101
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
102
|
French RL, Grese ZR, Aligireddy H, Dhavale DD, Reeb AN, Kedia N, Kotzbauer PT, Bieschke J, Ayala YM. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J Biol Chem 2019; 294:6696-6709. [PMID: 30824544 PMCID: PMC6497947 DOI: 10.1074/jbc.ra118.005889] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Aggregates of the RNA-binding protein TDP-43 (TAR DNA-binding protein) are a hallmark of the overlapping neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The process of TDP-43 aggregation remains poorly understood, and whether it includes formation of intermediate complexes is unknown. Here, we analyzed aggregates derived from purified TDP-43 under semidenaturing conditions, identifying distinct oligomeric complexes at the initial time points before the formation of large aggregates. We found that this early oligomerization stage is primarily driven by TDP-43's RNA-binding region. Specific binding to GU-rich RNA strongly inhibited both TDP-43 oligomerization and aggregation, suggesting that RNA interactions are critical for maintaining TDP-43 solubility. Moreover, we analyzed TDP-43 liquid-liquid phase separation and detected similar detergent-resistant oligomers upon maturation of liquid droplets into solid-like fibrils. These results strongly suggest that the oligomers form during the early steps of TDP-43 misfolding. Importantly, the ALS-linked TDP-43 mutations A315T and M337V significantly accelerate aggregation, rapidly decreasing the monomeric population and shortening the oligomeric phase. We also show that aggregates generated from purified TDP-43 seed intracellular aggregation detected by established TDP-43 pathology markers. Remarkably, cytoplasmic aggregate seeding was detected earlier for the A315T and M337V variants and was 50% more widespread than for WT TDP-43 aggregates. We provide evidence for an initial step of TDP-43 self-assembly into intermediate oligomeric complexes, whereby these complexes may provide a scaffold for aggregation. This process is altered by ALS-linked mutations, underscoring the role of perturbations in TDP-43 homeostasis in protein aggregation and ALS-FTD pathogenesis.
Collapse
Affiliation(s)
- Rachel L French
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Zachary R Grese
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Himani Aligireddy
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Dhruva D Dhavale
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Ashley N Reeb
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103
| | - Niraja Kedia
- the MRC Prion Unit, University College London, London W1W 7FF, United Kingdom
| | - Paul T Kotzbauer
- the Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Jan Bieschke
- the MRC Prion Unit, University College London, London W1W 7FF, United Kingdom
| | - Yuna M Ayala
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103,
| |
Collapse
|
103
|
Sivanesam K, Andersen N. Pre-structured hydrophobic peptide β-strands: A universal amyloid trap? Arch Biochem Biophys 2019; 664:51-61. [PMID: 30707943 PMCID: PMC7094768 DOI: 10.1016/j.abb.2019.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/21/2023]
Abstract
Amyloid fibril formation has long been studied because of the variety of proteins that are capable of adopting this structure despite sharing little sequence homology. This makes amyloid fibrils a challenging focus for inhibition studies because the peptides and proteins that form amyloid fibrils cannot be targeted based on a sequence motif. Most peptide inhibitors that target specific amyloidogenic proteins rely heavily on sequence recognition to ensure that the inhibitory peptide is able to bind its target. This approach is limited to targeting one amyloidogenic protein at a time. However, there is increasing evidence of cross-reactivity between amyloid-forming polypeptides. It has therefore become more useful to study the similarities between these proteins that goes beyond their sequence homology. Indeed, the observation that amyloidogenic proteins adopt similar secondary structures along the pathway to fibril formation opens the way to an interesting investigation: the development of inhibitors that could be universal amyloid traps. The review below will analyze two specific amyloidogenic proteins, α-synuclein and human amylin, and introduce a small number of peptides that have been shown to be capable of inhibiting the amyloidogenesis of both of these very dissimilar polypeptides. Some of the inhibitory peptide motifs may indeed, be applicable to Aβ and other amyloidogenic systems.
Collapse
|
104
|
Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, Camins A, Turowski P, García ML. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release 2019; 301:62-75. [PMID: 30876953 PMCID: PMC6510952 DOI: 10.1016/j.jconrel.2019.03.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate for treatment of Alzheimer's disease (AD) but its inherent instability limits bioavailability and effectiveness. We found that EGCG displayed increased stability when formulated as dual-drug loaded PEGylated PLGA nanoparticles (EGCG/AA NPs). Oral administration of EGCG/AA NPs in mice resulted in EGCG accumulation in all major organs, including the brain. Pharmacokinetic comparison of plasma and brain accumulation following oral administration of free or EGCG/AA NPs showed that, whilst in both cases initial EGCG concentrations were similar, long-term (5–25 h) concentrations were ca. 5 fold higher with EGCG/AA NPs. No evidence was found that EGCG/AA NPs utilised a specific pathway across the blood-brain barrier (BBB). However, EGCG, empty NPs and EGCG/AA NPs all induced tight junction disruption and opened the BBB in vitro and ex vivo. Oral treatment of APPswe/PS1dE9 (APP/PS1) mice, a familial model of AD, with EGCG/AA NPs resulted in a marked increase in synapses, as judged by synaptophysin (SYP) expression, and reduction of neuroinflammation as well as amyloid β (Aβ) plaque burden and cortical levels of soluble and insoluble Aβ(1-42) peptide. These morphological changes were accompanied by significantly enhanced spatial learning and memory. Mechanistically, we propose that stabilisation of EGCG in NPs complexes and a destabilized BBB led to higher therapeutic EGCG concentrations in the brain. Thus EGCG/AA NPs have the potential to be developed as a safe and strategy for the treatment of AD.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; UCL Institute of Ophthalmology, University College of London, United Kingdom
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Jui-Hsien Chang
- UCL Institute of Ophthalmology, University College of London, United Kingdom
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Health Institute Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, United Kingdom..
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
105
|
Denis HL, Lauruol F, Cicchetti F. Are immunotherapies for Huntington's disease a realistic option? Mol Psychiatry 2019; 24:364-377. [PMID: 29487401 DOI: 10.1038/s41380-018-0021-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Abstract
There is compelling evidence that the pathophysiology of many neurodegenerative diseases includes dysregulation of the immune system, with some elements that precede disease onset. However, if these alterations are prominent, why have clinical trials targeting this system failed to translate into long-lasting meaningful benefits for patients? This review focuses on Huntington's disease, a genetic disorder marked by notable cerebral and peripheral inflammation. We summarize ongoing and completed clinical trials that have involved pharmacological approaches to inhibit various components of the immune system and their pre-clinical correlates. We then discuss new putative treatment strategies using more targeted immunotherapies such as vaccination and intrabodies and how these may offer new hope in the treatment of Huntington's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Florian Lauruol
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
106
|
Snow AD, Castillo GM, Nguyen BP, Choi PY, Cummings JA, Cam J, Hu Q, Lake T, Pan W, Kastin AJ, Kirschner DA, Wood SG, Rockenstein E, Masliah E, Lorimer S, Tanzi RE, Larsen L. The Amazon rain forest plant Uncaria tomentosa (cat's claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci Rep 2019; 9:561. [PMID: 30728442 PMCID: PMC6365538 DOI: 10.1038/s41598-019-38645-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
Brain aging and Alzheimer's disease both demonstrate the accumulation of beta-amyloid protein containing "plaques" and tau protein containing "tangles" that contribute to accelerated memory loss and cognitive decline. In the present investigation we identified a specific plant extract and its constituents as a potential alternative natural solution for preventing and reducing both brain "plaques and tangles". PTI-00703 cat's claw (Uncaria tomentosa from a specific Peruvian source), a specific and natural plant extract from the Amazon rain forest, was identified as a potent inhibitor and reducer of both beta-amyloid fibrils (the main component of "plaques") and tau protein paired helical filaments/fibrils (the main component of "tangles"). PTI-00703 cat's claw demonstrated both the ability to prevent formation/aggregation and disaggregate preformed Aβ fibrils (1-42 and 1-40) and tau protein tangles/filaments. The disaggregation/dissolution of Aβ fibrils occurred nearly instantly when PTI-00703 cat's claw and Aβ fibrils were mixed together as shown by a variety of methods including Thioflavin T fluorometry, Congo red staining, Thioflavin S fluorescence and electron microscopy. Sophisticated structural elucidation studies identified the major fractions and specific constituents within PTI-00703 cat's claw responsible for both the observed "plaque" and "tangle" inhibitory and reducing activity. Specific proanthocyanidins (i.e. epicatechin dimers and variants thereof) are newly identified polyphenolic components within Uncaria tomentosa that possess both "plaque and tangle" reducing and inhibitory activity. One major identified specific polyphenol within PTI-00703 cat's claw was epicatechin-4β-8-epicatechin (i.e. an epicatechin dimer known as proanthocyanidin B2) that markedly reduced brain plaque load and improved short-term memory in younger and older APP "plaque-producing" (TASD-41) transgenic mice (bearing London and Swedish mutations). Proanthocyanidin B2 was also a potent inhibitor of brain inflammation as shown by reduction in astrocytosis and gliosis in TASD-41 transgenic mice. Blood-brain-barrier studies in Sprague-Dawley rats and CD-1 mice indicated that the major components of PTI-00703 cat's claw crossed the blood-brain-barrier and entered the brain parenchyma within 2 minutes of being in the blood. The discovery of a natural plant extract from the Amazon rain forest plant (i.e. Uncaria tomentosa or cat's claw) as both a potent "plaque and tangle" inhibitor and disaggregator is postulated to represent a potential breakthrough for the natural treatment of both normal brain aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Alan D Snow
- Cognitive Clarity Inc., Edmonds, WA, USA.
- ProteoTech Inc., Kirkland, WA, USA.
| | | | - Beth P Nguyen
- ProteoTech Inc., Kirkland, WA, USA
- Healthcare Legacy Consulting LLC, Dallas, TX, USA
| | | | - Joel A Cummings
- Cognitive Clarity Inc., Edmonds, WA, USA
- ProteoTech Inc., Kirkland, WA, USA
| | - Judy Cam
- ProteoTech Inc., Kirkland, WA, USA
- Preclinical GPS, Washington University, St. Louis, MO, USA
| | - Qubai Hu
- ProteoTech Inc., Kirkland, WA, USA
| | - Thomas Lake
- Cognitive Clarity Inc., Edmonds, WA, USA
- ProteoTech Inc., Kirkland, WA, USA
| | - Weihong Pan
- Blood-Brain Barrier Laboratory, Pennington Biomedical Research Center at Louisiana State University, Baton Rouge, Louisiana, USA
- Biopotentials Sleep Center, Baton Rouge, LA, USA
| | - Abba J Kastin
- Blood-Brain Barrier Laboratory, Pennington Biomedical Research Center at Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Steven G Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Edward Rockenstein
- Departments of Neurosciences and Pathology, University of California- San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California- San Diego, La Jolla, CA, USA
- Division of Neurosciences, National Institute on Aging, Bethesda, MD, USA
| | - Stephen Lorimer
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- VicLink Ltd., Wellington, New Zealand
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lesley Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
107
|
Sárkány Z, Rocha F, Damas AM, Macedo-Ribeiro S, Martins PM. Chemical Kinetic Strategies for High-Throughput Screening of Protein Aggregation Modulators. Chem Asian J 2019; 14:500-508. [DOI: 10.1002/asia.201801703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Zsuzsa Sárkány
- LEPABE-Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Fernando Rocha
- LEPABE-Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Ana M. Damas
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; 4050-313 Porto Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; 4200-135 Porto Portugal
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto; 4200-135 Porto Portugal
| | - Pedro M. Martins
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; 4200-135 Porto Portugal
- Instituto de Investigação e Inovação em Saúde; Universidade do Porto; 4200-135 Porto Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; 4050-313 Porto Portugal
| |
Collapse
|
108
|
Naoi M, Shamoto-Nagai M, Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In neurodegenerative disorders, including Alzheimer's and Parkinson's disease, neuroprotection by diet and natural bioactive compounds has been proposed to prevent the onset and progress of neurodegeneration by modification of pathogenic factors. Plant food-derived phytochemicals protect neurons via targeting oxidative stress, mitochondrial dysfunction, neurotrophic factor deficit, apoptosis and abnormal protein accumulation. This review presents the molecular mechanism of neuroprotection by phytochemicals: direct regulation of mitochondrial apoptotic machinery, modification of cellular signal pathways, induction of antiapoptotic Bcl-2 protein family and prosurvival neurotrophic factors, such as brain- and glial cell line-derived neurotrophic factor, and prevention of protein aggregation. Multitargeted neuroprotective agents are under development based on the structure of blood–brain barrier-permeable phytochemicals to ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Masayo Shamoto-Nagai
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| | - Wakako Maruyama
- Department of Health & Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan
| |
Collapse
|
109
|
Park S, Kim DS, Kang S, Kim HJ. The combination of luteolin and l-theanine improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutr Res 2018; 60:116-131. [PMID: 30527255 DOI: 10.1016/j.nutres.2018.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023]
Abstract
Luteolin and l-theanine have anti-inflammatory, antioxidant, and possible antidiabetic activities, and they may synergistically protect against dementia. Here, we hypothesized that a combination of luteolin and l-theanine would synergistically act to improve memory function and glucose disturbances in rats infused with amyloid-β, and the mechanisms underlying these actions were investigated. Rats that received an amyloid-β(25-35) infusion into the CA1 region of the hippocampus were fed dextrin (AD-CON), 0.1% luteolin (AD-Lut), 0.2% l-theanine (AD-Thea), or both 0.05% luteolin and 0.1% l-theanine (AD-LuTh) in conjunction with a high-fat diet over 8 weeks. AD-LuTh improved memory function, as determined by water maze and passive avoidance tests, by potentiating the hippocampal insulin signaling and reducing inflammation: Luteolin mainly potentiated insulin signaling via the pAkt➔pGSK➔pTau pathway, and l-theanine primarily reduced tumor necrosis factor-α. In the metabolomics analysis of the hippocampus lysates, the concentration of proline, phenylpyruvic acid, and normetanephrine decreased in the AD-LuTh compared to AD-CON. Norepinephrine contents were lower in the AD-CON than non-AD rats with a high fat diet with 0.2% dextrin, whereas AD-Thea and AD-LuTh inhibited the decrease. Both the AD-Lut and AD-LuTh increased glucose infusion rates and decreased hepatic glucose output under basal and hyperinsulinemic conditions, indicating improved whole-body and hepatic insulin sensitivity. Disturbances in glucose-stimulated insulin secretion during hyperglycemic clamp were most effectively corrected by the AD-Lut and AD-LuTh treatments. In conclusion, the hypothesis of the study was accepted. The combination of luteolin and l-theanine prevented Alzheimer disease-like symptom, possibly by improving hippocampal insulin signaling, norepinephrine metabolisms, and decreasing neuroinflammation. The combination of luteolin and l-theanine may be a useful therapeutic option for preventing and/or delaying the progression of memory dysfunction.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan, 336-795, Republic of Korea.
| | - Da Sol Kim
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan, 336-795, Republic of Korea
| | - Suna Kang
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan, 336-795, Republic of Korea
| | - Hyun Jin Kim
- Department of Food Science & Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
110
|
Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, Moreno-Gonzalez I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci 2018; 75:3521-3538. [PMID: 30030591 PMCID: PMC11105286 DOI: 10.1007/s00018-018-2872-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer's and Parkinson's diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.
Collapse
Affiliation(s)
- Zohra Dhouafli
- Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Karina Cuanalo-Contreras
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Charles E Mays
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Claudio Soto
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
- Department of Cell Biology, Networking Research Center on Neurodegenerative Diseases (CIBERNED), Facultad Ciencias, Universidad de Malaga, Málaga, Spain.
| |
Collapse
|
111
|
Neuroprotective Role of Phytochemicals. Molecules 2018; 23:molecules23102485. [PMID: 30262792 PMCID: PMC6222499 DOI: 10.3390/molecules23102485] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases are normally distinguished as disorders with loss of neurons. Various compounds are being tested to treat neurodegenerative diseases (NDs) but they possess solitary symptomatic advantages with numerous side effects. Accumulative studies have been conducted to validate the benefit of phytochemicals to treat neurodegenerative diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). In this present review we explored the potential efficacy of phytochemicals such as epigallocatechin-3-galate, berberin, curcumin, resveratrol, quercetin and limonoids against the most common NDs, including Alzheimer's disease (AD) and Parkinson's disease (PD). The beneficial potentials of these phytochemicals have been demonstrated by evidence-based but more extensive investigation needs to be conducted for reducing the progression of AD and PD.
Collapse
|
112
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
113
|
Li F, Wang Y, Li D, Chen Y, Qiao X, Fardous R, Lewandowski A, Liu J, Chan TH, Dou QP. Perspectives on the recent developments with green tea polyphenols in drug discovery. Expert Opin Drug Discov 2018; 13:643-660. [PMID: 29688074 PMCID: PMC6287262 DOI: 10.1080/17460441.2018.1465923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Increasing evidence has expanded the role of green tea from a traditional beverage to a source of pharmacologically active molecules with diverse health benefits. However, conclusive clinical results are needed to better elucidate the cancer-preventive and therapeutic effects of green tea polyphenols (GTPs). Areas covered: The authors describe GTPs' chemical compositions and metabolic biotransformations, and their recent developments in drug discovery, focusing on their cancer chemopreventive and therapeutic effects. They then review the recent development of GTP-loaded nanoparticles and GTP prodrugs. Expert opinion: GTPs possess potent anticarcinogenic activities through interfering with the initiation, development and progression phases of cancer. There are several challenges (e.g. poor bioavailability) in developing GTPs as therapeutic agents. Use of nanoparticle-based delivery systems has provided unique advantages over purified GTPs. However, there is still a need to determine the actual magnitude and pharmacological mechanisms of GTPs encapsulated in nanoparticles, in order to address newly emerging safety issues associated with the potential 'local overdose' effect. The use of Pro- epigallocatechin gallate (Pro-EGCG) as a prodrug appears to offer improved in vitro stability as well as better in vivo bioavailability and efficacies in a number of animal studies, suggesting its potential as a therapeutic agent for further study and development.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People’s Republic of China
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, Wayne State University School of Medicine, 4100 John R Road Detroit, MI 48201, USA
| | - Yongli Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Rania Fardous
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, Wayne State University School of Medicine, 4100 John R Road Detroit, MI 48201, USA
| | - Ashton Lewandowski
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, Wayne State University School of Medicine, 4100 John R Road Detroit, MI 48201, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 511436, People’s Republic of China
| | - Tak-Hang Chan
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, Wayne State University School of Medicine, 4100 John R Road Detroit, MI 48201, USA
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 511436, People’s Republic of China
| |
Collapse
|
114
|
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder affecting millions of people worldwide. Therefore, finding effective interventions and therapies is extremely important. AD is one of over 20 different disorders known as tauopathies, characterized by the pathological aggregation and accumulation of tau, a microtubule-associated protein. Tau aggregates are heterogeneous and can be divided into two major groups: large metastable fibrils, including neurofibrillary tangles, and oligomers. The smaller, soluble and dynamic tau oligomers have been shown to be more toxic with more proficient seeding properties for the propagation of tau pathology as compared to the fibrillar Paired Helical Filaments (PHFs). Therefore, developing small molecules that target and interact with toxic tau oligomers can be beneficial to modulate their aggregation pathways and toxicity, preventing progression of the pathology. In this study, we show that Azure C (AC) is capable of modulating tau oligomer aggregation pathways at micromolar concentrations and rescues tau oligomers-induced toxicity in cell culture. We used both biochemical and biophysical in vitro techniques to characterize preformed tau oligomers in the presence and absence of AC. Interestingly, AC prevents toxicity not by disassembling the oligomers but rather by converting them into clusters of aggregates with nontoxic conformation.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, 90127 Palermo, Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
115
|
Nguyen PH, del Castillo-Frias MP, Berthoumieux O, Faller P, Doig AJ, Derreumaux P. Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. J Alzheimers Dis 2018; 64:S659-S672. [DOI: 10.3233/jad-179902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Maria P. del Castillo-Frias
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Olivia Berthoumieux
- CNRS, LCC (Laboratoire de Chimie de Coordination), Toulouse Cedex 4, France et Université de Toulouse, UPS, INPT, Toulouse Cedex 4, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| |
Collapse
|
116
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
117
|
Association of Tea Consumption with Risk of Alzheimer's Disease and Anti-Beta-Amyloid Effects of Tea. Nutrients 2018; 10:nu10050655. [PMID: 29789466 PMCID: PMC5986534 DOI: 10.3390/nu10050655] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative disease Alzheimer’s disease (AD) is attracting growing concern because of an increasing patient population among the elderly. Tea consumption is considered a natural complementary therapy for neurodegenerative diseases. In this paper, epidemiological studies on the association between tea consumption and the reduced risk of AD are reviewed and the anti-amyloid effects of related bioactivities in tea are summarized. Future challenges regarding the role of tea in preventing AD are also discussed.
Collapse
|
118
|
Visentin C, Pellistri F, Natalello A, Vertemara J, Bonanomi M, Gatta E, Penco A, Relini A, De Gioia L, Airoldi C, Regonesi ME, Tortora P. Epigallocatechin-3-gallate and related phenol compounds redirect the amyloidogenic aggregation pathway of ataxin-3 towards non-toxic aggregates and prevent toxicity in neural cells and Caenorhabditis elegans animal model. Hum Mol Genet 2018. [PMID: 28633380 DOI: 10.1093/hmg/ddx211] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The protein ataxin-3 (ATX3) triggers an amyloid-related neurodegenerative disease when its polyglutamine stretch is expanded beyond a critical threshold. We formerly demonstrated that the polyphenol epigallocatechin-3-gallate (EGCG) could redirect amyloid aggregation of a full-length, expanded ATX3 (ATX3-Q55) towards non-toxic, soluble, SDS-resistant aggregates. Here, we have characterized other related phenol compounds, although smaller in size, i.e. (-)-epigallocatechin gallate (EGC), and gallic acid (GA). We analysed the aggregation pattern of ATX3-Q55 and of the N-terminal globular Josephin domain (JD) by assessing the time course of the soluble protein, as well its structural features by FTIR and AFM, in the presence and the absence of the mentioned compounds. All of them redirected the aggregation pattern towards soluble, SDS-resistant aggregates. They also prevented the appearance of ordered side-chain hydrogen bonding in ATX3-Q55, which is the hallmark of polyQ-related amyloids. Molecular docking analyses on the JD highlighted three interacting regions, including the central, aggregation-prone one. All three compounds bound to each of them, although with different patterns. This might account for their capability to prevent amyloidogenesis. Saturation transfer difference NMR experiments also confirmed EGCG and EGC binding to monomeric JD. ATX3-Q55 pre-incubation with any of the three compounds prevented its calcium-influx-mediated cytotoxicity towards neural cells. Finally, all the phenols significantly reduced toxicity in a transgenic Caenorhabditis elegans strain expressing an expanded ATX3. Overall, our results show that the three polyphenols act in a substantially similar manner. GA, however, might be more suitable for antiamyloid treatments due to its simpler structure and higher chemical stability.
Collapse
Affiliation(s)
- Cristina Visentin
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | | | - Antonino Natalello
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marcella Bonanomi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena Gatta
- Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Amanda Penco
- Department of Physics, University of Genoa, 16146 Genoa, Italy.,Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Relini
- Department of Physics, University of Genoa, 16146 Genoa, Italy.,National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Luca De Gioia
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| | - Maria E Regonesi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| |
Collapse
|
119
|
Mechanistic insights into remodeled Tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. Sci Rep 2018; 8:71. [PMID: 29311706 PMCID: PMC5758761 DOI: 10.1038/s41598-017-18443-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Intra-cellular tau protein tangles and extra-cellular β-amyloid plaques are hallmarks of Alzheimer’s disease (AD), characterized by the conversion of natively unfolded monomeric protein/peptide into misfolded β-sheet rich aggregates. Therefore, inhibiting the aggregation cascade or disassembling the pre-formed aggregates becomes a pivotal event in disease treatment. In the present study, we show that Naphthoquinone-Tryptophan hybrids, i.e., NQTrp and Cl-NQTrp significantly disrupted the pre-formed fibrillar aggregates of Tau-derived PHF6 (VQIVYK) peptide and full-length tau protein in vitro, in a dose-dependent manner as evident from ThS assay, CD spectroscopy, and TEM. Molecular dynamics simulation of PHF6 oligomers and fibrils with the Naphthoquinone-Tryptophan hybrids provides a possible structure-function based mechanism-of-action, highlighting the role of hydrophobic interaction and hydrogen bond formation during fibril disassembly. These findings signify the effectiveness of NQTrp and Cl-NQTrp in disassembling fibrillar aggregates and may help in designing novel hybrid molecules for AD treatment.
Collapse
|
120
|
Ren B, Liu Y, Zhang Y, Zhang M, Sun Y, Liang G, Xu J, Zheng J. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. J Mater Chem B 2018; 6:56-67. [DOI: 10.1039/c7tb02538f] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tanshinones act as common inhibitors to inhibit the aggregation of both hIAPP and Aβ, disaggregate preformed hIAPP and Aβ amyloid fibrils, and protect cells from hIAPP- and Aβ-induced toxicity.
Collapse
Affiliation(s)
- Baiping Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yan Sun
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of the Ministry of Education School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College
- Chongqing University
- Chongqing 400044
- China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| |
Collapse
|
121
|
Matthes D, Gapsys V, Griesinger C, de Groot BL. Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation. ACS Chem Neurosci 2017; 8:2791-2808. [PMID: 28906103 DOI: 10.1021/acschemneuro.7b00325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The diphenyl-pyrazole compound anle138b is a known inhibitor of oligomeric aggregate formation in vitro and in vivo. Therefore, anle138b is considered a promising drug candidate to beneficially interfere with neurodegenerative processes causing devastating pathologies in humans. The atomistic details of the aggregation inhibition mechanism, however, are to date unknown since the ensemble of small nonfibrillar aggregates is structurally heterogeneous and inaccessible to direct structural characterization. Here, we set out to elucidate anle138b's mode of action using all-atom molecular dynamics simulations on the multi-microsecond time scale. By comparing simulations of dimeric to tetrameric aggregates from fragments of four amyloidogenic proteins (Aβ, hTau40, hIAPP, and Sup35N) in the presence and absence of anle138b, we show that the compound reduces the overall number of intermolecular hydrogen bonds, disfavors the sampling of the aggregated state, and remodels the conformational distributions within the small oligomeric peptide aggregates. Most notably, anle138b preferentially interacts with the disordered structure ensemble via its pyrazole moiety, thereby effectively blocking interpeptide main chain interactions and impeding the spontaneous formation of ordered β-sheet structures, in particular those with out-of-register antiparallel β-strands. The structurally very similar compound anle234b was previously identified as inactive by in vitro experiments. Here, we show that anle234b has no significant effect on the aggregation process in terms of reducing the β-structure content. Moreover, we demonstrate that the hydrogen bonding capabilities are autoinhibited due to steric effects imposed by the molecular geometry of anle234b and thereby indirectly confirm the proposed inhibitory mechanism of anle138b. We anticipate that the prominent binding of anle138b to partially disordered and dynamical aggregate structures is a generic basis for anle138b's ability to suppress toxic oligomer formation in a wide range of amyloidogenic peptides and proteins.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department
of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| |
Collapse
|
122
|
Zhao L, Liu S, Xu J, Li W, Duan G, Wang H, Yang H, Yang Z, Zhou R. A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell Death Dis 2017; 8:e3160. [PMID: 29095434 PMCID: PMC5775413 DOI: 10.1038/cddis.2017.563] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/26/2023]
Abstract
Epigallocatechingallate (EGCG) is a major bioactive component of green tea and is associated with health benefits against multiple diseases including cancer. As an indicator of hepatocellular carcinoma (HCC), high levels of α-fetal protein (AFP) are related to malignant differentiation and poor prognosis of cancer cells. In this study, EGCG can effectively reduce AFP secretion and simultaneously induce AFP aggregation in human HCC HepG2 cells. EGCG-stimulated autophagy induces the degradation of AFP aggregates in HepG2 cells. Furthermore, we thoroughly studied the underlying molecular mechanisms behind EGCG-stimulated autophagy by using large-scale all-atom molecular dynamics simulations, which revealed a novel molecular mechanism. EGCG directly interacts with LC3-I protein, readily exposing the pivotal Gly-120 site of the latter to other important binding partners such as 1,2-distearoyl-sn-glycero-3-phosphoethanolamine and promoting the synthesis of LC3-II, a characteristic autophagosomal marker. Our results suggest that EGCG is critical in regulating AFP secretion and in modulating autophagic activities of HepG2 cells, providing a molecular basis for potentially preventing and treating HCC.
Collapse
Affiliation(s)
- Lin Zhao
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengtang Liu
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaying Xu
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Li
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Guangxin Duan
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Haichao Wang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Zaixing Yang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Computational Biological Center, IBM Thomas J Watson Research Center, Yorktown Heights, NY 10598, USA.,Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
123
|
Bhattacharyya S, Kim K, Teizer W. Remodeling Tau and Prion Proteins Using Nanochaperons. ACTA ACUST UNITED AC 2017; 1:e1700108. [PMID: 32646192 DOI: 10.1002/adbi.201700108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/16/2017] [Indexed: 11/08/2022]
Abstract
There is increasing evidence that tau protein behaves in a prion-like manner in tauopathy. The stabilization of tau protein using a small molecular compound can limit tauopathy associated morbidity that advances with ageing. Here, a lab-on-a-chip experiment is reported, where gold citrate nanoparticles (5 nm, AuNPs) can remodel mutant tau protein (P301L) and prion, thus resolving the mutant tau- and prion-mediated impairment of kinesin cargo transport on microtubules. It is found that tau protein is overexpressed in Alzheimer's disease (AD) patient serum samples and the tau conformational change can also be affected in human serum samples of AD when treated with AuNPs ex vivo. Similarly, AuNPs reorganizing the prion protein and inducing conformational changes of prions in AD serum have been observed, while having no effect on alpha-synuclein in Parkinson patient serum. The mapping of AD serum mediated traffic jams, using particle tracking and mean square displacement analysis, and the observed recovery of uninterrupted processive motor functions by AuNP treatment show that kinesin cargo assays might be a useful method for future ex vivo validation of a targeted therapy against tauopathy before administration, a viable option to combat various neurodegenerative disorders arising from the susceptibility of amyloidogenic proteins toward aggregation.
Collapse
Affiliation(s)
- Sanjib Bhattacharyya
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Kyongwan Kim
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Winfried Teizer
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.,Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
124
|
Rauch JN, Olson SH, Gestwicki JE. Interactions between Microtubule-Associated Protein Tau (MAPT) and Small Molecules. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024034. [PMID: 27940599 DOI: 10.1101/cshperspect.a024034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tau aggregation is linked to multiple neurodegenerative disorders that are collectively termed tauopathies. Small molecules are powerful probes of the aggregation process, helping to reveal the key steps and serving as diagnostics and reporters. Moreover, some of these small molecules may have potential as therapeutics. This review details how small molecules and chemical biology have helped to elucidate the mechanisms of tau aggregation and how they are being used to detect and prevent tau aggregation. In addition, we comment on how new insights into tau prions are changing the approach to small molecule discovery.
Collapse
Affiliation(s)
- Jennifer N Rauch
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Steven H Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
125
|
Roqanian S, Meratan AA, Ahmadian S, Shafizadeh M, Ghasemi A, Karami L. Polyphenols protect mitochondrial membrane against permeabilization induced by HEWL oligomers: Possible mechanism of action. Int J Biol Macromol 2017; 103:709-720. [PMID: 28545969 DOI: 10.1016/j.ijbiomac.2017.05.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023]
Abstract
Increasing body of evidence suggests that polyphenols frequently interacting with amyloid aggregates and/or interfering with aggregate species to bind biomembranes may serve as a therapeutic approach for the treatment of amyloid-related diseases. Hence, in the present study, the possible effects of three naturally occurring polyphenols including Curcumin, Quercetin, and Resveratrol on mitochondrial membrane permeabilization induced by Hen Egg White Lysozyme (HEWL) oligomers were investigated. Our results indicated that pre-incubation of mitochondrial homogenate with polyphenols considerably inhibit membrane permeabilization in a concentration dependent manner. In parallel, HEWL oligomers, which were co-incubated with the polyphenols, showed less effectiveness on membrane permeabilization, suggesting that toxicity of oligomers was hindered. Using a range of techniques including fluorescence quenching, Nile red binding assay, zeta potential and size measurements, CD (far- and near-UV) spectroscopy, and molecular docking, we found that the polyphenols, structure-dependently, interact with and induce conformational changes in HEWL oligomers, thereby inhibit their toxicity. We proposed a mechanism by which selected polyphenols induce their protective effects through binding to mitochondria and interfering with HEWL oligomer-membrane interactions and/or by direct interaction with HEWL oligomers, induction of conformational changes, and generating far less toxic species. However, additional studies are needed to elucidate the detailed mechanisms involved.
Collapse
Affiliation(s)
- Shaqayeq Roqanian
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran.
| | - Mahshid Shafizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, 1417614411 Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
126
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
127
|
Alam P, Beg AZ, Siddiqi MK, Chaturvedi SK, Rajpoot RK, Ajmal MR, Zaman M, Abdelhameed AS, Khan RH. Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 2017; 621:54-62. [DOI: 10.1016/j.abb.2017.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
|
128
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
129
|
Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains. Sci Rep 2017; 7:41515. [PMID: 28128355 PMCID: PMC5269747 DOI: 10.1038/srep41515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs.
Collapse
|
130
|
Tayeb-Fligelman E, Landau M. X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands. Methods Mol Biol 2017; 1523:89-100. [PMID: 27975245 DOI: 10.1007/978-1-4939-6598-4_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atomic structures of Tau involved in Alzheimer's disease complexed with small molecule binders are the first step to define the Tau pharmacophore, leading the way to a structure-based design of improved diagnostics and therapeutics. Yet the partially disordered and polymorphic nature of Tau hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers, and their atomic structures can be determined using X-ray microcrystallography. Such structures were successfully used to design amyloid inhibitors. This chapter describes experimental procedures used to determine crystal structures of Tau peptide segments in complex with small-molecule binders.
Collapse
Affiliation(s)
- Einav Tayeb-Fligelman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
131
|
Czubinski J, Dwiecki K. A review of methods used for investigation of protein-phenolic compound interactions. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13339] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jaroslaw Czubinski
- Department of Biochemistry and Food Analysis; Poznan University of Life Sciences; 28 Wojska Polskiego Poznan 60-637 Poland
| | - Krzysztof Dwiecki
- Department of Biochemistry and Food Analysis; Poznan University of Life Sciences; 28 Wojska Polskiego Poznan 60-637 Poland
| |
Collapse
|
132
|
Andrich K, Hegenbart U, Kimmich C, Kedia N, Bergen HR, Schönland S, Wanker E, Bieschke J. Aggregation of Full-length Immunoglobulin Light Chains from Systemic Light Chain Amyloidosis (AL) Patients Is Remodeled by Epigallocatechin-3-gallate. J Biol Chem 2016; 292:2328-2344. [PMID: 28031465 DOI: 10.1074/jbc.m116.750323] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
Intervention into amyloid deposition with anti-amyloid agents like the polyphenol epigallocatechin-3-gallate (EGCG) is emerging as an experimental secondary treatment strategy in systemic light chain amyloidosis (AL). In both AL and multiple myeloma (MM), soluble immunoglobulin light chains (LC) are produced by clonal plasma cells, but only in AL do they form amyloid deposits in vivo We investigated the amyloid formation of patient-derived LC and their susceptibility to EGCG in vitro to probe commonalities and systematic differences in their assembly mechanisms. We isolated nine LC from the urine of AL and MM patients. We quantified their thermodynamic stabilities and monitored their aggregation under physiological conditions by thioflavin T fluorescence, light scattering, SDS stability, and atomic force microscopy. LC from all patients formed amyloid-like aggregates, albeit with individually different kinetics. LC existed as dimers, ∼50% of which were linked by disulfide bridges. Our results suggest that cleavage into LC monomers is required for efficient amyloid formation. The kinetics of AL LC displayed a transition point in concentration dependence, which MM LC lacked. The lack of concentration dependence of MM LC aggregation kinetics suggests that conformational change of the light chain is rate-limiting for these proteins. Aggregation kinetics displayed two distinct phases, which corresponded to the formation of oligomers and amyloid fibrils, respectively. EGCG specifically inhibited the second aggregation phase and induced the formation of SDS-stable, non-amyloid LC aggregates. Our data suggest that EGCG intervention does not depend on the individual LC sequence and is similar to the mechanism observed for amyloid-β and α-synuclein.
Collapse
Affiliation(s)
- Kathrin Andrich
- From the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-4899.,the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Ute Hegenbart
- the Department of Internal Medicine V (Hematology/Amyloidosis Center), University Hospital Heidelberg, 69120 Heidelberg, Germany, and
| | - Christoph Kimmich
- the Department of Internal Medicine V (Hematology/Amyloidosis Center), University Hospital Heidelberg, 69120 Heidelberg, Germany, and
| | - Niraja Kedia
- From the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-4899
| | - H Robert Bergen
- the Translational PKD Center, Mayo Clinic, Rochester, Minnesota 55905
| | - Stefan Schönland
- the Department of Internal Medicine V (Hematology/Amyloidosis Center), University Hospital Heidelberg, 69120 Heidelberg, Germany, and
| | - Erich Wanker
- the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jan Bieschke
- From the Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-4899,
| |
Collapse
|
133
|
Belkacemi A, Ramassamy C. Anthocyanins Protect SK-N-SH Cells Against Acrolein-Induced Toxicity by Preserving the Cellular Redox State. J Alzheimers Dis 2016; 50:981-98. [PMID: 26890747 DOI: 10.3233/jad-150770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In Alzheimer's disease (AD) and in mild cognitive impairment (MCI) patients, by-products of lipid peroxidation such as acrolein accumulated in vulnerable regions of the brain. We have previously shown that acrolein is a highly reactive and neurotoxic aldehyde and its toxicity involves the alteration of several redox-sensitive pathways. Recently, protein-conjugated acrolein in cerebrospinal fluid has been proposed as a biomarker to distinguish between MCI and AD. With growing evidence of the early involvement of oxidative stress in AD etiology, one would expect that a successful therapy should prevent brain oxidative damage. In this regard, several studies have demonstrated that polyphenol-rich extracts exert beneficial effect on cognitive impairment and oxidative stress. We have recently demonstrated the efficacy of an anthocyanin formulation (MAF14001) against amyloid-β-induced oxidative stress. The aim of this study is to investigate the neuroprotective effect of MAF14001 as a mixture of anthocyanins, a particular class of polyphenols, against acrolein-induced oxidative damage in SK-N-SH neuronal cells. Our results demonstrated that MAF14001, from 5μM, was able to efficiently protect SK-N-SH cells against acrolein-induced cell death. MAF14001 was able to lower reactive oxygen species and protein carbonyl levels induced by acrolein. Moreover, MAF1401 prevented glutathione depletion and positively modulated, in the presence of acrolein, some oxidative stress-sensitive pathways including the transcription factors NF-κB and Nrf2, the proteins γ-GCS and GSK3β, and the protein adaptator p66Shc. Along with its proven protective effect against amyloid-β toxicity, these results demonstrate that MAF14001 could target multiple mechanisms and could be a promising agent for AD prevention.
Collapse
Affiliation(s)
- Abdenour Belkacemi
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada
| | - Charles Ramassamy
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
| |
Collapse
|
134
|
Seripa D, Solfrizzi V, Imbimbo BP, Daniele A, Santamato A, Lozupone M, Zuliani G, Greco A, Logroscino G, Panza F. Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium. Expert Rev Neurother 2016; 16:259-77. [PMID: 26822031 DOI: 10.1586/14737175.2016.1140039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small molecular weight compounds able to inhibit formation of tau oligomers and fibrils have already been tested for Alzheimer's disease (AD) treatment. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT(+)). MT chloride (also known as methylene blue) was investigated in a 24-week Phase II study in 321 mild-to-moderate AD patients at the doses of 69, 138, and 228 mg/day. This trial failed to show significant positive effects of MT in the overall patient population. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected patients and cerebral blood flow in mildly affected patients. A follow-up compound (TRx0237) claimed to be more bioavailable and less toxic than MT, is now being developed. Phase III clinical trials on this novel TAI in AD and in the behavioral variant of frontotemporal dementia are underway.
Collapse
Affiliation(s)
- Davide Seripa
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Vincenzo Solfrizzi
- b Geriatric Medicine-Memory Unit and Rare Disease Centre , University of Bari Aldo Moro , Bari , Italy
| | - Bruno P Imbimbo
- c Research & Development Department , Chiesi Farmaceutici , Parma , Italy
| | - Antonio Daniele
- d Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Santamato
- e Physical Medicine and Rehabilitation Section, 'OORR' Hospital , University of Foggia , Foggia , Italy
| | - Madia Lozupone
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Zuliani
- g Department of Medical Science, Section of Internal and Cardiopulmonary Medicine , University of Ferrara
| | - Antonio Greco
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Giancarlo Logroscino
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| | - Francesco Panza
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy.,f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| |
Collapse
|
135
|
Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 2016; 37:1-12. [DOI: 10.1016/j.jnutbio.2016.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
|
136
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
137
|
Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.06.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
138
|
Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3245935. [PMID: 27429978 PMCID: PMC4939203 DOI: 10.1155/2016/3245935] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
The failure of several Phase II/III clinical trials in Alzheimer's disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT+). MT chloride (methylene blue) was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks) and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid.
Collapse
|
139
|
Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016; 15:60. [PMID: 27268025 PMCID: PMC4897892 DOI: 10.1186/s12937-016-0179-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.
Collapse
Affiliation(s)
- Neha Atulkumar Singh
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Zaved Ahmed Khan
- Centre for Interdisciplinary Biomedical Research, Adesh University, Bathinda, Punjab, India.
| |
Collapse
|
140
|
Valera E, Masliah E. Therapeutic approaches in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:346-352. [PMID: 26749150 DOI: 10.1111/jnc.13529] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/13/2023]
Abstract
The lack of effective therapies for neurodegenerative disorders is one of the most relevant challenges of this century, considering that, as the global population ages, the incidence of these type of diseases is quickly on the rise. Among these disorders, synucleinopathies, which are characterized by the abnormal accumulation and spreading of the synaptic protein alpha-synuclein in the brain, already constitute the second leading cause of parkinsonism and dementia in the elderly population. Disorders with alpha-synuclein accumulation include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Numerous therapeutic alternatives for synucleinopathies are being tested in pre-clinical models and in the clinic; however, only palliative treatments addressing the dopaminergic deficits are approved to date, and no disease-modifying options are available yet. In this article, we provide a brief overview of therapeutic approaches currently being explored for synucleinopathies, and suggest possible explanations to the clinical trials outcomes. Finally, we propose that a deeper understanding of the pathophysiology of synucleinopathies, together with a combination of therapies tailored to each disease stage, may lead to better therapeutic outcomes in synucleinopathy patients. Synucleinopathies, neurodegenerative disorders characterized by the abnormal accumulation of the protein alpha-synuclein, constitute the second leading cause of parkinsonism and dementia in the elderly population, however, no disease-modifying options are available yet. In this review, we summarize the therapeutic approaches currently being explored for synucleinopathies, suggest possible explanations to the clinical outcomes, and propose areas of further therapeutic improvement. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. .,Department of Pathology, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
141
|
Lam HT, Graber MC, Gentry KA, Bieschke J. Stabilization of α-Synuclein Fibril Clusters Prevents Fragmentation and Reduces Seeding Activity and Toxicity. Biochemistry 2016; 55:675-85. [PMID: 26799377 DOI: 10.1021/acs.biochem.5b01168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein misfolding results in the accumulation of aggregated β-sheet-rich structures in Parkinson's disease (PD) and Alzheimer's disease. The toxic oligomer hypothesis stipulates that prefibrillar assemblies, such as soluble oligomers or protofibrils, are responsible for the poor prognosis of these diseases. Previous studies demonstrated that a small molecule related to the natural compound orcein, O4, directly binds to amyloid-β fibrils and stabilizes them, accelerating the formation of end-stage mature fibrils. Here we demonstrate a similar phenomenon during O4 treatment of α-synuclein (αsyn) aggregates, the protein responsible for PD pathology. While the drug did not change the kinetics of aggregate formation as measured by the amyloidophilic dye thioflavin T, O4 depleted αsyn oligomers and promoted the formation of sodium dodecyl sulfate and proteinase K resistant aggregates consisting of large fibril clusters. These fibril clusters exhibited reduced toxicity to human neuronal model cells and reduced seeding activity in vitro. The effectiveness of O4 decreased when it was added at later points in the αsyn aggregation pathway, which suggests that the incorporation of O4 into fibril assemblies stabilizes them against chemical, enzymatic, and mechanic degradation. These findings suggest that small molecules, which stabilize amyloid fibrils, can prevent fibril fragmentation and seeding and consequently prevent prion-like replication of misfolded αsyn. Inhibiting prion replication by fibril stabilization could thus be a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Huy T Lam
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Michael C Graber
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Katherine A Gentry
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jan Bieschke
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
142
|
Nakajima H, Nishitsuji K, Kawashima H, Kuwabara K, Mikawa S, Uchimura K, Akaji K, Kashiwada Y, Kobayashi N, Saito H, Sakashita N. The polyphenol (-)-epigallocatechin-3-gallate prevents apoA-IIowa amyloidosis in vitro and protects human embryonic kidney 293 cells against amyloid cytotoxicity. Amyloid 2016; 23:17-25. [PMID: 26701221 DOI: 10.3109/13506129.2015.1113167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Apolipoprotein A-I (apoA-I) amyloidosis is either a non-hereditary form with deposits of wild-type apoA-I proteins in atherosclerotic plaques or a hereditary form with progressive accumulation of mutant apoA-I proteins in different tissues. Several small polyphenolic molecules reportedly inhibited formation of fibrillar assemblies of some amyloidogenic proteins and their cytotoxicity, but small molecules that inhibit apoA-I fibril formation have never been reported. METHODS Our methods included a thioflavin-T-binding assay, atomic force microscopy and dot blot and cell-based assays. RESULTS We showed that (-)-epigallocatechin-3-gallate (EGCG), a tea-derived flavanol, inhibited in vitro fibril formation and disaggregated fibrils preformed by the N-terminal 1-83 fragments of wild-type (WT) apoA-I and the G26R point mutation of apoA-I (apoA-IIowa). We eliminated a common structure recognized by the anti-amyloid antibody OC by incubating apoA-IIowa with EGCG or treating apoA-IIowa fibrils with EGCG, which supported the above observation. In addition, EGCG rescued human embryonic kidney 293 cells from cytotoxicity and attenuated production of reactive oxygen species, which were induced by apoA-IIowa fibrils. CONCLUSIONS Our results support the concept that EGCG inhibits amyloid fibril formation of various amyloidogenic proteins. Thus, EGCG may be a candidate for providing a structure to develop de novo inhibitors for amyloidosis treatment.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- a Department of Molecular Pathology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan .,b Department of Molecular Physical Pharmaceutics , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kazuchika Nishitsuji
- a Department of Molecular Pathology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Hiroyuki Kawashima
- c Department of Medicinal Chemistry , Kyoto Pharmaceutical University , Yamashina-ku, Kyoto , Japan
| | - Kaori Kuwabara
- a Department of Molecular Pathology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan .,b Department of Molecular Physical Pharmaceutics , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Shiho Mikawa
- b Department of Molecular Physical Pharmaceutics , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Kenji Uchimura
- d Department of Biochemistry , Nagoya University Graduate School of Medicine , Showa-ku, Nagoya , Japan
| | - Kenichi Akaji
- c Department of Medicinal Chemistry , Kyoto Pharmaceutical University , Yamashina-ku, Kyoto , Japan
| | - Yoshiki Kashiwada
- e Department of Pharmacognosy , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan , and
| | - Norihiro Kobayashi
- f Department of Bioanalytical Chemistry , Kobe Pharmaceutical University , Higashinada-ku, Kobe , Japan
| | - Hiroyuki Saito
- b Department of Molecular Physical Pharmaceutics , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| | - Naomi Sakashita
- a Department of Molecular Pathology , Institute of Biomedical Sciences, Tokushima University Graduate School , Tokushima , Japan
| |
Collapse
|
143
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
144
|
Saha S, Sharma A, Deep S. Differential influence of additives on the various stages of insulin aggregation. RSC Adv 2016. [DOI: 10.1039/c5ra27206h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The different species in the aggregation pathway of insulin are stabilized/destabilized to different extent in the presence of various additives.
Collapse
Affiliation(s)
- Shivnetra Saha
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Anurag Sharma
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Shashank Deep
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| |
Collapse
|
145
|
Nguyen PT, Sharma R, Rej R, De Carufel CA, Roy R, Bourgault S. Low generation anionic dendrimers modulate islet amyloid polypeptide self-assembly and inhibit pancreatic β-cell toxicity. RSC Adv 2016. [DOI: 10.1039/c6ra15373a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The self-assembly and cytotoxicity of the amyloidogenic peptide IAPP can be controlled with low generation anionic dendrimers.
Collapse
Affiliation(s)
- Phuong T. Nguyen
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Rishi Sharma
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Rabindra Rej
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | | | - René Roy
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Steve Bourgault
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| |
Collapse
|
146
|
Yen CH, Wang CH, Wu WT, Chen HL. Fructo-oligosaccharide improved brain β-amyloid, β-secretase, cognitive function, and plasma antioxidant levels in D-galactose-treated Balb/cJ mice. Nutr Neurosci 2015; 20:228-237. [DOI: 10.1080/1028415x.2015.1110952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Center for Education and Research on Geriatrics and Gerontology, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Hsin Wang
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Wen-Tzu Wu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsiao-Ling Chen
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
147
|
Šneideris T, Baranauskienė L, Cannon JG, Rutkienė R, Meškys R, Smirnovas V. Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives. PeerJ 2015; 3:e1271. [PMID: 26421240 PMCID: PMC4586895 DOI: 10.7717/peerj.1271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
A range of diseases is associated with amyloid fibril formation. Despite different proteins being responsible for each disease, all of them share similar features including beta-sheet-rich secondary structure and fibril-like protein aggregates. A number of proteins can form amyloid-like fibrils in vitro, resembling structural features of disease-related amyloids. Given these generic structural properties of amyloid and amyloid-like fibrils, generic inhibitors of fibril formation would be of interest for treatment of amyloid diseases. Recently, we identified five outstanding inhibitors of insulin amyloid-like fibril formation among the pool of 265 commercially available flavone derivatives. Here we report testing of these five compounds and of epi-gallocatechine-3-gallate (EGCG) on aggregation of alpha-synuclein and beta-amyloid. We used a Thioflavin T (ThT) fluorescence assay, relying on halftimes of aggregation as the measure of inhibition. This method avoids large numbers of false positive results. Our data indicate that four of the five flavones and EGCG inhibit alpha-synuclein aggregation in a concentration-dependent manner. However none of these derivatives were able to increase halftimes of aggregation of beta-amyloid.
Collapse
Affiliation(s)
- Tomas Šneideris
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology , Vilnius , Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology , Vilnius , Lithuania
| | - Jonathan G Cannon
- Department of Natural Sciences and Engineering, Middle Georgia State University , Cochran, GA , USA
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Vilnius University Institute of Biochemistry , Vilnius , Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Vilnius University Institute of Biochemistry , Vilnius , Lithuania
| | - Vytautas Smirnovas
- Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology , Vilnius , Lithuania
| |
Collapse
|
148
|
Andrich K, Bieschke J. The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:139-61. [PMID: 26092630 DOI: 10.1007/978-3-319-18365-7_7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies on the interaction of the green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) with fourteen disease-related amyloid polypeptides and prions Huntingtin, Amyloid-beta, alpha-Synuclein, islet amyloid polypeptide (IAPP), Sup35, NM25 and NM4, tau, MSP2, semen-derived enhancer of virus infection (SEVI), immunoglobulin light chains, beta-microglobulin, prion protein (PrP) and Insulin, have yielded a variety of experimental observations. Here, we analyze whether these observations could be explained by a common mechanism and give a broad overview of the published experimental data on the actions of EGCG. Firstly, we look at the influence of EGCG on aggregate toxicity, morphology, seeding competence, stability and conformational changes. Secondly, we screened publications elucidating the biochemical mechanism of EGCG intervention, notably the effect of EGCG on aggregation kinetics, oligomeric aggregation intermediates, and its binding mode to polypeptides. We hypothesize that the experimental results may be reconciled in a common mechanism, in which EGCG binds to cross-beta sheet aggregation intermediates. The relative position of these species in the energy profile of the amyloid cascade would determine the net effect of EGCG on aggregation and disaggregation of amyloid fibrils.
Collapse
Affiliation(s)
- Kathrin Andrich
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | | |
Collapse
|