101
|
Asgharpour F, Moghadamnia AA, Zabihi E, Kazemi S, Ebrahimzadeh Namvar A, Gholinia H, Motallebnejad M, Nouri HR. Iranian propolis efficiently inhibits growth of oral streptococci and cancer cell lines. Altern Ther Health Med 2019; 19:266. [PMID: 31601198 PMCID: PMC6788029 DOI: 10.1186/s12906-019-2677-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
Abstract
Background Propolis is a natural bee product with a wide range of biological activities that are related to its chemical composition. The present study investigated the quantification of quercetin (Q) in Ardabil ethanol extract of propolis (AEEP), and then compared its anti-bacterial, anti- biofilm and cytotoxic effects on cancer and normal cell lines. Method In the present study, the chemical composition of AEEP was determined through the high-performance liquid chromatography (HPLC). The AEEP and its main component, quercetin (Q), were evaluated in vitro against 57 oral streptococci by a broth micro-dilution method. The biofilm formation was assessed through the crystal violet staining and MTT assays. The impact of AEEP and Q anti-proliferative effect were evaluated on the fibroblast as normal and cancer cell lines (KB and A431). Results The Q concentration in the composition of AEEP was 6.9% of all its components. The findings indicated that the AEEP and Q were efficient against the cariogenic bacteria and were able to inhibit the S.mutans biofilm adherence at a sub-MIC concentration. Moreover, electron micrographs indicated the inhibition of biofilms compared to control biofilms. In addition, the AEEP and Q indicated a dose-dependent cytotoxic effect on A431 and KB cell lines. On the contrary, they had no cytotoxic effect on fibroblast cells. Conclusion The results indicated that the synergistic impact of main components of AEEP was related to the inhibition of the cancer cell proliferation, cariogenic bacteria and oral biofilm formation. It may play a promising role in the complementary medicine and, it is suggested to be used as food additives.
Collapse
|
102
|
Cavalaro RI, Cruz RGD, Dupont S, de Moura Bell JMLN, Vieira TMFDS. In vitro and in vivo antioxidant properties of bioactive compounds from green propolis obtained by ultrasound-assisted extraction. FOOD CHEMISTRY-X 2019; 4:100054. [PMID: 31650128 PMCID: PMC6804792 DOI: 10.1016/j.fochx.2019.100054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
Abstract
Ultrasound improves the bioactives content from green propolis in a lower time. Optimization allowed good extraction of artepillin C and p-coumaric acid. Green propolis had similar effects to synthetic antioxidant in emulsion systems. Green propolis did not change the S. cerevisiae membrane. Green propolis presents a potential source of bioactive compounds, responsible for its antioxidant capacity. The effects of ethanol concentration, solid-solvent ratio, and extraction time were evaluated in regard to the total phenolic content (TPC) and antioxidant capacity of the extracts by the use of central composite rotatable designs. Optimum extraction conditions lead to significant reduction of extraction time compared to conventional extraction methods. Under optimum conditions, extracts were composed of 1614.80 mg GAE. g−1 and 807 mg artepillin C. g−1. Extracts were effective in retarding the oxidation in oil-in-water emulsions subjected to accelerated tests. Green propolis extracts (up to 200 mg.kg−1) did not increase Saccharomyces cerevisiae cell damage after 4 h of exposure, indicating its antioxidant effect and potential innocuity. Results demonstrated the antioxidant properties of the propolis extract was similar or better than the ones from synthetic antioxidants and warrant further investigation to determine its potential industrial application.
Collapse
Affiliation(s)
- Renata Iara Cavalaro
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Richtier Gonçalves da Cruz
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, São Paulo, Brazil.,Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sebastien Dupont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | | | - Thais Maria Ferreira de Souza Vieira
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, São Paulo, Brazil.,Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
103
|
Identification of Resveratrol as Bioactive Compound of Propolis from Western Romania and Characterization of Phenolic Profile and Antioxidant Activity of Ethanolic Extracts. Molecules 2019; 24:molecules24183368. [PMID: 31527469 PMCID: PMC6766919 DOI: 10.3390/molecules24183368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to assess the phenolic content of eight ethanolic propolis samples (P1–P8) harvested from different regions of Western Romania and their antioxidant activity. The mean value of total phenolic content was 214 ± 48 mg gallic acid equivalents (GAE)/g propolis. All extracts contained kaempferol (514.02 ± 114.80 μg/mL), quercetin (124.64 ± 95.86 μg/mL), rosmarinic acid (58.03 ± 20.08 μg/mL), and resveratrol (48.59 ± 59.52 μg/mL) assessed by LC-MS. The antioxidant activity was evaluated using 2 methods: (i) DPPH (2,2-diphenyl-1-picrylhydrazyl) assay using ascorbic acid as standard antioxidant and (ii) FOX (Ferrous iron xylenol orange OXidation) assay using catalase as hydrogen peroxide (H2O2) scavenger. The DPPH radical scavenging activity was determined for all samples applied in 6 concentrations (10, 5, 3, 1.5, 0.5 and 0.3 mg/mL). IC50 varied from 0.0700 to 0.9320 mg/mL (IC50 of ascorbic acid = 0.0757 mg/mL). The % of H2O2 inhibition in FOX assay was assessed for P1, P2, P3, P4 and P8 applied in 2 concentrations (5 and 0.5 mg/mL). A significant H2O2% inhibition was obtained for these samples for the lowest concentration. We firstly report the presence of resveratrol as bioactive compound in Western Romanian propolis. The principal component analysis revealed clustering of the propolis samples according to the polyphenolic profile similarity.
Collapse
|
104
|
Brazilian Green Propolis Rescues Oxidative Stress-Induced Mislocalization of Claudin-1 in Human Keratinocyte-Derived HaCaT Cells. Int J Mol Sci 2019; 20:ijms20163869. [PMID: 31398894 PMCID: PMC6719963 DOI: 10.3390/ijms20163869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/05/2023] Open
Abstract
Claudin-1 (CLDN1) is expressed in the tight junction (TJ) of the skin granular layer and acts as a physiological barrier for the paracellular transport of ions and nonionic molecules. Ultraviolet (UV) and oxidative stress may disrupt the TJ barrier, but the mechanism of and protective agents against this effect have not been clarified. We found that UVB and hydrogen peroxide (H2O2) caused the internalization of CLDN1 and increased the paracellular permeability of lucifer yellow, a fluorescent marker, in human keratinocyte-derived HaCaT cells. Therefore, the mechanism of mislocalization of CLDN1 and the protective effect of an ethanol extract of Brazilian green propolis (EBGP) were investigated. The UVB- and H2O2-induced decreases in CLDN1 localization were rescued by EBGP. H2O2 decreased the phosphorylation level of CLDN1, which was also rescued by EBGP. Wild-type CLDN1 was distributed in the cytosol after treatment with H2O2, whereas T191E, its H2O2-insensitive phosphorylation-mimicking mutant, was localized at the TJ. Both protein kinase C activator and protein phosphatase 2A inhibitor rescued the H2O2-induced decrease in CLDN1 localization. The tight junctional localization of CLDN1 and paracellular permeability showed a negative correlation. Our results indicate that UVB and H2O2 could induce the elevation of paracellular permeability mediated by the dephosphorylation and mislocalization of CLDN1 in HaCaT cells, which was rescued by EBGP. EBGP and its components may be useful in preventing the destruction of the TJ barrier through UV and oxidative stress.
Collapse
|
105
|
Salem MM, Donia T, Abu-Khudir R, Ramadan H, Ali EMM, Mohamed TM. Propolis Potentiates Methotrexate Anticancer Mechanism and Reduces its Toxic Effects. Nutr Cancer 2019; 72:460-480. [DOI: 10.1080/01635581.2019.1640884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maha M. Salem
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thoria Donia
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
| | - Rasha Abu-Khudir
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
- Departement of Chemistry, College of Science, King Faisal University, Al-Ahsaa, Saudi Arabia
| | - Haitham Ramadan
- Department of Plant Protection, Economic Entomology Division, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Ehab M. M. Ali
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek M. Mohamed
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
106
|
Reis JHDO, Barreto GDA, Cerqueira JC, dos Anjos JP, Andrade LN, Padilha FF, Druzian JI, Machado BAS. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS One 2019; 14:e0219063. [PMID: 31276476 PMCID: PMC6611595 DOI: 10.1371/journal.pone.0219063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/16/2019] [Indexed: 12/20/2022] Open
Abstract
Propolis is a complex mixture of resinous and balsamic material collected from the exudates of plants, shoots, and leaves by bees. This study evaluated red propolis extracts obtained by conventional (ethanolic) extraction and ultrasound-assisted extraction of six samples from different regions of northeastern Brazil. The total phenolic compounds and flavonoids, in vitro antioxidant activity, concentration of formononetin and kaempferol and the cytotoxicity against four human tumor cell lines were determined for all twelve obtained extracts. Significant variations in the levels of the investigated compounds were identified in the red propolis extracts, confirming that the chemical composition varied according to the sampling region. The extraction method used also influenced the resulting propolis compounds. The highest concentration of the compounds of interest and the highest in vitro antioxidant activity were exhibited by the extracts obtained from samples from state of Alagoas. Formononetin and kaempferol were identified in all samples. The highest formononetin concentrations were identified in extracts obtained by ultrasound, thus indicating a greater selectivity for the extraction of this compound by this method. Regarding cytotoxic activity, for the HCT-116 line, all of the extracts showed an inhibition of greater than 90%, whereas for the HL-60 and PC3 lines, the minimum identified was 80%. In general, there was no significant difference (p>0.05) in the antiproliferative potential when comparing the extraction methods. The results showed that the composition of Brazilian red propolis varies significantly depending on the geographical origin and that the method used influences the resulting compounds that are present in propolis. However, regardless of the geographical origin and the extraction method used, all the red propolis samples studied presented great biological potential and high antioxidant activity. Furthermore, the ultrasound-assisted method can be efficiently applied to obtain extracts of red propolis more quickly and with high concentration of biomarkers of interest.
Collapse
Affiliation(s)
| | - Gabriele de Abreu Barreto
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jamile Costa Cerqueira
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jeancarlo Pereira dos Anjos
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
107
|
Nogueira KM, de Souza LKM, de Oliveira AP, Pacheco G, Iles B, Alencar MS, Nicolau LAD, Silva RO, da Nóbrega FR, Sousa DP, de Souza MHLP, Medeiros JVR. Efficacy of a phenol derivative, isopropyl vanillate, as an anti-inflammatory agent: A new small molecule inhibitor of COX and neutrophil migration. Drug Dev Res 2019; 80:666-679. [PMID: 31112325 DOI: 10.1002/ddr.21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 11/08/2022]
Abstract
Inflammation is the response of the body to noxious stimuli such as infections, trauma, or injury. Experimental studies have shown that vanillic acid has anti-inflammatory effects. The objective of this study was to investigate the anti-inflammatory and antipyretic properties of the derivative of vanillic acid, isopropyl vanillate (ISP-VT), in mice. The results of this study indicated that ISP-VT reduced paw edema induced by carrageenan, dextran sulfate (DEX), compound 48/80, serotonin, bradykinin (BK), histamine (HIST), and prostaglandin E2 (PGE2). Furthermore, ISP-VT reduced recruitment of leukocytes and neutrophils and reduced its adhesion and rolling, and decreased myeloperoxidase enzyme activity (MPO), cytokine levels (tumor necrosis factor-α and interleukin-6), and vascular permeability. ISP-VT also significantly reduced the expression of cyclooxygenase-2 (COX-2) in subplantar tissue of mice. ISP-VT inhibited COX-2 selectively compared to the standard drug. Our results showed that although ISP-VT binds to COX-1, it is less toxic than indomethacin, as evidenced by MPO analysis of gastric tissue. Treatment with the ISP-VT significantly reduced rectal temperature in yeast-induced hyperthermia in mice. Our results showed that the main mechanism ISP-VT-induced anti-inflammatory activity is by inhibition of COX-2. In conclusion, our results indicate that ISP-VT has potential as an anti-inflammatory and antipyretic therapeutic compound.
Collapse
Affiliation(s)
- Kerolayne M Nogueira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Luan K M de Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Ana P de Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Bruno Iles
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Matheus S Alencar
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| | - Lucas A D Nicolau
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renan O Silva
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Flávio R da Nóbrega
- Department of Pharmaceutics Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Damião P Sousa
- Department of Pharmaceutics Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcellus H L P de Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders-LAFIDG, Federal University of Piauí, Parnaíba, Piauí, Brazil
| |
Collapse
|
108
|
Olegário LS, Andrade JKS, Andrade GRS, Denadai M, Cavalcanti RL, da Silva MAAP, Narain N. Chemical characterization of four Brazilian brown propolis: An insight in tracking of its geographical location of production and quality control. Food Res Int 2019; 123:481-502. [PMID: 31284998 DOI: 10.1016/j.foodres.2019.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/01/2022]
Abstract
The aim of this work was to undertake a detailed analysis on chemical constituents of brown propolis, originating from four different states (Bahia, Minas Gerais, Paraná and Sergipe) of Brazil. The volatile profile was determined by using HS-SPME-GC-MS along with the determination of total phenolic compounds content, flavonoids and antioxidant activity. A total of 315 volatile compounds were identified, however, several of them have not been reported so far in the Brazilian brown propolis. The terpenes represented the major class with 40.92-84.66% of the total area in the chromatograms. PCA analysis of the majority of compounds successfully indicated the volatile profile of each propolis sample according to their geographical origin. The analysis of volatile compounds and its characterization also varied significantly and confirmed that these depended on the geographical area of collection of propolis. The data generated in this work may help in establishing criteria for quality control and tracking the specific region of propolis production in different states of Brazil.
Collapse
Affiliation(s)
- Lary Souza Olegário
- Federal University of Paraíba, Laboratory of Flavor Analyzes, João Pessoa, Paraíba, Brazil
| | | | | | - Marina Denadai
- Federal University of Sergipe, Laboratory of Flavor and Chromatographic Analyzes, São Cristóvão, Sergipe, Brazil
| | - Ranielly Lira Cavalcanti
- Federal University of Sergipe, Laboratory of Flavor and Chromatographic Analyzes, São Cristóvão, Sergipe, Brazil
| | | | - Narendra Narain
- Federal University of Sergipe, Laboratory of Flavor and Chromatographic Analyzes, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
109
|
Karapetsas A, Voulgaridou GP, Konialis M, Tsochantaridis I, Kynigopoulos S, Lambropoulou M, Stavropoulou MI, Stathopoulou K, Aligiannis N, Bozidis P, Goussia A, Gardikis K, Panayiotidis MI, Pappa A. Propolis Extracts Inhibit UV-Induced Photodamage in Human Experimental In Vitro Skin Models. Antioxidants (Basel) 2019; 8:antiox8050125. [PMID: 31075866 PMCID: PMC6562595 DOI: 10.3390/antiox8050125] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to assess the antioxidant, photoprotective, and antiaging effects of Greek propolis. Propolis was subjected to n-heptane or methanol extraction. Total phenolic/flavonoid content and antioxidant potential were determined in the extracts. Promising extracts were evaluated for their cytoprotective properties using human immortalized keratinocyte (HaCaT) or reconstituted human skin tissue following exposure to UVB. Assessment of cytotoxicity, DNA damage, oxidative status, and gene/protein expression levels of various matrix metalloproteinases (MMPs) were performed. The propolis methanolic fractions exhibited higher total phenolic and flavonoid contents and significant in vitro antioxidant activity. Incubation of HaCaT cells with certain methanolic extracts significantly decreased the formation of DNA strand breaks following exposure to UVB and attenuated UVB-induced decrease in cell viability. The extracts had no remarkable effect on the total antioxidant status, but significantly lowered total protein carbonyl content used as a marker for protein oxidation in HaCaT cells. MMP-1, -3, -7, and -9, monitored as endpoints of antiaging efficacy, were significantly reduced by propolis following UVB exposure in a model of reconstituted skin tissue. In conclusion, propolis protects against the oxidative and photodamaging effects of UVB and could be further explored as a promising agent for developing natural antiaging strategies.
Collapse
Affiliation(s)
- Athanasios Karapetsas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | | | - Manolis Konialis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Spyridon Kynigopoulos
- Laboratory of Histology & Embryology, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Maria Lambropoulou
- Laboratory of Histology & Embryology, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Maria-Ioanna Stavropoulou
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Konstantina Stathopoulou
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nektarios Aligiannis
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Petros Bozidis
- Department of Pathology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | - Anna Goussia
- Department of Pathology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | | | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| |
Collapse
|
110
|
Silva CCFD, Salatino A, Motta LBD, Negri G, Salatino MLF. Chemical characterization, antioxidant and anti-HIV activities of a Brazilian propolis from Ceará state. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
111
|
Woźniak M, Mrówczyńska L, Waśkiewicz A, Rogoziński T, Ratajczak I. The role of seasonality on the chemical composition, antioxidant activity and cytotoxicity of Polish propolis in human erythrocytes. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
112
|
Rajan M, Ferreira Barbosa P, Carvalho Gualberto N, de Oliveira CS, Santos Leite Neta MT, Narain N. Optimization and method validation of determining polyphenolic compounds by UFLC-DAD system using two biphenyl and pentafluorophenylpropyl columns. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1598429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Murugan Rajan
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | - Paula Ferreira Barbosa
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | | | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| |
Collapse
|
113
|
Alqarni AM, Niwasabutra K, Sahlan M, Fearnley H, Fearnley J, Ferro VA, Watson DG. Propolis Exerts an Anti-Inflammatory Effect on PMA-Differentiated THP-1 Cells via Inhibition of Purine Nucleoside Phosphorylase. Metabolites 2019; 9:metabo9040075. [PMID: 30995826 PMCID: PMC6523283 DOI: 10.3390/metabo9040075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Previous research has shown that propolis has immunomodulatory activity. Propolis extracts from different geographic origins were assessed for their anti-inflammatory activities by investigating their ability to alter the production of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1β (IL-1β), IL-6 and IL-10 in THP-1-derived macrophage cells co-stimulated with lipopolysaccharide (LPS). All the propolis extracts suppressed the TNF-α and IL-6 LPS-stimulated levels. Similar suppression effects were detected for IL-1β, but the release of this cytokine was synergised by propolis samples from Ghana and Indonesia when compared with LPS. Overall, the Cameroonian propolis extract (P-C) was the most active and this was evaluated for its effects on the metabolic profile of unstimulated macrophages or macrophages activated by LPS. The levels of 81 polar metabolites were identified by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS altered the energy, amino acid and nucleotide metabolism in THP-1 cells, and interpretation of the metabolic pathways showed that P-C reversed some of the effects of LPS. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by inhibition of pro-inflammatory cytokines and by metabolic reprogramming of LPS activity in macrophage cells, suggesting an immunomodulatory effect.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam 31441, Saudi Arabia.
| | - Kanidta Niwasabutra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Muhamad Sahlan
- Faculty of Engineering, Universitas Indonesia Campus UI, Depok 16424, Indonesia.
| | - Hugo Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - James Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
114
|
Santos T, Barbosa P, Rodrigues HA, Narain N, de Aquino Santana LL. Granadilla seed extract as antimicrobial and bioactive compounds source: mathematical modelling of extraction conditions. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T.R.J. Santos
- Department of Food Technology, Laboratory of Food Microbiology and Bioengineering, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - P.F. Barbosa
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - H.G. Antunes Rodrigues
- Department of Food Technology, Laboratory of Food Microbiology and Bioengineering, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - N. Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - L.C. Lins de Aquino Santana
- Department of Food Technology, Laboratory of Food Microbiology and Bioengineering, Federal University of Sergipe, Av. Marechal Rondon, S/N, São Cristóvão, Sergipe CEP 49100-000, Brazil
| |
Collapse
|
115
|
Jansen-Alves C, Krumreich FD, Zandoná GP, Gularte MA, Borges CD, Zambiazi RC. Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2246-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
116
|
Sun X, Zhang Y, Li J, Aslam N, Sun H, Zhao J, Wu Z, He S. Effects of particle size on physicochemical and functional properties of superfine black kidney bean ( Phaseolus vulgaris L.) powder. PeerJ 2019; 7:e6369. [PMID: 30740274 PMCID: PMC6366401 DOI: 10.7717/peerj.6369] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/29/2018] [Indexed: 11/20/2022] Open
Abstract
Black kidney bean (Phaseolus vulgaris L.) powder (BKBP) with particle sizes of 250–180, 180–125, 125–75, 75–38, and <38 μm was prepared by using coarse and eccentric vibratory milling, respectively. Physicochemical properties, cholesterol adsorption, and antioxidant activities of powders were investigated. Size and scanning electron microscopy analyses showed that particle size of BKBP could be effectively decreased after the superfine grinding treatment, and the specific surface area was increased. Flow properties, hydration properties, thermal stability, and cholesterol adsorption efficiency significantly improved with the reducing of particle size. The superfine powder with sizes of 75–38 or <38 μm exhibited higher antioxidant activity via 2,2-diphenyl-1-picryhydrazyl, hydroxyl radical-scavenging, and ferrous ion-chelating assays. The results indicated that the BKBP with a size of <38 μm could serve as a better potential biological resource for food additives, and could be applied for the development of low-cholesterol products.
Collapse
Affiliation(s)
- Xianbao Sun
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuwei Zhang
- School of Food Science and Engineering, Shaanxi Normal University, Xi'an, China
| | - Jing Li
- Department of Biological and Environmental Engineering, Hefei University, Hefei, China
| | - Nayab Aslam
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Hanju Sun
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou, China
| | - Jinlong Zhao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Zeyu Wu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shudong He
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou, China
| |
Collapse
|
117
|
Jansen-Alves C, Maia DS, Krumreich FD, Crizel-Cardoso MM, Fioravante JB, da Silva WP, Borges CD, Zambiazi RC. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
118
|
Application of propolis in antimicrobial and antioxidative protection of food quality – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
119
|
Asgharpour F, Moghadamnia AA, Kazemi S, Nouri HR, Pouramir M, Mousavi SN, Motallebnejad M. Chemical Composition Analysis and In Vitro Investigation of Cytotoxic and Antioxidative Activities of Iranian Propolis against Breast Cancer Cell Line, MCF-7. ChemistrySelect 2018. [DOI: 10.1002/slct.201802457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fariba Asgharpour
- Student Research Committee; Babol University of Medical sciences; Babol-47745 IRAN
- Dental Materials Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Ali Akbar Moghadamnia
- Department of pharmacology; Babol University of Medical Sciences; Babol-47745 IRAN
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Sohrab Kazemi
- Department of pharmacology; Babol University of Medical Sciences; Babol-47745 IRAN
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| | - Mahdi Pouramir
- Cellular and Molecular Biology Research Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
- Department of Clinical Biochemistry; Babol University of Medical Sciences; Babol-47745 IRAN
| | | | - Mina Motallebnejad
- Oral Health Center; Health Research Institute; Babol University of Medical Sciences; Babol-47745 IRAN
| |
Collapse
|
120
|
Zhang H, Fu Y, Niu F, Li Z, Ba C, Jin B, Chen G, Li X. Enhanced antioxidant activity and in vitro release of propolis by acid-induced aggregation using heat-denatured zein and carboxymethyl chitosan. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
121
|
Andrade JKS, Denadai M, Andrade GRS, da Cunha Nascimento C, Barbosa PF, Jesus MS, Narain N. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Res Int 2018; 109:278-287. [DOI: 10.1016/j.foodres.2018.04.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
|
122
|
Shanmugam S, Gomes IA, Denadai M, dos Santos Lima B, de Souza Araújo AA, Narain N, Neta MTSL, Serafini MR, Quintans-Júnior LJ, Thangaraj P. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties. Food Res Int 2018; 108:611-620. [DOI: 10.1016/j.foodres.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/17/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
|
123
|
Sathiyabama RG, Rajiv Gandhi G, Denadai M, Sridharan G, Jothi G, Sasikumar P, Siqueira Quintans JDS, Narain N, Cuevas LE, Coutinho HDM, Ramos AGB, Quintans-Júnior LJ, Gurgel RQ. Evidence of insulin-dependent signalling mechanisms produced by Citrus sinensis (L.) Osbeck fruit peel in an insulin resistant diabetic animal model. Food Chem Toxicol 2018; 116:86-99. [DOI: 10.1016/j.fct.2018.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/05/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
|
124
|
Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2115-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
125
|
Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7074209. [PMID: 29854089 PMCID: PMC5954854 DOI: 10.1155/2018/7074209] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
Honeybees products comprise of numerous substances, including propolis, bee pollen, and royal jelly, which have long been known for their medicinal and health-promoting properties. Their wide biological effects have been known and used since antiquity. Bee products are considered to be a potential source of natural antioxidants such as flavonoids, phenolic acids, or terpenoids. Nowadays, the still growing concern in natural substances capable of counteracting the effects of oxidative stress underlying the pathogenesis of numerous diseases, such as neurodegenerative disorders, cancer, diabetes, and atherosclerosis, as well as negative effects of different harmful factors and drugs, is being observed. Having regarded the importance of acquiring drugs from natural sources, this review is aimed at updating the current state of knowledge of antioxidant capacity of selected bee products, namely, propolis, bee pollen, and royal jelly, and of their potential antioxidant-related therapeutic applications. Moreover, the particular attention has been attributed to the understanding of the mechanisms underlying antioxidant properties of bee products. The influence of bee species, plant origin, geographic location, and seasonality as well as type of extraction solutions on the composition of bee products extracts were also discussed.
Collapse
Affiliation(s)
- Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Małgorzata Kiełczykowska
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Dorota Luchowska-Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Irena Musik
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
126
|
Escriche I, Juan-Borrás M. Standardizing the analysis of phenolic profile in propolis. Food Res Int 2018; 106:834-841. [DOI: 10.1016/j.foodres.2018.01.055] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/20/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022]
|
127
|
de Francisco L, Pinto D, Rosseto H, Toledo L, Santos R, Tobaldini-Valério F, Svidzinski T, Bruschi M, Sarmento B, Oliveira MBPP, Rodrigues F. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res Int 2017; 105:537-547. [PMID: 29433245 DOI: 10.1016/j.foodres.2017.11.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 02/09/2023]
Abstract
Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O2-), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical.
Collapse
Affiliation(s)
- Lizziane de Francisco
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Diana Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n. °280, 4050-313 Porto, Portugal
| | - Hélen Rosseto
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Lucas Toledo
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Rafaela Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Flávia Tobaldini-Valério
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900 Maringá, Brazil
| | - Terezinha Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900 Maringá, Brazil
| | - Marcos Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; iNEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - M Beatriz P P Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n. °280, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n. °280, 4050-313 Porto, Portugal.
| |
Collapse
|