCID: PMC5660960 DOI: 10.3389/fphar.2017.00771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
- *Correspondence: Dipesh Dhakal
| | - Yogesh Dhakal
- Department of Anaesthesiology, Nepalgunj Medical College, Kohalpur, Nepal
| | - Jae K. Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam, South Korea
- Jae K. Sohng
| |
Collapse
|
118
|
Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Saga T, Matsumura Y. Development of Antibody-Drug Conjugates Using DDS and Molecular Imaging. Bioengineering (Basel) 2017; 4:bioengineering4030078. [PMID: 28952557 PMCID: PMC5615324 DOI: 10.3390/bioengineering4030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/04/2022] Open
Abstract
Antibody-drug conjugate (ADC), as a next generation of antibody therapeutics, is a combination of an antibody and a drug connected via a specialized linker. ADC has four action steps: systemic circulation, the enhanced permeability and retention (EPR) effect, penetration within the tumor tissue, and action on cells, such as through drug delivery system (DDS) drugs. An antibody with a size of about 10 nm has the same capacity for passive targeting as some DDS carriers, depending on the EPR effect. In addition, some antibodies are capable of active targeting. A linker is stable in the bloodstream but should release drugs efficiently in the tumor cells or their microenvironment. Thus, the linker technology is actually a typical controlled release technology in DDS. Here, we focused on molecular imaging. Fluorescent and positron emission tomography (PET) imaging is useful for the visualization and evaluation of antibody delivery in terms of passive and active targeting in the systemic circulation and in tumors. To evaluate the controlled release of the ADC in the targeted area, a mass spectrometry imaging (MSI) with a mass microscope, to visualize the drug released from ADC, was used. As a result, we succeeded in confirming the significant anti-tumor activity of anti-fibrin, or anti-tissue factor-ADC, in preclinical settings by using DDS and molecular imaging.
Collapse
Affiliation(s)
- Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Shino Manabe
- Synthetic Cellular Chemistry Laboratory, RIKEN, Wako 351-0198, Japan.
| | - Atsushi Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, QST, Chiba 263-8555, Japan; .
| | | | | | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Tsuneo Saga
- Department of Diagnostic Radiology, Kyoto University Hospital; Kyoto 606-8501, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa 277-8577, Japan.
| |
Collapse
|
119
|
Sharma SK, Bagshawe KD. Antibody Directed Enzyme Prodrug Therapy (ADEPT): Trials and tribulations. Adv Drug Deliv Rev 2017; 118:2-7. [PMID: 28916498 DOI: 10.1016/j.addr.2017.09.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Antibody directed enzyme prodrug therapy has the potential to be an effective therapy for most common solid cancers. Clinical studies with CPG2 system have shown the feasibility of this approach. The key limitation has been immunogenicity of the enzyme. Technologies now exist to eliminate this problem. Non-immunogenic enzymes in combination with prodrugs that generate potent cytotoxic drugs can provide a powerful approach to cancer therapy. ADEPT has the potential to be non -toxic to normal tissue and can therefore be combined with other modalities including immunotherapy for greater clinical benefit.
Collapse
|
120
|
Prior H, Sewell F, Stewart J. Overview of 3Rs opportunities in drug discovery and development using non-human primates. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.ddmod.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
121
|
Moral MEG, Siahaan TJ. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Curr Top Med Chem 2017; 17:3425-3443. [PMID: 29357802 PMCID: PMC5835217 DOI: 10.2174/1568026618666180118154514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings.
Collapse
Affiliation(s)
- Mario E G Moral
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| |
Collapse
|