Mohammadi M, Zare Z, Allah-Moradi E, Vaezi N, Valadan R, Tehrani M. Alterations in mRNA and protein expression of glutamate transporters in rat hippocampus after paraoxon exposure.
Neurotoxicology 2016;
57:251-257. [PMID:
27769869 DOI:
10.1016/j.neuro.2016.10.009]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/15/2016] [Accepted: 10/15/2016] [Indexed: 01/30/2023]
Abstract
Organophosphates affect brain function through a variety of mechanisms beyond their shared role as cholinesterase inhibitors. The aim of the current study was to investigate the changes in the expression of glial (GLAST and GLT-1) and neuronal (EAAC1) glutamate transporters at mRNA and protein levels in paraoxon-treated rat hippocampus. Adult male Wistar rats were intraperitoneally treated with either vehicle (corn oil) or one of three dosages of paraoxon (0.3, 0.7 or 1mg/kg). After 4 or 18h, both hippocampi of each rat were collected to detect mRNA and protein expression of glutamate transporters using the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting, respectively. Animals treated with 0.3mg/kg paraoxon showed no difference in mRNA and protein levels of the glutamate transporters when compared with control group. At 4h after exposure with 0.7 and 1mg/kg paraoxon, the expression of GLAST and GLT-1 increased at mRNA and protein levels and remained elevated after 18h. No difference in the expression of EAAC1 at mRNA and protein levels was observed in any paraoxon-treated groups compared with the control group. This study showed an increased expression of glial (GLAST and GLT-1), but not neuronal (EAAC1) glutamate transporters, in adult rat hippocampus following administration of convulsive dosages of paraoxon. These suggest a protective and compensatory adaptation for effective uptake of glutamate in hippocampus induced by paraoxon and thus attenuating seizure activity.
Collapse