101
|
Aggarwala KRG. Ocular Accommodation, Intraocular Pressure, Development of Myopia and Glaucoma: Role of Ciliary Muscle, Choroid and Metabolism. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:66-70. [PMID: 31976346 PMCID: PMC6969557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ocular accommodation is not just a mechanism for altering curvature of the crystalline lens of the eye, it also enables aqueous humor outflow through the trabecular meshwork, influencing intraocular pressure (IOP). Long term stress on the ciliary muscle from sustained near focusing may initiate myopic eye growth in children and primary open angle glaucoma in presbyopic adults. Multi-factorial studies of ocular accommodation that include measures of IOP, ciliary muscle morphology, anterior chamber depth and assessment of nutritional intake and metabolic markers may elucidate etiology and novel strategies for management of both myopia and chronic glaucoma. Anatomy of the ciliary fibers from anterior insertion in the fluid drainage pathway to their posterior consanguinity with the vascular choroid, alters ocular parameters such as micro-fluctuations of accommodation and pulsatile ocular blood flow that are driven by cardiac contractions conveyed by carotid arteries. Stretching of the choroid has consequences for thinning of the peripheral retina, sclera and lamina cribrosa with potential to induce retinal tears and optic nerve cupping. Early metabolic interventions may lead to prevention or reduced severity of myopia and glaucoma. Finally, it might improve quality of life of patients and decrease disability from visual impairment and blindness.
Collapse
|
102
|
Byszewska A, Konopińska J, Kicińska AK, Mariak Z, Rękas M. Canaloplasty in the Treatment of Primary Open-Angle Glaucoma: Patient Selection and Perspectives. Clin Ophthalmol 2019; 13:2617-2629. [PMID: 32021062 PMCID: PMC6948200 DOI: 10.2147/opth.s155057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023] Open
Abstract
Canaloplasty is a surgical procedure that has undergone a number of developments since its introduction in 2005. Many thousands of canaloplasties have been performed around the world since then and is, by definition, a blebless procedure. It does not necessitate the use of any antifibrotic agents and results in safe and effective IOP reductions in patients with open-angle glaucoma (OAG) with minimal complications and no bleb-related adverse events. When considering the surgical management of patients with early and medium stages of the disease, canaloplasty can be considered as a first line option. This paper will overview the theoretical effectiveness of canal surgery, the fundamental aspects of aqueous outflow resistance with particular emphasis on the role of the trabecular meshwork, Schlemm's canal, and the collector channels, and the methods available for the clinical evaluation of the outflow pathways in relation to the ocular anatomy. Further, the paper will detail the surgical technique itself and how this has developed over time together with the clinical aspects that should be accounted for when selecting patients for this surgery.
Collapse
Affiliation(s)
- Anna Byszewska
- Department of Ophthalmology, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Białystok, Białystok 15-276, Poland
| | | | - Zofia Mariak
- Department of Ophthalmology, Medical University of Białystok, Białystok 15-276, Poland
| | - Marek Rękas
- Department of Ophthalmology, Military Institute of Medicine, Warsaw 04-141, Poland
| |
Collapse
|
103
|
Carpineto P, Agnifili L, Senatore A, Agbeanda A, Lappa A, Borrelli E, Di Martino G, Oddone F, Mastropasqua R. Scleral and conjunctival features in patients with rhegmatogenous retinal detachment undergoing scleral buckling: an anterior segment optical coherence tomography and in vivo confocal microscopy study. Acta Ophthalmol 2019; 97:e1069-e1076. [PMID: 31125179 DOI: 10.1111/aos.14148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/05/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the scleral and conjunctival features in patients with rhegmatogenous retinal detachment (RRD) undergoing scleral buckling (SB), using anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM). METHODS Twenty RRD eyes were consecutively enrolled. AS-OCT was performed at RRD diagnosis (RRD-D) and day 1, week 1, month 1 and month 6 after SB to evaluate the sclera, in the affected and unaffected quadrants (AQ, UQ). IVCM was performed at RRD-D, and at month 1 and month 6, to evaluate the conjunctiva in AQ and UQ. The main outcomes were as follows: mean intra-scleral hypo-reflective spaces area (MIHSA) at AS-OCT; mean density and area of microcysts (MMD, MMA) at IVCM; and intra-ocular pressure (IOP). The relations between MIHSA, MMA, MMD and IOP were evaluated. RESULTS Rhegmatogenous retinal detachment- diagnosis (RRD-D) overall-mean intra-scleral hypo-reflective spaces (MISHA), -MMD and -MMA were significantly higher in affected eye (AE) compared with UE (p < 0.05) and in AQ compared with UQ (p < 0.05). After SB, overall-, AQ- and UQ-MISHA further increased (p < 0.05), whereas overall-MMD and -MMA did not change. At all follow-up, AQ and UQ parameters did not show significant differences between them. RRD-D IOP was 14.3 ± 2.8 and 15.5 ± 2.7 mmHg in the AE and UE, respectively (p < 0.05). After SB, week-1, month-1 and -6 IOP was significantly lower than RRD-D (p < 0.05). Rhegmatogenous retinal detachment- diagnosis (RRD-D), 1- and 6-month overall and AQ-MISHA and AQ-MMD negatively correlated with IOP (p < 0.05). CONCLUSION Rhegmatogenous retinal detachment (RRD) and SB induced scleral and conjunctival changes that suggested an activation of fluid outflow through the entire unconventional aqueous humour pathway; these modifications may in part account for the relative hypotony after RRD and SB.
Collapse
Affiliation(s)
- Paolo Carpineto
- Ophthalmology Clinic Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | - Luca Agnifili
- Ophthalmology Clinic Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | - Alfonso Senatore
- Ophthalmology Clinic Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | - Aharrh‐Gnama Agbeanda
- Ophthalmology Clinic Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | - Andrea Lappa
- Ophthalmology Clinic Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | - Enrico Borrelli
- Ophthalmology Clinic Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | - Giuseppe Di Martino
- School of Hygiene Department of Medicine and Aging Science University G. d'Annunzio of Chieti‐Pescara Chieti Italy
| | | | | |
Collapse
|
104
|
Alaghband P, Baneke AJ, Galvis E, Madekurozwa M, Chu B, Stanford M, Overby D, Lim KS. Aqueous Humor Dynamics in Uveitic Eyes. Am J Ophthalmol 2019; 208:347-355. [PMID: 31473215 DOI: 10.1016/j.ajo.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To investigate aqueous humor dynamics in uveitic eyes. DESIGN Cross-sectional study. PARTICIPANTS Patients with recurrent (≥3 attacks) anterior uveitis (now quiescent) and being treated for glaucoma or ocular hypertension (OHT) (Group 1), previous recurrent anterior uveitis (≥3 attacks) without glaucoma or OHT (Group 2), and normal subjects with no ocular problems and IOP < 21 mm Hg at screening (control group; Group 3). METHODS Patients had one-off measurements. Group 1 patients who were on antihypertensives were washed out for a 4-week period, prior to their study measurements. Main outcome measures were tonographic outflow facility, aqueous humor flow rate, and uveoscleral outflow. RESULTS One hundred and one patients were screened between February 2014 and February 2017. Nine patients did not meet the inclusion criteria. Groups 1 and 3 each included 30 patients, and Group 2 included 32 patients. The mean intraocular pressure was higher in Group 1 compared to the others (25 ± 10.2 mm Hg in Group 1 vs 16 ± 2.7 mm Hg in Group 2 vs 16 ± 2.2 mm Hg in Group 3, P < .001). The tonographic outflow facility was lower in Group 1 compared to the others (0.18 ± 0.1 μL/min/mm Hg in Group 1 vs 0.25 ± 0.1 μL/min/mm Hg in Group 2 vs 0.27 ± 0.1 μL/min/mm Hg in Group 3, P = .005). However, aqueous humor flow rate was not statistically different (2.47 ± 0.9 μL/min in Group 1 vs 2.13 ± 0.9 μL/min in Group 2 vs 2.25 ± 0.7 μL/min in Group 3, P = .3). There was also no significant difference in calculated uveoscleral outflow. CONCLUSION This is the first aqueous humor dynamics study in patients with uveitic glaucoma/OHT and recurrent anterior uveitis compared with age-matched controls. We have demonstrated that the elevated intraocular pressure seen in the uveitic glaucoma/OHT eyes (3-6 attacks) was due to reduced tonographic outflow facility. The aqueous humor flow rate was not detectibly different, nor did the calculated uveoscleral outflow demonstrate any discernible difference. However, the exact mechanism remains to be elucidated.
Collapse
|
105
|
Shradqa A, Kumar V, Frolov M, Dushina G, Bezzabotnov A, Abu Zaalan K. Cyclodialysis ab externo with implantation of a collagen implant in surgical management of glaucoma. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glaucoma is one of the main causes of irreversible blindness in the Russian Federation and it is the leading cause of visual impairments among working age population. The primary goal of glaucoma therapy is to preserve the visual function, which is mainly achieved through persistent normalization of IOP by instillation of hypotensive drugs, laser therapy and/or surgery/ In this clinical study safety and efficacy of a glaucoma surgical technique implying valve cyclodialysis ab externo with implantation of a non-absorbable collagen implant (NACI) (Xenoplast, Dubna-Biofarm, Russia) in the supraciliary space were evaluated. All patients exhibited moderate and severe primary open-angle glaucoma (POAG). The efficacy assessment criterias were intraocular pressure (IOP) dynamics, use of hypotensive medications, need for repeat surgical intervention and complications. A total of 26 patients (26 eyes) were operated upon and under observation. Twelve months after surgery, 34% IOP decrease from the baseline level was observed: from 29.5 ± 6.8 to 18.8 ± 4.3 mmHg. The amount of hypotensive medications used reduced from 2.8 ± 0.9 to 0.6 ± 0.9. Applying the criteria recommended by the World Glaucoma Association, complete success was registered in 73.1% of patients and partial success — in 26.9% patients. No surgery ended in a failure through the follow-up period. Post-operatively, one patient developed hyphema, 2 patients had some blood elements in aqueous humor and 1 patient had shallow anterior chamber (AC). The suggested surgical technique proved to be an efficient and safe way to decrease IOP and reduce the number of hypotensive medications and had a minimal number of complications associated with the surgery, therefore it can be recommended as a method of choice in patients with advanced stage POAG.
Collapse
Affiliation(s)
- A.S. Shradqa
- Peoples' Friendship University of Russia, Moscow, Russia
| | - V. Kumar
- Eye microsurgery center «Pro zrenie», Moscow province, Russia
| | - M.A. Frolov
- Peoples' Friendship University of Russia, Moscow, Russia
| | - G.N. Dushina
- Eye microsurgery center «Pro zrenie», Moscow province, Russia
| | - A.I. Bezzabotnov
- Eye microsurgery center «Pro zrenie», Moscow province, Russia; Ophthalmic unit of Skhodnya City Hospital, Khimki, Moscow province, Russia
| | | |
Collapse
|
106
|
Thomson BR, Carota IA, Souma T, Soman S, Vestweber D, Quaggin SE. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. eLife 2019; 8:48474. [PMID: 31621585 PMCID: PMC6874417 DOI: 10.7554/elife.48474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Elevated intraocular pressure (IOP) due to insufficient aqueous humor outflow through the trabecular meshwork and Schlemm’s canal (SC) is the most important risk factor for glaucoma, a leading cause of blindness worldwide. We previously reported loss of function mutations in the receptor tyrosine kinase TEK or its ligand ANGPT1 cause primary congenital glaucoma in humans and mice due to failure of SC development. Here, we describe a novel approach to enhance canal formation in these animals by deleting a single allele of the gene encoding the phosphatase PTPRB during development. Compared to Tek haploinsufficient mice, which exhibit elevated IOP and loss of retinal ganglion cells, Tek+/-;Ptprb+/- mice have elevated TEK phosphorylation, which allows normal SC development and prevents ocular hypertension and RGC loss. These studies provide evidence that PTPRB is an important regulator of TEK signaling in the aqueous humor outflow pathway and identify a new therapeutic target for treatment of glaucoma.
Collapse
Affiliation(s)
- Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Isabel A Carota
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Tomokazu Souma
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Saily Soman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | | | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
107
|
How many aqueous humor outflow pathways are there? Surv Ophthalmol 2019; 65:144-170. [PMID: 31622628 DOI: 10.1016/j.survophthal.2019.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022]
Abstract
The aqueous humor (AH) outflow pathways definition is still matter of intense debate. To date, the differentiation between conventional (trabecular meshwork) and unconventional (uveoscleral) pathways is widely accepted, distinguishing the different impact of the intraocular pressure on the AH outflow rate. Although the conventional route is recognized to host the main sites for intraocular pressure regulation, the unconventional pathway, with its great potential for AH resorption, seems to act as a sort of relief valve, especially when the trabecular resistance rises. Recent evidence demonstrates the presence of lymphatic channels in the eye and proposes that they may participate in the overall AH drainage and intraocular pressure regulation, in a presumably adaptive fashion. For this reason, the uveolymphatic route is increasingly thought to play an important role in the ocular hydrodynamic system physiology. As a result of the unconventional pathway characteristics, hydrodynamic disorders do not develop until the adaptive routes cannot successfully counterbalance the increased AH outflow resistance. When their adaptive mechanisms fail, glaucoma occurs. Our review deals with the standard and newly discovered AH outflow routes, with particular attention to the importance they may have in opening new therapeutic strategies in the treatment of ocular hypertension and glaucoma.
Collapse
|
108
|
Andrew NH, Akkach S, Casson RJ. A review of aqueous outflow resistance and its relevance to microinvasive glaucoma surgery. Surv Ophthalmol 2019; 65:18-31. [PMID: 31425701 DOI: 10.1016/j.survophthal.2019.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022]
Abstract
Primary open-angle glaucoma is the leading cause of irreversible blindness worldwide, and intraocular pressure reduction remains the only proven treatment strategy. Elevated intraocular pressure occurs as the result of impaired aqueous humor outflow. Both a passive model and a dynamic model have been used to explain trabecular outflow resistance. The passive model posits that the trabecular meshwork acts as a static filter that exerts stable and passive resistance to outflow. In contrast, the dynamic model involves a "biomechanical pump." In recent years, the range of surgical management options for glaucoma has dramatically expanded, particularly the class of procedures known as microinvasive glaucoma surgery. These procedures typically target and enhance specific outflow routes. Optimal patient outcomes with microinvasive glaucoma surgery require a clear understanding of aqueous outflow and a surgical approach that is targeted to overcome the site of abnormal resistance in the individual. We review the anatomy and physiology of trabecular and suprachoroidal outflow that is of relevance to microinvasive glaucoma surgery-performing surgeons.
Collapse
Affiliation(s)
- Nicholas H Andrew
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarmad Akkach
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia; Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.
| | - Robert J Casson
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
109
|
Wang Q, Thau A, Levin AV, Lee D. Ocular hypotony: A comprehensive review. Surv Ophthalmol 2019; 64:619-638. [PMID: 31029581 DOI: 10.1016/j.survophthal.2019.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Ocular hypotony is an infrequent, yet potentially vision-threatening, entity. The list of differential causes is extensive, involving any condition that may compromise aqueous humor dynamics or the integrity of the globe and sometimes following medical treatments or procedures. Depending on the cause and the clinical impact, treatment options aim to correct the underlying pathology and to reestablish anatomical integrity, as well as visual function. We review the pathophysiology, clinical presentation, different causes, and associated therapeutic options of ocular hypotony.
Collapse
Affiliation(s)
- Qianqian Wang
- Wills Eye Hospital, Philadelphia, Pennsylvania, USA; Department of Ophthalmology, University of Montreal Hospital Center, Montreal Quebec, Canada
| | - Avrey Thau
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alex V Levin
- Wills Eye Hospital, Philadelphia, Pennsylvania, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Lee
- Wills Eye Hospital, Philadelphia, Pennsylvania, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
110
|
Castro A, Du Y. Trabecular Meshwork Regeneration - A Potential Treatment for Glaucoma. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:80-88. [PMID: 31316866 DOI: 10.1007/s40135-019-00203-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose In this review, we overview the pathophysiology of primary open-angle glaucoma as it relates to the trabecular meshwork (TM), exploring modes of TM dysfunction and regeneration via stem cell therapies. Recent Findings Stem cells from a variety of sources, including trabecular meshwork, mesenchymal, adipose and induced pluripotent stem cells, have shown the potential to differentiate into TM cells in vitro or in vivo and to regenerate the TM in vivo, lowering intraocular pressure (IOP) and reducing glaucomatous retinal ganglion cell damage. Summary Stem cell therapies for TM regeneration provide a robust and promising suite of treatments for eventual lowering of IOP and prevention of glaucomatous vision loss in humans in the future. Further investigation into stem cell homing mechanisms and the safety of introducing these cells into human anterior chamber, for instance, are required before clinical applications in treating glaucoma patients.
Collapse
Affiliation(s)
- Alexander Castro
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213.,University of Virginia, Charlottesville, VA 22904
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
111
|
Coman IC, Al Hammoud M, Tudosescu R, Iancu R, Barac C, Popa CA. The effects of prostaglandins and endocannabinoids on iris arterial vascularization in Wistar rats - Experimental analysis. Rom J Ophthalmol 2019; 63:135-141. [PMID: 31334391 PMCID: PMC6626926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/01/2022] Open
Abstract
Introduction: The iris vascular supply originates in the anterior and long posterior ciliary arteries. The endothelium influences local blood flow by releasing endothelium relaxing and contracting substances. From a functional perspective, the ocular vascular tonus adjustment is humoral and neural dependent. Objectives: The present article aims to evaluate the possible implications of topical administration of selective COX2 and nonselective COX inhibitors generically named nonsteroidal anti-inflammatory drugs (NSAIDs) and their possible interactions with the endocannabinoid system and the way they could interfere with the vascular tone at the level of ocular iris territory in Wistar rats. Materials and methods: Experimental protocol on Wistar rats was performed in accordance with present laws regarding animal welfare and ethics in animal experiments (Directive 86/ 609EEC/ 1986; Romanian Law 205/ 2004; Romanian Laws 206/ 2004, 471/ 2002 and 9/ 2008; Romanian Order 143/ 400). The studied substances were instilled topically under general anesthesia, and images of the rat iris vessels were captured over a period of 10 minutes. The obtained images were further analyzed using an appropriate hardware and software program. Results: The nonselective NSAIDs induced vascular dilation in the iris vessels, while the selective COX2 inhibitors determined a variable degree of vasoconstriction. Conclusion: In view of the results of this experiment and the added evidence found in literature, we consider that further research will show the potential benefits for the additional use of NSAIDs in ocular pathology, otherwise unaffected by this medication until the present time (for example, glaucoma treatment).
Collapse
Affiliation(s)
- Ioana-Cristina Coman
- Ophthalmology Department, University Emergency Hospital, Bucharest, Romania
- Faculty of Medicine, ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Ruxandra Tudosescu
- Ophthalmology Department, University Emergency Hospital, Bucharest, Romania
- Ophthalmology Department, Regina Maria Private Clinic, Bucharest, Romania
| | - Raluca Iancu
- Ophthalmology Department, University Emergency Hospital, Bucharest, Romania
- Faculty of Medicine, ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Cosmina Barac
- Ophthalmology Department, Braila Emergency Hospital, Romania
| | - Cherecheanu Alina Popa
- Ophthalmology Department, University Emergency Hospital, Bucharest, Romania
- Faculty of Medicine, ”Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
112
|
Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, Gupta N. Active Lymphatic Drainage From the Eye Measured by Noninvasive Photoacoustic Imaging of Near-Infrared Nanoparticles. Invest Ophthalmol Vis Sci 2019; 59:2699-2707. [PMID: 29860456 DOI: 10.1167/iovs.17-22850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. Methods A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Results Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Conclusions Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Collapse
Affiliation(s)
- Yeni H Yücel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Ryerson University, Toronto, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
| | - Kirsten Cardinell
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Shireen Khattak
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael Lapinski
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fang Cheng
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Glaucoma Unit, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
113
|
Ficarrotta KR, Bello SA, Mohamed YH, Passaglia CL. Aqueous Humor Dynamics of the Brown-Norway Rat. Invest Ophthalmol Vis Sci 2019; 59:2529-2537. [PMID: 29847660 PMCID: PMC5967599 DOI: 10.1167/iovs.17-22915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The study aimed to provide a quantitative description of aqueous humor dynamics in healthy rat eyes. Methods One eye of 26 anesthetized adult Brown-Norway rats was cannulated with a needle connected to a perfusion pump and pressure transducer. Pressure-flow data were measured in live and dead eyes by varying pump rate (constant-flow technique) or by modulating pump duty cycle to hold intraocular pressure (IOP) at set levels (modified constant-pressure technique). Data were fit by the Goldmann equation to estimate conventional outflow facility (\begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}C\end{document}) and unconventional outflow rate (\begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{F_{un}}\end{document}). Parameter estimates were respectively checked by inserting a shunt of similar conductance into the eye and by varying eye hydration methodology. Results Rat IOP averaged 14.6 ± 1.9 mm Hg at rest. Pressure-flow data were repeatable and indistinguishable for the two perfusion techniques, yielding \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}C\end{document} = 0.023 ± 0.002 μL/min/mm Hg and \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{F_{un}}\end{document} = 0.096 ± 0.024 μL/min. \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}C\end{document} was similar for live and dead eyes and increased upon shunt insertion by an amount equal to shunt conductance, validating measurement accuracy. At 100% humidity \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{F_{un}}\end{document} dropped to 0.003 ± 0.030 μL/min. Physiological washout was not observed (−0.35 ± 0.65%/h), and trabecular anatomy looked normal. Conclusions Rat aqueous humor dynamics are intermediate in magnitude compared to those in mice and humans, consistent with species differences in eye size. \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}C\end{document} does not change with time or death. Evaporation complicates measurement of \begin{document}\newcommand{\bialpha}{\boldsymbol{\alpha}}\newcommand{\bibeta}{\boldsymbol{\beta}}\newcommand{\bigamma}{\boldsymbol{\gamma}}\newcommand{\bidelta}{\boldsymbol{\delta}}\newcommand{\bivarepsilon}{\boldsymbol{\varepsilon}}\newcommand{\bizeta}{\boldsymbol{\zeta}}\newcommand{\bieta}{\boldsymbol{\eta}}\newcommand{\bitheta}{\boldsymbol{\theta}}\newcommand{\biiota}{\boldsymbol{\iota}}\newcommand{\bikappa}{\boldsymbol{\kappa}}\newcommand{\bilambda}{\boldsymbol{\lambda}}\newcommand{\bimu}{\boldsymbol{\mu}}\newcommand{\binu}{\boldsymbol{\nu}}\newcommand{\bixi}{\boldsymbol{\xi}}\newcommand{\biomicron}{\boldsymbol{\micron}}\newcommand{\bipi}{\boldsymbol{\pi}}\newcommand{\birho}{\boldsymbol{\rho}}\newcommand{\bisigma}{\boldsymbol{\sigma}}\newcommand{\bitau}{\boldsymbol{\tau}}\newcommand{\biupsilon}{\boldsymbol{\upsilon}}\newcommand{\biphi}{\boldsymbol{\phi}}\newcommand{\bichi}{\boldsymbol{\chi}}\newcommand{\bipsi}{\boldsymbol{\psi}}\newcommand{\biomega}{\boldsymbol{\omega}}{F_{un}}\end{document} even when eyes are not enucleated. Absence of washout is a notable finding seen only in mouse and human eyes to date.
Collapse
Affiliation(s)
- Kayla R Ficarrotta
- Chemical and Biomedical Engineering Department, University of South Florida, Tampa, Florida, United States
| | - Simon A Bello
- Electrical Engineering Department, University of South Florida, Tampa, Florida, United States
| | - Youssef H Mohamed
- Chemical and Biomedical Engineering Department, University of South Florida, Tampa, Florida, United States
| | - Christopher L Passaglia
- Chemical and Biomedical Engineering Department, University of South Florida, Tampa, Florida, United States.,Ophthalmology Department, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
114
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
115
|
Simsek T, Bilgeç MD. Ahmed glaucoma valve implantation versus suprachoroidal silicone tube implantation following the injection of bevacizumab into the anterior chamber in patients with neovascular glaucoma. Graefes Arch Clin Exp Ophthalmol 2019; 257:799-804. [PMID: 30610423 DOI: 10.1007/s00417-018-04219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022] Open
Abstract
PURPOSE This study compared the efficacy and safety of Ahmed glaucoma valve (AGV) implantation versus suprachoroidal silicone tube (SST) implantation after the injection of bevacizumab into the anterior chamber in patients with neovascular glaucoma. METHODS Patients were randomly assigned to undergo AGV or SST implantation. Bevacizumab was injected into the anterior chamber at a dosage of 1.25 mg/0.1 mL, 1 week before surgery. Intraocular pressure (IOP) control, complication, and success rates were compared between the groups. Success was defined as a final IOP > 5 mmHg, < 22 mmHg with or without any antiglaucoma drug. RESULTS A total of 23 patients were enrolled in the study, including 13 (56.5%) in the AGV group (group 1) and 10 (43.5%) in the SST group (group 2). The mean baseline IOP was 42.0 ± 9.1 mmHg in group 1 and 39.5 ± 10 mmHg in group 2 (p > 0.05). The mean IOP was 16.9 ± 7.0 mmHg in group 1 and 12.5 ± 6.7 mmHg in group 2 on the first day after surgery. After a mean follow-up period of 19.4 ± 5.2 months, success was achieved in 12 (92.3%) patients in group 1 and in 1 (10%) patient in group 2. There was a statistically significant difference in terms of the success rate between groups (p < 0.05). Complications included hyphema in three (23%) patients, obstruction of the AGV tube by iris tissue in one (7.7%) patient, and tube exposure in one patient (7.7%) in group 1. Suprachoroidal silicone tube dislocation to the anterior chamber was observed in one (10%) patient in group 2. CONCLUSION AGV implantation after the injection of bevacizumab into the anterior chamber had a higher success rate than SST implantation. Complications were seen more frequently in the AGV group.
Collapse
Affiliation(s)
- Tulay Simsek
- Department of Ophthalmology, School of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey.
| | - Mustafa Değer Bilgeç
- Department of Ophthalmology, School of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
116
|
|
117
|
Catheter-independent suture probe canaloplasty with suprachoroidal drainage. Graefes Arch Clin Exp Ophthalmol 2018; 257:169-173. [DOI: 10.1007/s00417-018-4182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 11/26/2022] Open
|
118
|
Lynch JM, Li B, Katoli P, Xiang C, Leehy B, Rangaswamy N, Saenz-Vash V, Wang YK, Lei H, Nicholson TB, Meredith E, Rice DS, Prasanna G, Chen A. Binding of a glaucoma-associated myocilin variant to the αB-crystallin chaperone impedes protein clearance in trabecular meshwork cells. J Biol Chem 2018; 293:20137-20156. [PMID: 30389787 DOI: 10.1074/jbc.ra118.004325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
Myocilin (MYOC) was discovered more than 20 years ago and is the gene whose mutations are most commonly observed in individuals with glaucoma. Despite extensive research efforts, the function of WT MYOC has remained elusive, and how mutant MYOC is linked to glaucoma is unclear. Mutant MYOC is believed to be misfolded within the endoplasmic reticulum, and under normal physiological conditions misfolded MYOC should be retro-translocated to the cytoplasm for degradation. To better understand mutant MYOC pathology, we CRISPR-engineered a rat to have a MYOC Y435H substitution that is the equivalent of the pathological human MYOC Y437H mutation. Using this engineered animal model, we discovered that the chaperone αB-crystallin (CRYAB) is a MYOC-binding partner and that co-expression of these two proteins increases protein aggregates. Our results suggest that the misfolded mutant MYOC aggregates with cytoplasmic CRYAB and thereby compromises protein clearance mechanisms in trabecular meshwork cells, and this process represents the primary mode of mutant MYOC pathology. We propose a model by which mutant MYOC causes glaucoma, and we propose that therapeutic treatment of patients having a MYOC mutation may focus on disrupting the MYOC-CRYAB complexes.
Collapse
Affiliation(s)
- Jeffrey M Lynch
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139.
| | - Bing Li
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Parvaneh Katoli
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Chuanxi Xiang
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Barrett Leehy
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Nalini Rangaswamy
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Veronica Saenz-Vash
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Y Karen Wang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Hong Lei
- Laboratory Animal Services, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Thomas B Nicholson
- Chemical Biology and Therapeutics, and Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Erik Meredith
- Global Developmental Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Dennis S Rice
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Ganesh Prasanna
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| | - Amy Chen
- From Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139
| |
Collapse
|
119
|
Tanna AP, Johnson M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology 2018; 125:1741-1756. [PMID: 30007591 PMCID: PMC6188806 DOI: 10.1016/j.ophtha.2018.04.040] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/11/2023] Open
Abstract
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells decreased outflow resistance placed a spotlight on the Rho kinase pathway that was known to regulate the cytoskeleton. Ultimately, a search for Rho kinase inhibitors led to the discovery of several molecules of therapeutic interest, leaving us today with 2 new ocular hypotensive agents approved for clinical use: ripasudil in Japan and netarsudil in the United States. These represent members of the first new class of clinically useful ocular hypotensive agents since the US Food and Drug Administration approval of latanoprost in 1996. The development of Rho kinase inhibitors as a class of medications to lower IOP in patients with glaucoma and ocular hypertension represents a triumph in translational research. Rho kinase inhibitors are effective alone or when combined with other known ocular hypotensive medications. They also offer the possibility of neuroprotective activity, a favorable impact on ocular blood flow, and even an antifibrotic effect that may prove useful in conventional glaucoma surgery. Local adverse effects, however, including conjunctival hyperemia, subconjunctival hemorrhages, and cornea verticillata, are common. Development of Rho kinase inhibitors targeted to the cells of the outflow pathway and the retina may allow these agents to have even greater clinical impact. The objectives of this review are to describe the basic science underlying the development of Rho kinase inhibitors as a therapy to lower IOP and to summarize the results of the clinical studies reported to date. The neuroprotective and vasoactive properties of Rho kinase inhibitors, as well as the antifibrotic properties, of these agents are reviewed in the context of their possible role in the medical and surgical treatment of glaucoma.
Collapse
Affiliation(s)
- Angelo P Tanna
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Mark Johnson
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
120
|
TAVARES-SILVA M, FERREIRA D, CARDOSO S, RAIMUNDO AR, BARBOSA-BREDA J, LEITE-MOREIRA A, ROCHA-SOUSA A. Modulation of Iris Sphincter and Ciliary Muscles by Urocortin 2. Physiol Res 2018. [DOI: 10.33549/physiolres.933646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urocortin 2 (UCN2) is a peptide related to corticotropin-releasing factor, capable of activating CRF-R2. Among its multisystemic effects, it has actions in all 3 muscle subtypes. This study’s aim was to determine its potential role in two of the intrinsic eye muscle kinetics. Strips of iris sphincter (rabbit) and ciliary (bovine) muscles were dissected and mounted in isometric force-transducer systems filled with aerated-solutions. Contraction was elicited using carbachol (10-6 M for iris sphincter, 10-5 M for ciliary muscle), prior adding to all testing substances. UCN2 induced relaxation in iris sphincter muscle, being the effect maximal at 10-7 M concentrations (-12.2 % variation vs. control). This effect was abolished with incubation of indomethacin, antisauvagine-30, chelerytrine and SQ22536, but preserved with L-nitro-L-arginine. In carbachol pre-stimulated ciliary muscle, UCN2 (10-5 M) enhanced contraction (maximal effect of 18.2 % increase vs. control). UCN2 is a new modulator of iris sphincter relaxation, dependent of CRF-R2 activation, synthesis of prostaglandins (COX pathway) and both adenylate cyclase and PKC signaling pathways, but independent of nitric oxide production. Regarding ciliary muscle, UCN2 enhances carbachol-induced contraction, in higher doses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A. ROCHA-SOUSA
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
121
|
Borodin YI, Bgatova NP, Nogovitsina SR, Trunov AN, Konenkov VI, Chernykh VV. [Lymphatic system of the eye]. Vestn Oftalmol 2018; 134:86-91. [PMID: 29771890 DOI: 10.17116/oftalma2018134286-90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Existence of lymphatic outflow of intraocular fluid is still an open question. Identification of the lymphatic capillaries and vessels in various human organs in normal and pathological conditions became possible with discovery of endotheliocyte markers for lymphatic vessels. However, the available information on the presence of lymphatic structures in the human eye is inconsistent and uncertain. The data on lymphatic drainage of the eye is of interest, particularly because it may help understand glaucoma pathogenesis, mechanisms of development of eye inflammatory diseases, and develop pathogenetic therapies. The article reviews literature and presents the authors' own views on lymphatic drainage of the human eye.
Collapse
Affiliation(s)
- Yu I Borodin
- Research Institute of Clinical and Experimental Lymphology, 2 Timakova St., Novosibirsk, Russian Federation, 630060
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology, 2 Timakova St., Novosibirsk, Russian Federation, 630060
| | - S R Nogovitsina
- Research Institute of Clinical and Experimental Lymphology, 2 Timakova St., Novosibirsk, Russian Federation, 630060
| | - A N Trunov
- Novosibirsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution, 10 Kolkhidskaya St., Novosibirsk, Russian Federation, 630096
| | - V I Konenkov
- Research Institute of Clinical and Experimental Lymphology, 2 Timakova St., Novosibirsk, Russian Federation, 630060
| | - V V Chernykh
- Novosibirsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution, 10 Kolkhidskaya St., Novosibirsk, Russian Federation, 630096
| |
Collapse
|
122
|
Wareham LK, Buys ES, Sappington RM. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide 2018; 77:75-87. [PMID: 29723581 DOI: 10.1016/j.niox.2018.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Glaucoma is a prevalent optic neuropathy characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs) and their optic nerve axons, which leads to irreversible visual field loss. Multiple risk factors for the disease have been identified, but elevated intraocular pressure (IOP) remains the primary risk factor amenable to treatment. Reducing IOP however does not always prevent glaucomatous neurodegeneration, and many patients progress with the disease despite having IOP in the normal range. There is increasing evidence that nitric oxide (NO) is a direct regulator of IOP and that dysfunction of the NO-Guanylate Cyclase (GC) pathway is associated with glaucoma incidence. NO has shown promise as a novel therapeutic with targeted effects that: 1) lower IOP; 2) increase ocular blood flow; and 3) confer neuroprotection. The various effects of NO in the eye appear to be mediated through the activation of the GC- guanosine 3:5'-cyclic monophosphate (cGMP) pathway and its effect on downstream targets, such as protein kinases and Ca2+ channels. Although NO-donor compounds are promising as therapeutics for IOP regulation, they may not be ideal to harness the neuroprotective potential of NO signaling. Here we review evidence that supports direct targeting of GC as a novel pleiotrophic treatment for the disease, without the need for direct NO application. The identification and targeting of other factors that contribute to glaucoma would be beneficial to patients, particularly those that do not respond well to IOP-dependent interventions.
Collapse
Affiliation(s)
- Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
123
|
A generalised porous medium approach to study thermo-fluid dynamics in human eyes. Med Biol Eng Comput 2018; 56:1823-1839. [PMID: 29564696 DOI: 10.1007/s11517-018-1813-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.
Collapse
|
124
|
Kazemi A, McLaren JW, Kopczynski CC, Heah TG, Novack GD, Sit AJ. The Effects of Netarsudil Ophthalmic Solution on Aqueous Humor Dynamics in a Randomized Study in Humans. J Ocul Pharmacol Ther 2018; 34:380-386. [PMID: 29469601 PMCID: PMC5995263 DOI: 10.1089/jop.2017.0138] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Netarsudil, an inhibitor of Rho kinase and a norepinephrine transporter, has been shown to lower elevated intraocular pressure (IOP) in controlled studies of patients with open-angle glaucoma and ocular hypertension, and in healthy volunteers. The mechanism of this ocular hypotensive effect in humans is unknown. METHODS The objective of this study was to evaluate the effect of netarsudil 0.02% on aqueous humor dynamics (AHD) parameters. In this double-masked, vehicle-controlled, paired-eye comparison study, 11 healthy volunteers received topical netarsudil ophthalmic solution 0.02% or its vehicle once daily for 7 days (morning dosing). The primary endpoints were the change in AHD parameters, compared between active and vehicle-treated eyes. RESULTS In netarsudil-treated eyes, diurnal outflow facility increased from 0.27 ± 0.10 μL/min/mmHg to 0.33 ± 0.11 μL/min/mmHg (+22%; P = 0.02) after 7 days of treatment. In placebo-treated eyes, diurnal outflow facility did not significantly change (P = 0.94). The difference between netarsudil and placebo eyes in diurnal change of outflow facility was 0.08 μL/min/mmHg (P < 0.001). Diurnal episcleral venous pressure (EVP) in netarsudil-treated eyes decreased from 7.9 ± 1.2 mmHg to 7.2 ± 1.8 (-10%; P = 0.01). Diurnal EVP was not significantly different between netarsudil- and placebo-treated eyes. There was a trend toward decreasing aqueous humor flow rate (-15%; P = 0.08). No treatment changes were seen in uveoscleral outflow rate. CONCLUSIONS Once-daily dosing of netarsudil ophthalmic solution 0.02% lowered IOP through increasing trabecular outflow facility and reducing EVP. This suggests a combination of mechanisms that affect both the proximal and distal outflow pathways.
Collapse
Affiliation(s)
- Arash Kazemi
- 1 Department of Ophthalmology, Mayo Clinic , Rochester, Minnesota
| | - Jay W McLaren
- 1 Department of Ophthalmology, Mayo Clinic , Rochester, Minnesota
| | - Casey C Kopczynski
- 2 Aerie Pharmaceuticals, Inc. , Bedminster, New Jersey.,3 Aerie Pharmaceuticals, Inc. , Durham, North Carolina
| | - Theresa G Heah
- 2 Aerie Pharmaceuticals, Inc. , Bedminster, New Jersey.,3 Aerie Pharmaceuticals, Inc. , Durham, North Carolina
| | - Gary D Novack
- 4 Departments of Ophthalmology and Pharmacology, University of California , Davis, California.,5 PharmaLogic Development, Inc. , San Rafael, California
| | - Arthur J Sit
- 1 Department of Ophthalmology, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
125
|
Abstract
Mice and rats are being increasingly used in glaucoma research and much useful data have been generated from them. One aspect of using these animals for this purpose involves assessment of aqueous humor dynamics. Several techniques have been described in the literature for the determination of one or more of these parameters in rodents, in both living animals and eyes perfused ex vivo. Here, we describe the practical details for a technique for the determination of all principal parameters of aqueous humor dynamics (intraocular pressure (IOP), aqueous humor formation rate (Fin), uveoscleral outflow rate (Fu), aqueous outflow facility (C), and episcleral venous pressure (Pe)) in the living rat and mouse eye, in a single experimental session.
Collapse
|
126
|
Szurman P, Januschowski K, Boden KT, Seuthe AM. Suprachoroidal drainage with collagen sheet implant- a novel technique for non-penetrating glaucoma surgery. Graefes Arch Clin Exp Ophthalmol 2017; 256:381-385. [DOI: 10.1007/s00417-017-3873-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/11/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
|
127
|
Figus M, Posarelli C, Passani A, Albert TG, Oddone F, Sframeli AT, Nardi M. The supraciliary space as a suitable pathway for glaucoma surgery: Ho-hum or home run? Surv Ophthalmol 2017; 62:828-837. [DOI: 10.1016/j.survophthal.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
|
128
|
Shinozaki Y, Kashiwagi K, Namekata K, Takeda A, Ohno N, Robaye B, Harada T, Iwata T, Koizumi S. Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy. JCI Insight 2017; 2:93456. [PMID: 28978804 DOI: 10.1172/jci.insight.93456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022] Open
Abstract
Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs) and visual loss. Although one of the highest risk factors for glaucoma is elevated intraocular pressure (IOP) and reduction in IOP is the only proven treatment, the mechanism of IOP regulation is poorly understood. We report that the P2Y6 receptor is critical for lowering IOP and that ablation of the P2Y6 gene in mice (P2Y6KO) results in hypertensive glaucoma-like optic neuropathy. Topically applied uridine diphosphate, an endogenous selective agonist for the P2Y6 receptor, decreases IOP. The P2Y6 receptor was expressed in nonpigmented epithelial cells of the ciliary body and controlled aqueous humor dynamics. P2Y6KO mice exhibited sustained elevation of IOP, age-dependent damage to the optic nerve, thinning of ganglion cell plus inner plexiform layers, and a reduction of RGC numbers. These changes in P2Y6KO mice were attenuated by an IOP lowering agent. Consistent with RGC damage, visual functions were impaired in middle-aged P2Y6KO mice. We also found that expression and function of P2Y6 receptors in WT mice were significantly reduced by aging, another important risk factor for glaucoma. In summary, our data show that dysfunctional purinergic signaling causes IOP dysregulation, resulting in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, and
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akiko Takeda
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, and
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Bernard Robaye
- Institute of Interdisciplinary Research and.,Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, Belgium
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, and
| |
Collapse
|
129
|
Kim J, Park DY, Bae H, Park DY, Kim D, Lee CK, Song S, Chung TY, Lim DH, Kubota Y, Hong YK, He Y, Augustin HG, Oliver G, Koh GY. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest 2017; 127:3877-3896. [PMID: 28920924 PMCID: PMC5617682 DOI: 10.1172/jci94668] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is often caused by elevated intraocular pressure (IOP), which arises due to increased resistance to aqueous humor outflow (AHO). Aqueous humor flows through Schlemm's canal (SC), a lymphatic-like vessel encircling the cornea, and via intercellular spaces of ciliary muscle cells. However, the mechanisms underlying increased AHO resistance are poorly understood. Here, we demonstrate that signaling between angiopoietin (Angpt) and the Angpt receptor Tie2, which is critical for SC formation, is also indispensable for maintaining SC integrity during adulthood. Deletion of Angpt1/Angpt2 or Tie2 in adult mice severely impaired SC integrity and transcytosis, leading to elevated IOP, retinal neuron damage, and impairment of retinal ganglion cell function, all hallmarks of POAG in humans. We found that SC integrity is maintained by interconnected and coordinated functions of Angpt-Tie2 signaling, AHO, and Prox1 activity. These functions diminish in the SC during aging, leading to impaired integrity and transcytosis. Intriguingly, Tie2 reactivation using a Tie2 agonistic antibody rescued the POAG phenotype in Angpt1/Angpt2-deficient mice and rejuvenated the SC in aged mice. These results indicate that the Angpt-Tie2 system is essential for SC integrity. The impairment of this system underlies POAG-associated pathogenesis, supporting the possibility that Tie2 agonists could be a therapeutic option for glaucoma.
Collapse
Affiliation(s)
- Jaeryung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dae-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hosung Bae
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Do Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongkyu Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Choong-kun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sukhyun Song
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tae-Young Chung
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Preventive Medicine, Catholic University School of Medicine, Seoul, Republic of Korea
| | - Yoshiaki Kubota
- The Laboratory of Vascular Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Young-Kwon Hong
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
130
|
Madekurozwa M, Reina-Torres E, Overby DR, Sherwood JM. Direct measurement of pressure-independent aqueous humour flow using iPerfusion. Exp Eye Res 2017; 162:129-138. [PMID: 28720436 PMCID: PMC5587799 DOI: 10.1016/j.exer.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Reduction of intraocular pressure is the sole therapeutic target for glaucoma. Intraocular pressure is determined by the dynamics of aqueous humour secretion and outflow, which comprise several pressure-dependent and pressure-independent mechanisms. Accurately quantifying the components of aqueous humour dynamics is essential in understanding the pathology of glaucoma and the development of new treatments. To better characterise aqueous humour dynamics, we propose a method to directly measure pressure-independent aqueous humour flow. Using the iPerfusion system, we directly measure the flow into the eye when the pressure drop across the pressure-dependent pathways is eliminated. Using this approach we address i) the magnitude of pressure-independent flow in ex vivo eyes, ii) whether we can accurately measure an artificially imposed pressure-independent flow, and iii) whether the presence of a pressure-independent flow affects our ability to measure outflow facility. These studies are conducted in mice, which are a common animal model for aqueous humour dynamics. In eyes perfused with a single cannula, the average pressure-independent flow was 1 [-3, 5] nl/min (mean [95% confidence interval]) (N = 6). Paired ex vivo eyes were then cannulated with two needles, connecting the eye to both iPerfusion and a syringe pump, which was used to impose a known pressure-independent flow of 120 nl/min into the experimental eye only. The measured pressure-independent flow was then 121 [117, 125] nl/min (N = 7), indicating that the method could measure pressure-independent flow with high accuracy. Finally, we showed that the artificially imposed pressure-independent flow did not affect our ability to measure facility, provided that the pressure-dependence of facility and the true pressure-independent flow were accounted for. The present study provides a robust method for measurement of pressure-independent flow, and demonstrates the importance of accurately quantifying this parameter when investigating pressure-dependent flow or outflow facility.
Collapse
Affiliation(s)
| | | | - Darryl R Overby
- Dept. of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| | - Joseph M Sherwood
- Dept. of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|