101
|
Pham DT, Saelim N, Tiyaboonchai W. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids Surf B Biointerfaces 2019; 181:705-713. [PMID: 31228853 DOI: 10.1016/j.colsurfb.2019.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/08/2019] [Accepted: 06/05/2019] [Indexed: 02/02/2023]
Abstract
Silk fibroin has been utilized extensively for biomedical purposes, especially the drug delivery systems. This study introduced and characterized three novel α-mangostin loaded crosslinked fibroin nanoparticles (FNPs), using EDC or PEI as a crosslinker, for cancer treatment. All three formulas were spherical particles with a mean size of approximately 300 nm. By varying the type and/or amount of the crosslinkers, particle surface charge was controllable from -15 to +30 mV. Crosslinked FNPs exhibited higher drug entrapment efficiency (70%) and drug loading (7%) than non-crosslinked FNP. FT-IR, XRD, and DSC analytical methods confirmed that α-mangostin was entrapped in FNPs in molecular dispersion form. Compared to the free α-mangostin, the crosslinked FNPs increased the drug's solubility up to threefold. They also showed sustained release characteristics of more than 3 days, and reduced free α-mangostin hematotoxicity by 90%. The α-mangostin loaded FNPs were physicochemically stable for up to 24 h when dispersed in intravenous diluent and for at least 6 months when preserved as lyophilized powder at 4 °C. In terms of anticancer efficacy, on both Caco-2 colorectal and MCF-7 breast adenocarcinoma cell lines, all formulas maintain α-mangostin's apoptotic effect while exhibit greater cytotoxicity than the free drug. In conclusion, α-mangostin loaded crosslinked FNPs show high potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Duy Toan Pham
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Nuttawut Saelim
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Waree Tiyaboonchai
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand; The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, Bangkok, Thailand; The Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
102
|
Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, "The Queen of Fruits," and new advances in postharvest and in food and engineering applications: A review. J Adv Res 2019; 20:61-70. [PMID: 31210985 PMCID: PMC6562293 DOI: 10.1016/j.jare.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
This review highlights recent advances of mangosteen research in the postharvest, food and engineering fields. In postharvest fields, phytohormones, metabolites, and pest/disease management are described. Mangosteen has also been used in various food products and for animal feed supplementation. In engineering, mangosteen extract is useful in solar cells, carbon dots and advanced materials. Mangosteen-based products may benefit consumers and the engineering and biomedical industries.
One of the most prolific plants utilized in various applications is mangosteen (Garcinia mangostana L.). Rich in potent bioactive compounds, such as xanthones, mangosteen is known to possess pharmacologically important anti-inflammatory and anti-tumor properties. However, most previous reviews have only discussed the application of mangosteen in medicinal areas, yet more recent studies have diverged and valorized its usage in other scientific fields. In this review, the utilization of this exotic fruit in postharvest biology (phytohormone roles, metabolite profiling, bioactive compounds, isolation method optimization, chemical contaminant identification, and management of pests and fruit disorders), food science (food products, animal feed supplementation, and food shelf-life determination), and engineering fields (fabric and solar cell dyes, carbon dots, activated carbon, and biomedical advanced materials) is presented in detail. Research papers published from 2016 onward were selected and reviewed to show the recent research trends in these areas. In conclusion, mangosteen has been utilized for various purposes, ranging from usage in industrially important products to applications in advanced technologies and biomedical innovation.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Faridda Hannim Ahmad-Hashim
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Sharifah Nabihah Syed Jaafar
- Bioresource and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
103
|
The Protective Effect of Alpha-Mangostin against Cisplatin-Induced Cell Death in LLC-PK1 Cells is Associated to Mitochondrial Function Preservation. Antioxidants (Basel) 2019; 8:antiox8050133. [PMID: 31096625 PMCID: PMC6562511 DOI: 10.3390/antiox8050133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022] Open
Abstract
Cis-dichlorodiammineplatinum II (CDDP) is a chemotherapeutic agent that induces nephrotoxicity by different mechanisms, including oxidative stress, mitochondrial dysfunction, autophagy, and endoplasmic reticulum stress. This study aimed to evaluate if the protective effects of the antioxidant alpha-mangostin (αM) in CDDP-induced damage in proximal tubule Lilly laboratory culture porcine kidney (LLC-PK1) cells, are related to mitochondrial function preservation. It was found that αM co-incubation prevented CDDP-induced cell death. Furthermore, αM prevented the CDDP-induced decrease in cell respiratory states, in the maximum capacity of the electron transfer system (E) and in the respiration associated to oxidative phosphorylation (OXPHOS). CDDP also decreased the protein levels of voltage dependence anion channel (VDAC) and mitochondrial complex subunits, which together with the reduction in E, the mitofusin 2 decrease and the mitochondrial network fragmentation observed by MitoTracker Green, suggest the mitochondrial morphology alteration and the decrease in mitochondrial mass induced by CDDP. CDDP also induced the reduction in mitochondrial biogenesis observed by transcription factor A, mitochondria (TFAM) decreased protein-level and the increase in mitophagy. All these changes were prevented by αM. Taken together, our results imply that αM’s protective effects in CDDP-induced toxicity in LLC-PK1 cells are associated to mitochondrial function preservation.
Collapse
|
104
|
Berger G, Marloye M, Lawler SE. Pharmacological Modulation of the STING Pathway for Cancer Immunotherapy. Trends Mol Med 2019; 25:412-427. [PMID: 30885429 DOI: 10.1016/j.molmed.2019.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
The advent of immunotherapy in recent years has shown the potential to revolutionize the treatment of cancer. Unleashing antitumor T cell responses via immune checkpoint blockade has led to remarkable responses in previously untreatable tumors. The master regulator of interferon-mediated antiviral responses - stimulator of interferon genes (STING) - has now emerged as a critical mediator of innate immune sensing of cancer, and is a promising target for local immunostimulation, promoting intratumoral inflammation, and facilitating antitumor T cell responses. Pharmacological activation of the STING pathway can lead to T cell-mediated tumor regression in preclinical tumor models, and novel STING activating small molecules are now being tested in clinical trials. Here we will introduce the STING pathway and review the current state of drug development.
Collapse
Affiliation(s)
- Gilles Berger
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium; Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mickaël Marloye
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Sean E Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
105
|
Xiong Z, Zhang X, Li Y, Peng X, Fu J, Guo J, Xie F, Jiang C, Lin B, Liu Y, Cheng M. Syntheses of 12H-benzo[a]xanthen-12-ones and benzo[a]acridin-12(7H)-ones through Au(i)-catalyzed Michael addition/6-endo-trig cyclization/aromatization cascade annulation. Org Biomol Chem 2019; 16:7361-7374. [PMID: 30124720 DOI: 10.1039/c8ob01684d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A multifaceted gold(i)-catalyzed aromaticity-driven double 6-endo cascade cyclization strategy to synthesize both 12H-benzo[a]xanthen-12-ones and benzo[a]acridin-12(7H)-ones, whose core motifs xanthone and acridone both exist as important scaffolds in an immense number of bioactive compounds, was developed. The scopes of this strategy were examined by using a batch of synthetic 1,3-diphenylprop-2-yn-1-one substrates. To probe the mechanism of this cyclization a control experiment for synthesizing intermediates was performed. Thus, a putative mechanism was determined according to this experiment and previous studies.
Collapse
Affiliation(s)
- Zhiling Xiong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Aizat WM, Jamil IN, Ahmad-Hashim FH, Noor NM. Recent updates on metabolite composition and medicinal benefits of mangosteen plant. PeerJ 2019; 7:e6324. [PMID: 30755827 PMCID: PMC6368837 DOI: 10.7717/peerj.6324] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mangosteen (Garcinia mangostana L.) fruit has a unique sweet-sour taste and is rich in beneficial compounds such as xanthones. Mangosteen originally been used in various folk medicines to treat diarrhea, wounds, and fever. More recently, it had been used as a major component in health supplement products for weight loss and for promoting general health. This is perhaps due to its known medicinal benefits, including as anti-oxidant and anti-inflammation. Interestingly, publications related to mangosteen have surged in recent years, suggesting its popularity and usefulness in research laboratories. However, there are still no updated reviews (up to 2018) in this booming research area, particularly on its metabolite composition and medicinal benefits. METHOD In this review, we have covered recent articles within the years of 2016 to 2018 which focus on several aspects including the latest findings on the compound composition of mangosteen fruit as well as its medicinal usages. RESULT Mangosteen has been vastly used in medicinal areas including in anti-cancer, anti-microbial, and anti-diabetes treatments. Furthermore, we have also described the benefits of mangosteen extract in protecting various human organs such as liver, skin, joint, eye, neuron, bowel, and cardiovascular tissues against disorders and diseases. CONCLUSION All in all, this review describes the numerous manipulations of mangosteen extracted compounds in medicinal areas and highlights the current trend of its research. This will be important for future directed research and may allow researchers to tackle the next big challenge in mangosteen study: drug development and human applications.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Ili Nadhirah Jamil
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
107
|
Abstract
Objective: Oral cancer presents as a devastating type of malignancy. It is predominant in populations with high use of alcohol and various forms of tobacco as well as poor diets with low intake of fruits and vegetables. The present study focused on the potential of Garcinone E to inhibit HSC-4 oral cancer cell proliferation, migration and invasion. Methods: MTT and colony forming assays were performed to study antiproliferative effects of Garcinone E. Hoechst staining was used to determine levels of apoptosis, with cell invasion and scratch assays conducted for migration and invasion characteristics. The levels of MMPs and cytokines were quantified in Garcinone E treated cells by ELISA. Results: Garcinone E inhibited the proliferation and colony forming potential of HSC-4 cells. It also suppressed migration and invasion with inhibition of MMP-2 and MMP-9 expression. Moreover, it elevated IL-2 and reduced IL-6 expression in HSC-4 cells. Conclusion: Our results demonstrate for the first time that Garcinone E might inhibit metastasis of an oral cancer cell line by blocking invasion, migration and MMP production.
Collapse
Affiliation(s)
- Sheeja K
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre, Medical College, Thiruvanananthapuram, Kerala, India.
| | | |
Collapse
|
108
|
Affiliation(s)
- Choothaweep Palakawong
- Faculty of Agricultural Technology, Department of Food Technology Rajabhat Maha Sarakham University Maha Sarakham Thailand
| | - Pascal Delaquis
- Agriculture and Agri‐Food Canada Summerland Research and Development Centre Summerland British Columbia Canada
| |
Collapse
|
109
|
Alpha-mangostin, an active compound in Garcinia mangostana, abrogates anoikis-resistance in human hepatocellular carcinoma cells. Toxicol In Vitro 2018; 53:222-232. [PMID: 30195041 DOI: 10.1016/j.tiv.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023]
Abstract
Anoikis-resistance is a critical step in cancer progression, especially during the process of metastasis. During this phase, the cancer phenotype that causes cell survival in detachment conditions, drug resistance, and epithelial-to-mesenchymal transition (EMT) is altered. Inhibition of anoikis-resistance can potentially be the molecular target in cancer therapy. Alpha-mangostin, an active compound in Garcinia mangostana, has been reported for its cell-death induction and its chemosensitizing and anti-metastatic properties in many cancer cell types, such as ovarian cancer, lung cancer, and hepatocellular carcinoma. We, therefore, have investigated whether alpha-mangostin could sensitize anoikis in human hepatocellular carcinoma (HepG2). The established anoikis-resistant HepG2 displayed more aggressive malignant behaviors, including rapid proliferation, doxorubicin resistance, up-regulated anti-apoptotic protein levels, and EMT phenotype. Alpha-mangostin significantly sensitized anoikis in HepG2 through the inhibition of cell survival by induced caspase-9, caspase-8 and caspase-3 activities, increased pro-apoptotic protein (Bax, Bim, t-Bid) levels, and decreased anti-apoptotic protein (c-FLIP, Mcl-1) levels. Besides, alpha-mangostin significantly reduced cell re-adhesion and migration, matrix metalloproteinases-2 (MMP-2) and MMP-9 secretions, and EMT-involved protein (N-cadherin, αV, β1 integrin, and vimentin) expressions. AKT and ERK signaling pathways were dramatically suppressed, which indicated that alpha-mangostin inhibited anoikis-resistance via the inhibition of these pathways in HepG2. These findings support the development of alpha-mangostin to be used in the treatment of anoikis-resistant liver cancer.
Collapse
|
110
|
Zhang Y, Sun Z, Pei J, Luo Q, Zeng X, Li Q, Yang Z, Quan J. Identification of α-Mangostin as an Agonist of Human STING. ChemMedChem 2018; 13:2057-2064. [PMID: 30079976 DOI: 10.1002/cmdc.201800481] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 01/03/2023]
Abstract
The xanthone derivate 5',6'-dimethylxanthenone-4-acetic acid (DMXAA, also known as ASA404 or vadimezan) is a potent agonist of murine STING (stimulator of interferon genes), but cannot activate human STING. Herein we report that α-mangostin, which bears the xanthone skeleton, is an agonist of human STING, but activates murine STING to a lesser extent. Biochemical and cell-based assays indicate that α-mangostin binds to and activates human STING, leading to activation of the downstream interferon regulatory factor (IRF) pathway and production of type I interferons. Furthermore, our studies show that α-mangostin has the potential to repolarize human monocyte-derived M2 macrophages to the M1 phenotype. The agonist effect of α-mangostin in the STING pathway might account for its antitumor and antiviral activities.
Collapse
Affiliation(s)
- Yibo Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Sun
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jianwen Pei
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xin Zeng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qinkai Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Junmin Quan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
111
|
Boonmak N, Niyompanich J, Chuysinuan P, Niamlang P, Ekabutr P, Supaphol P. Preparation of mangosteen extract-loaded poly(vinyl acetate) for use as an antibacterial spray-on dressing. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
112
|
Chiral resolution and anticancer effect of xanthones from Garcinia paucinervis. Fitoterapia 2018; 127:220-225. [DOI: 10.1016/j.fitote.2018.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/13/2018] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
|
113
|
Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity. Eur J Med Chem 2018; 152:10-20. [DOI: 10.1016/j.ejmech.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
|
114
|
Mohan S, Syam S, Abdelwahab SI, Thangavel N. An anti-inflammatory molecular mechanism of action of α-mangostin, the major xanthone from the pericarp of Garcinia mangostana: an in silico, in vitro and in vivo approach. Food Funct 2018; 9:3860-3871. [DOI: 10.1039/c8fo00439k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Mangostin (αMN) is a xanthone present in the pericarp of Garcinia mangostana Linn.
Collapse
Affiliation(s)
- Syam Mohan
- Medical Research Centre
- Jazan University
- Jazan
- Saudi Arabia
- Substance Abuse Research Center
| | - Suvitha Syam
- Faculty of Applied Medical Sciences
- Jazan University
- Jazan
- Kingdom of Saudi Arabia
| | | | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- Jazan University
- Jazan
- Saudi Arabia
| |
Collapse
|
115
|
Liang Y, Luo D, Gao X, Wu H. Inhibitory effects of garcinone E on fatty acid synthase. RSC Adv 2018; 8:8112-8117. [PMID: 35542030 PMCID: PMC9078525 DOI: 10.1039/c7ra13246h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 01/16/2023] Open
Abstract
Fatty acid synthase (FAS) is highly expressed in human adipocytes and cancer cells and is considered as a dual therapeutic target for obesity and cancer treatment. Garcinone E is a natural xanthone and exists in the pericarp of Garcinia mangostana. In previous studies, xanthones were reported to be highly active inhibitors of FAS. In the present study, the detailed inhibitory mechanism of garcinone E on FAS was investigated. We found that garcinone E inhibited the activity of FAS in a concentration-dependent manner with a half-inhibitory concentration value of 3.3 μM. The inhibition kinetic results showed that the inhibition of FAS by garcinone E was competitive with respect to acetyl-CoA, mixed competitive and noncompetitive with respect to malonyl-CoA, and noncompetitive to NADPH. In addition, garcinone E showed irreversible inhibition on FAS, which was different from all other xanthones. Since FAS is believed to be a therapeutic target for obesity and cancer treatment, these findings suggest the clinical potential of garcinone E in the prevention and treatment of both obesity and cancer. Garcinone E exhibits both fast-binding reversible and time-dependent irreversible inhibition on the activity of fatty acid synthase.![]()
Collapse
Affiliation(s)
- Yan Liang
- School of Kinesiology and Health
- Capital University of Physical Education and Sports
- Beijing 100191
- China
| | - Di Luo
- Scientific Research Office
- Capital University of Physical Education and Sports
- Beijing 100191
- China
| | - Xuan Gao
- School of Kinesiology and Health
- Capital University of Physical Education and Sports
- Beijing 100191
- China
| | - Hao Wu
- Scientific Research Office
- Capital University of Physical Education and Sports
- Beijing 100191
- China
| |
Collapse
|