101
|
A three-in-one, long-acting, nanosuspension reformulation of off-patent antiretrovirals for low-income and middle-income countries. AIDS 2018; 32:2625-2627. [PMID: 30379688 DOI: 10.1097/qad.0000000000001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W, Zhong W, Jiang S, Liu K. De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. J Med Chem 2018; 61:8734-8745. [PMID: 30192544 PMCID: PMC7075651 DOI: 10.1021/acs.jmedchem.8b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.
Collapse
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Zhao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Tianhong Zhang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ruiyuan Cao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Yue Li
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangpeng Meng
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weicong Wang
- Department
of Clinical Trial Center, China National Clinical Research Center
for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weiguo Shi
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wu Zhong
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
- Lindsley
F. Kimball Research Institute, New York
Blood Center, New York, New York 10065, United
States
| | - Keliang Liu
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
103
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
104
|
Pang JH, Kaga A, Chiba S. Nucleophilic amination of methoxypyridines by a sodium hydride-iodide composite. Chem Commun (Camb) 2018; 54:10324-10327. [PMID: 30141796 DOI: 10.1039/c8cc05979a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new protocol for nucleophilic amination of methoxypyridines and their derivatives was developed using sodium hydride (NaH) in the presence of lithium iodide (LiI). The method offers a concise access to various aminopyridines which are potentially of medicinal interest.
Collapse
Affiliation(s)
- Jia Hao Pang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | | | | |
Collapse
|
105
|
Kim S, Traore YL, Chen Y, Ho EA, Liu S. Switchable On-Demand Release of a Nanocarrier from a Segmented Reservoir Type Intravaginal Ring Filled with a pH-Responsive Supramolecular Polyurethane Hydrogel. ACS APPLIED BIO MATERIALS 2018; 1:652-662. [DOI: 10.1021/acsabm.8b00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seungil Kim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yannick Leandre Traore
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Kitchener, Ontario N2G 1C5, Canada
| | - Yufei Chen
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Kitchener, Ontario N2G 1C5, Canada
| | - Emmanuel A. Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Kitchener, Ontario N2G 1C5, Canada
| | - Song Liu
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
106
|
Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res 2018; 154:66-86. [PMID: 29649496 PMCID: PMC6396324 DOI: 10.1016/j.antiviral.2018.04.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
This is the first of two invited articles reviewing the development of nucleoside-analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. Rather than providing a simple chronological account, we have examined and attempted to explain the thought processes, advances in synthetic chemistry and lessons learned from antiviral testing that led to a few molecules being moved forward to eventual approval for human therapies, while others were discarded. The present paper focuses on early, relatively simplistic changes made to the nucleoside scaffold, beginning with modifications of the nucleoside sugars of Ara-C and other arabinose-derived nucleoside analogues in the 1960's. A future paper will review more recent developments, focusing especially on more complex modifications, particularly those involving multiple changes to the nucleoside scaffold. We hope that these articles will help virologists and others outside the field of medicinal chemistry to understand why certain drugs were successfully developed, while the majority of candidate compounds encountered barriers due to low-yielding synthetic routes, toxicity or other problems that led to their abandonment.
Collapse
Affiliation(s)
- Katherine L Seley-Radtke
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Mary K Yates
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
107
|
Lloret-Linares C, Rahmoun Y, Lopes A, Chopin D, Simoneau G, Green A, Delhotal B, Sauvageon H, Mouly S, Bergmann JF, Sellier PO. Effect of body weight and composition on efavirenz, atazanavir or darunavir concentration. Therapie 2018; 73:185-191. [DOI: 10.1016/j.therap.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
|
108
|
Alcolea Palafox M, Kattan D, Afseth N. FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
109
|
Benítez-Gutiérrez L, Soriano V, Requena S, Arias A, Barreiro P, de Mendoza C. Treatment and prevention of HIV infection with long-acting antiretrovirals. Expert Rev Clin Pharmacol 2018; 11:507-517. [PMID: 29595351 DOI: 10.1080/17512433.2018.1453805] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Current antiretroviral therapy allows to achieve and sustain maximal suppression of HIV replication in most treated patients. As result, the life expectancy of HIV-infected persons has improved dramatically and is nowadays similar to that of the HIV-negative population. However, oral antiretrovirals have to be taken daily and indefinitely to avoid resumption of HIV replication and selection of drug resistance. Unfortunately, drug adherence is often suboptimal and tends to decline over time. Areas covered: New drugs, formulations and delivery systems are being developed for extended-release of antiretrovirals. At this time, intramuscular cabotegravir and rilpivirine, dapivirine vaginal rings and tenofovir alafenamide subdermal implants are the products in more advanced stages of clinical development. Their pharmacokinetics/dynamics and safety/efficacy are reviewed. Expert commentary: In the absence of eradicative therapy for individuals with HIV infection and protective vaccines for persons at risk, long-term antiretroviral therapy is the best approach for preventing disease progression in patients and halting transmissions, either as result of 'treatment as prevention' for HIV carriers or 'pre-exposure prophylaxis' for uninfected individuals at risk. In all these scenarios, the advent of long-acting antiretrovirals will expand options for overcoming the challenge of suboptimal drug adherence and reduce the burden of HIV infection.
Collapse
Affiliation(s)
- Laura Benítez-Gutiérrez
- a Internal Medicine Department , Puerta de Hierro University Hospital , Majadahonda , Spain.,b Laboratory of Internal Medicine , Puerta de Hierro Research Institute , Majadahonda , Spain
| | - Vicente Soriano
- c Infectious Diseases Unit , La Paz University Hospital & Autonomous University , Madrid , Spain
| | - Silvia Requena
- b Laboratory of Internal Medicine , Puerta de Hierro Research Institute , Majadahonda , Spain
| | - Ana Arias
- a Internal Medicine Department , Puerta de Hierro University Hospital , Majadahonda , Spain
| | - Pablo Barreiro
- c Infectious Diseases Unit , La Paz University Hospital & Autonomous University , Madrid , Spain
| | - Carmen de Mendoza
- b Laboratory of Internal Medicine , Puerta de Hierro Research Institute , Majadahonda , Spain
| |
Collapse
|
110
|
Wu Y, Yang J, Duan C, Chu L, Chen S, Qiao S, Li X, Deng H. Simultaneous determination of antiretroviral drugs in human hair with liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1083:209-221. [PMID: 29550683 DOI: 10.1016/j.jchromb.2018.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 03/10/2018] [Indexed: 11/29/2022]
Abstract
The determination of the concentrations of antiretroviral drugs in hair is believed to be an important means for the assessment of the long-term adherence to highly active antiretroviral therapy. At present, the combination of tenofovir, lamivudine and nevirapine is widely used in China. However, there was no research reporting simultaneous determination of the three drugs in hair. The present study aimed to develop a sensitive method for simultaneous determination of the three drugs in 2-mg and 10-mg natural hair (Method 1 and Method 2). Hair samples were incubated in methanol at 37 °C for 16 h after being rinsed with methanol twice. The analysis was performed on high performance liquid chromatography tandem mass spectrometry with electronic spray ionization in positive mode and multiple reactions monitoring. Method 1 and Method 2 showed the limits of detection at 160 and 30 pg/mg for tenofovir, at 5 and 6 pg/mg for lamivudine and at 15 and 3 pg/mg for nevirapine. The two methods showed good linearity with the square of correlation coefficient >0.99 at the ranges of 416-5000 and 77-5000 pg/mg for tenofovir, 12-5000 and 15-5000 pg/mg for lamivudine and 39-50,000 and 6-50,000 pg/mg for nevirapine. They gave intra-day and inter-day coefficient of variation <15% and the recoveries ranging from 80.6 to 122.3% and from 83.1 to 114.4%. Method 2 showed LOD and LOQ better than Method 1 for tenofovir and nevirapine and matched Method 1 for lamivudine, but there was high consistency between them in the determination of the three drugs in hair. The population analysis with Method 2 revealed that the concentrations in hair were decreased with the distance of hair segment away from the scalp for the three antiretroviral drugs.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, and Institute of Child Development and Education, Southeast University, Nanjing 210096, China
| | - Jin Yang
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, and Institute of Child Development and Education, Southeast University, Nanjing 210096, China; School of Public Health, Southeast University, Nanjing 210009, China
| | - Cailing Duan
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, and Institute of Child Development and Education, Southeast University, Nanjing 210096, China
| | - Liuxi Chu
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, and Institute of Child Development and Education, Southeast University, Nanjing 210096, China
| | - Shenghuo Chen
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, and Institute of Child Development and Education, Southeast University, Nanjing 210096, China
| | - Shan Qiao
- Department of Health Promotion, Education and Behavior, South Carolina SmartState Center for Healthcare Quality (CHQ), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaoming Li
- Department of Health Promotion, Education and Behavior, South Carolina SmartState Center for Healthcare Quality (CHQ), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Huihua Deng
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, and Institute of Child Development and Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
111
|
Abstract
A number of anti-retroviral drugs are being used for treating Human Immunodeficiency Virus (HIV) infection. Due to emergence of drug resistant strains, there is a constant quest to discover more effective anti-HIV compounds. In this endeavor, computational tools have proven useful in accelerating drug discovery. Although methods were published to design a class of compounds against a specific HIV protein, but an integrated web server for the same is lacking. Therefore, we have developed support vector machine based regression models using experimentally validated data from ChEMBL repository. Quantitative structure activity relationship based features were selected for predicting inhibition activity of a compound against HIV proteins namely protease (PR), reverse transcriptase (RT) and integrase (IN). The models presented a maximum Pearson correlation coefficient of 0.78, 0.76, 0.74 and 0.76, 0.68, 0.72 during tenfold cross-validation on IC50 and percent inhibition datasets of PR, RT, IN respectively.
These models performed equally well on the independent datasets. Chemical space mapping, applicability domain analyses and other statistical tests further support robustness of the predictive models. Currently, we have identified a number of chemical descriptors that are imperative in predicting the compound inhibition potential. HIVprotI platform (http://bioinfo.imtech.res.in/manojk/hivproti) would be useful in virtual screening of inhibitors as well as designing of new molecules against the important HIV proteins for therapeutics development.![]()
Collapse
|
112
|
Gomes B, Gonçalves S, Disalvo A, Hollmann A, Santos NC. Effect of 25-hydroxycholesterol in viral membrane fusion: Insights on HIV inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1171-1178. [PMID: 29408450 DOI: 10.1016/j.bbamem.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Abstract
Recently, it was demonstrated that 25-hydroxycholesterol (25HC), an oxidized cholesterol derivative, inhibits human immunodeficiency virus type 1 (HIV) entry into its target cells. However, the mechanisms involved in this action have not yet been established. The aim of this work was to study the effects of 25HC in biomembrane model systems and at the level of HIV fusion peptide (HIV-FP). Integration of different biophysical approaches was made in the context of HIV fusion process, to clarify the changes at membrane level due to the presence of 25HC that result in the suppressing of viral infection. Lipid vesicles mimicking mammalian and HIV membranes were used on spectroscopy assays and lipid monolayers in surface pressure studies. Peptide-induced lipid mixing assays were performed by Förster resonance energy transfer to calculate fusion efficiency. Liposome fusion is reduced by 50% in the presence of 25HC, comparatively to cholesterol. HIV-FP conformation was assessed by infrared assays and it relies on sterol nature. Anisotropy, surface pressure and dipole potential assays indicate that the conversion of cholesterol in 25HC leads to a loss of the cholesterol modulating effect on the membrane. With different biophysical techniques, we show that 25HC affects the membrane fusion process through the modification of lipid membrane properties, and by direct alterations on HIV-FP structure. The present data support a broad antiviral activity for 25HC.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Anibal Disalvo
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE, University of Santiago del Estero, -CONICET, 4200 Santiago del Estero, Argentina
| | - Axel Hollmann
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, University of Santiago del Estero, -CONICET, 4200 Santiago del Estero, Argentina; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, University of Quilmes, B1876BXD Bernal, Argentina
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
113
|
Jiang Y, Xue Y, Zeng Y. Microsolvated Model for the Kinetics and Thermodynamics of Glycosidic Bond Dissociative Cleavage of Nucleoside D4G. J Phys Chem B 2018; 122:1816-1825. [PMID: 29316403 DOI: 10.1021/acs.jpcb.7b11331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the microsolvated model that involves explicit water molecules and implicit solvent in the optimization, two proposed dissociative hydrolysis mechanisms of 2',3'-didehydro-2',3'-dideoxyguanosine (d4G) have been first investigated by means of M06-2X(CPCM, water)/6-31++G(d,p) method. The glycosidic bond dissociation for the generation of the oxacarbenium ion intermediate is the rate-determining step (RDS). The subsequent nucleophilic water attack from different side of the oxacarbenium ion intermediate gives either the α-product [(2S,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] or β-product [(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] and is thus referred to as α-path (inversion) and β-path (retention). Two to five explicit water molecules (n = 2-5) are considered in the microsolvated model, and n = 3 or 4 is the smallest model capable of minimizing the activation energy for α-path and β-path, respectively. Our theoretical results suggest that α-path (n = 3) is more kinetically favorable with lower free energy barrier (RDS) of 27.7 kcal mol-1, in contrast to that of 30.7 kcal mol-1 for the β-path (n = 4). The kinetic preference of the α-path is rationalized by NBO analysis. Whereas thte β-path is more thermodynamically favorable over the α-path, where the formation of β-product and α-product are exergonic and endergonic, respectively, providing theoretical support for the experimental observation that the β-cleavage product was the major one after sufficient reaction time. Comparisons of d4G with analogous cyclo-d4G and dG from kinetic free energy barriers and thermodynamic heterolytic dissociation energies were also carried out. Our kinetic and thermodynamic results manifest that the order of glycosidic bond stability should be d4G < cyclo-d4G < dG, which agrees well with the reported experimental stability order of d4G compounds and analogues and gives further understanding on the influence of 6-cyclopropylamino and unsaturated ribose to the glycosidic bond instability of d4G.
Collapse
Affiliation(s)
- Yang Jiang
- College of Pharmacy and Biological Engineering, Chengdu University , Chengdu 610106, China
| | - Ying Xue
- Key Laboratory of Green Chemistry and Technology in Ministry of Education, College of Chemistry, Sichuan University , Chengdu 610064, China
| | - Yi Zeng
- School of Science, Xihua University , Chengdu 610039, China
| |
Collapse
|
114
|
Pinkham AM, Yu Z, Cowan JA. Attenuation of West Nile Virus NS2B/NS3 Protease by Amino Terminal Copper and Nickel Binding (ATCUN) Peptides. J Med Chem 2018; 61:980-988. [PMID: 29301071 DOI: 10.1021/acs.jmedchem.7b01409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew M. Pinkham
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Zhen Yu
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - J. A. Cowan
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
115
|
Zheng Y, Zhang L, Meggers E. Catalytic Enantioselective Synthesis of Key Propargylic Alcohol Intermediates of the Anti-HIV Drug Efavirenz. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Zheng
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Lilu Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
116
|
Discovery of biphenyl-substituted diarylpyrimidines as non-nucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1. Eur J Med Chem 2018; 145:726-734. [PMID: 29353724 DOI: 10.1016/j.ejmech.2018.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 11/22/2022]
Abstract
A novel series of diarylpyrimidine (DAPY) derivatives bearing the biphenyl motif with multiple substituted groups was synthesized as human immunodeficiency virus (HIV)-1 non-nucleoside reverse transcriptase inhibitors. All of the target compounds were evaluated for their in vitro activity against HIV in MT-4 cells. Most of the compounds exhibited excellent activity with low nanomolar EC50 values against wild-type, single and double mutant HIV-1 strains. Compound 4b displayed an EC50 value of 1 nM against HIV-1 IIIB, 1.3 nM against L100I, 0.84 nM against K103 N, 1.5 nM against Y181C, 11 nM against Y188L, 2 nM against E138K, 10 nM against K103 N + Y181C, and almost 110 nM against F227L + V106. The improvement in the selectivity and potency of the target molecules against the wild-type and mutant HIV-1 strains validated our hypothesis. The biphenyl ring in the DAPY derivatives could strengthen the π-π stacking effect between the target molecule and the non-nucleoside inhibitor-binding pocket in the reverse transcriptase by extending the conjugating systems. This research represented a significant step toward the discovery of novel therapeutic DAPYs for treating acquired immunodeficiency syndrome in patients infected with HIV-1.
Collapse
|
117
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
118
|
Solvent-Free Ring Cleavage Hydrazinolysis of Certain Biginelli Pyrimidines. J CHEM-NY 2018. [DOI: 10.1155/2018/6354742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain Biginelli pyrimidines with ester substitution in C5 were subjected to unexpected ring opening upon solvent-free reaction with hydrazine hydrate to give three products: pyrazole, arylidenehydrazines, and urea/thiourea, respectively. The nonisolable carbohydrazide intermediates are formed firstly followed by the intermolecular nucleophilic attack of terminal amino group of hydrazide function on sp2 C6 rather than the sp3 C4 to give the ring adduct which was produced as a final product.
Collapse
|
119
|
Nasir IA, Emeribe AU, Ojeamiren I, Aderinsayo Adekola H. Human Immunodeficiency Virus Resistance Testing Technologies and Their Applicability in Resource-Limited Settings of Africa. Infect Dis (Lond) 2017; 10:1178633717749597. [PMID: 29308013 PMCID: PMC5751912 DOI: 10.1177/1178633717749597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/26/2017] [Indexed: 01/03/2023] Open
Abstract
There has been tremendous breakthrough in the development of technologies and protocols for counselling, testing, and surveillance of resistant human immunodeficiency virus strains for efficient prognosis and clinical management aimed at improving the quality of life of infected persons. However, we have not arrived at a point where services rendered using these technologies can be made affordable and accessible to resource-limited settings. There are several technologies for monitoring antiretroviral resistance, each with unique merits and demerits. In this study, we review the strengths and limitations of prospective and affordable technologies with emphasis on those that could be used in resource-limited settings.
Collapse
Affiliation(s)
- Idris Abdullahi Nasir
- Department of Medical Microbiology and Parasitology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Medical Laboratory Services, University of Abuja Teaching Hospital, FCT Abuja, Nigeria.,Department of Medical Laboratory Science, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | | | - Iduda Ojeamiren
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hafeez Aderinsayo Adekola
- Department of Medical Microbiology and Parasitology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
120
|
Malik T, Chauhan G, Rath G, Kesarkar RN, Chowdhary AS, Goyal AK. Efaverinz and nano-gold-loaded mannosylated niosomes: a host cell-targeted topical HIV-1 prophylaxis via thermogel system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:79-90. [PMID: 29231058 DOI: 10.1080/21691401.2017.1414054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sexual dissemination of Human Immunodeficiency Virus-1 (HIV-1) is the prime mode of its spread. Topical microbicidal approach has gained much attention, but no real success is observed till date, either due to toxicity or resistance of active moieties and the lack of efficient drug delivery approaches. In this research protocol, a unique combination approach of a standard drug moiety, that is, Efaverinz (EFV) and a nanometal, that is, gold nanoparticles (GNPs) was tried. Both these candidates were delivered through a mannosylated niosomal system, to exploit protein (lectins present on HIV host cells) - carbohydrate (oligosaccharides such as mannan present on HIV gp-120 receptor) interaction. GNPs (10.4 nm average size) were entrapped inside the aqueous core, whereas lipophilic EFV was loaded in the bilayer membrane. Results demonstrated a significant increase in antiviral activity when EFV was fired with GNPs. Delivery of this combination via mannosylated niosomes proved to be a perfect approach with exceedingly well potential compared to non liganded niosomal system. A thermosensitive gel vehicle was prepared and the loaded niosomes were dispersed in it to have a nanogel system. The optimized formulation was evaluated for its prophylactic activity and the results showed completely inhibited viral dissemination at folds dilution levels.
Collapse
Affiliation(s)
- Tanushree Malik
- a Indo-Soviet Friendship College of Pharmacy , DBT Lab , Moga , India
| | - Gaurav Chauhan
- a Indo-Soviet Friendship College of Pharmacy , DBT Lab , Moga , India.,b Centre for Nanosciences, Department of Chemical Engineering , Indian Institute of Technology , Kanpur , India
| | - Goutam Rath
- a Indo-Soviet Friendship College of Pharmacy , DBT Lab , Moga , India
| | - Rohan N Kesarkar
- c Department of Virology , Haffkine Institute for Training Research and Testing , Mumbai , India
| | - Abhay S Chowdhary
- d Head, Department of Microbiology , Grant Medical College, Sir JJ hospital , Mumbai , India
| | - Amit K Goyal
- a Indo-Soviet Friendship College of Pharmacy , DBT Lab , Moga , India.,e Department of Pharmaceutics , ISF College of Pharmacy , Moga , India
| |
Collapse
|
121
|
Tan Z, Jia X, Ma F, Feng Y, Lu H, Jin JO, Wu D, Yin L, Liu L, Zhang L. Increased MMAB level in mitochondria as a novel biomarker of hepatotoxicity induced by Efavirenz. PLoS One 2017; 12:e0188366. [PMID: 29190729 PMCID: PMC5708658 DOI: 10.1371/journal.pone.0188366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor (NNRTI), has been widely used in the therapy of human immunodeficiency virus (HIV) infection. Some of its toxic effects on hepatic cells have been reported to display features of mitochondrial dysfunction through bioenergetic stress and autophagy, etc. However, alteration of protein levels, especially mitochondrial protein levels, in hepatic cells during treatment of EFV has not been fully investigated. Methods We built a cell model of EFV-induced liver toxicity through treating Huh-7 cells with different concentrations of EFV for different time followed by the analysis of cell viability using cell counting kit -8 (CCK8) and reactive oxygen species (ROS) using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox dye. Proteomic profiles in the mitochondria of Huh-7 cells stimulated by EFV were analyzed. Four differentially expressed proteins were quantified by real time RT-PCR. We also detected the expression of mitochondrial precursor Cob(I)yrinic acid a,c-diamide adenosyltransferase (MMAB) by immunohistochemistry analysis in clinical samples. The expression levels of MMAB and ROS were detected in EFV-treated Huh-7 cells with and without shRNA used to knock down MMAB, and in primary hepatocytes (PHC). The effects of other anti-HIV drugs (nevirapine (NVP) and tenofovirdisoproxil (TDF)), and hydrogen peroxide (H2O2) were also tested. Amino acid analysis and fatty aldehyde dehydrogenase (ALDH3A2) expression after MMAB expression knock-down with shRNA was used to investigate the metabolic effect of MMAB in Huh-7 cells. Results EFV treatment inhibited cell viability and increased ROS production with time- and concentration-dependence. Proteomic study was performed at 2 hours after EFV treatment. After treated Huh-7 cells with EFV (2.5mg/L or 10 mg/L) for 2 h, fifteen differentially expressed protein spots from purified mitochondrion that included four mitochondria proteins were detected in EFV-treated Huh-7 cells compared to controls. Consistent with protein expression levels, mRNA expression levels of mitochondrial protein MMAB were also increased by EFV treatment. In addition, the liver of EFV-treated HIV infected patients showed substantially higher levels of MMAB expression compared to the livers of untreated or protease inhibitor (PI)-treated HIV-infected patients. Furthermore, ROS were found to be decreased in Huh-7 cells treated with shMMAB compared with empty plasmid treated with EFV at the concentration of 2.5 or 10 mg/L. MMAB was increased in EFV-treated Huh-7 cells and primary hepatocytes. However, no change in MMAB expression was detected after treatment of Huh-7 cells and primary hepatocytes with anti-HIV drugs nevirapine (NVP) and tenofovirdisoproxil (TDF), or hydrogen peroxide (H2O2), although ROS was increased in these cells. Finally, knockdown of MMAB by shRNA induced increases in the β-Alanine (β-Ala) production levels and decrease in ALDH3A2 expression. Conclusions A mitochondrial proteomic study was performed to study the proteins related to EFV-inducted liver toxicity. MMAB might be a target and potential biomarker of hepatotoxicity in EFV-induced liver toxicity.
Collapse
Affiliation(s)
- Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fang Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
122
|
Frankish NH, McHale B, Sheridan H. The indane diastereoisomers, PH2 and PH5: divergence between their effects in delayed-type hypersensitivity models and a model of colitis. ACTA ACUST UNITED AC 2017; 70:101-110. [PMID: 29057517 PMCID: PMC5887892 DOI: 10.1111/jphp.12846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/26/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Compounds PH2 and PH5 are distereoisomers of novel indane compounds, synthesised as analogues of secondary metabolites of the fern, Onychium. In this study, we compare their effects on a variety of inflammatory models. METHODS In an effort to extend our knowledge of their anti-inflammatory profile, we have investigated their activity in two models of delayed-type hypersensitivity (DTH); the methylated bovine serum albumin model (mBSA) and the oxazolone contact hypersensitivity (CHS) model, on IL2 release from Jurkat cells and in the dextran sulphate sodium (DSS) murine model of inflammatory bowel disease. KEY FINDINGS Both diastereoisomers are equipotent in reducing paw swelling in the mBSA model and in inhibiting interleukin (IL) 2 release from Jurkat cells. They are equally ineffective in the oxazolone contact hypersensitivity model (CHS). Only the diastereoisomer, PH5, protects against DSS-induced colitis and of its two enantiomers, only the S,S-enantiomer, PH22, possesses this activity. PH2 is ineffective in the DSS model. CONCLUSIONS The results suggest that the beneficial effect of PH5, and its enantiomer PH22, in the DSS model is a consequence of an action on a target specific to the colitis model. The implications of such data suggest an unknown target in this disease model that may be exploited to therapeutic advantage.
Collapse
Affiliation(s)
- Neil H Frankish
- School of Pharmacy and Pharmaceutical Technology, Trinity College Dublin, Dublin, Ireland
| | - Brendan McHale
- MSD, Red Oak North, South County Business Park, Leopardstown, Dublin, Ireland
| | - Helen Sheridan
- School of Pharmacy and Pharmaceutical Technology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
123
|
Behbahani M. Anti-human immunodeficiency virus-1 activities of pratensein and pratensein glycoside from Alhaji maurorum and its parasite Cuscuta kotchiana. Chin J Integr Med 2017:10.1007/s11655-017-2820-2. [PMID: 29043598 DOI: 10.1007/s11655-017-2820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To test the anti-human immunodeficiency virus (HIV) activity of pure compounds isolated from aerial part extracts of Alhaji maurorum and its parasite Cuscuta kotchiana. METHODS The anti-HIV-1 and anti-HIV-2 activities of these extracts were performed by use of quantitative polymerase chain reaction assay and high pure viral nucleic acid kit. The most active fractions against HIV-1 were detected by nuclear magnetic resonance as pratensein and pratensein glycoside respectively in A. maurorum and C. campestris. RESULTS These two extracts have low toxicity on HIV-2 replication. The 50% effective concentration for HIV-1 replication of pratensein and pratensein glycoside were 100 and 22 μg/mL, respectively. The time of addition assay showed that pratensein and pratensein glycoside were most effective when added at the early stage (0-4 h) of virus replication. CONCLUSION The pratensein glycoside inhibits HIV-1 replication in host cells more than pratensein and both extracts are potent inhibitors of HIV-1 entry.
Collapse
Affiliation(s)
- Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran.
| |
Collapse
|
124
|
Chew MF, Poh KS, Poh CL. Peptides as Therapeutic Agents for Dengue Virus. Int J Med Sci 2017; 14:1342-1359. [PMID: 29200948 PMCID: PMC5707751 DOI: 10.7150/ijms.21875] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.
Collapse
Affiliation(s)
- Miaw-Fang Chew
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Selangor 47500, Malaysia
| | - Keat-Seong Poh
- Department of Surgery, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur, 50603, Malaysia
| | - Chit-Laa Poh
- Research Centre for Biomedical Sciences, Sunway University, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
125
|
Arca HÇ, Mosquera-Giraldo LI, Dahal D, Taylor LS, Edgar KJ. Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other’s Solution Concentrations. Mol Pharm 2017; 14:3617-3627. [DOI: 10.1021/acs.molpharmaceut.7b00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hale Çiğdem Arca
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Laura I. Mosquera-Giraldo
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Durga Dahal
- Department
of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin J. Edgar
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
126
|
Zainuddin R, Zaheer Z, Sangshetti JN, Momin M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation . Drug Dev Ind Pharm 2017; 43:2076-2084. [PMID: 28845699 DOI: 10.1080/03639045.2017.1371732] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To synthesize β cyclodextrin nanosponges using a novel and efficient microwave mediated method for enhancing bioavailability of Rilpivirine HCl (RLP). SIGNIFICANCE Belonging to BCS class II RLP has pH dependent solubility and poor oral bioavailability. However, a fatty meal enhances its absorption hence the therapy indicates that the dosage form be consumed with a meal. But then it becomes tedious and inconvenient to continue the therapy for years with having to face the associated gastric side effects such as nausea. METHOD Microwave synthesizer was used to mediate the poly-condensation reaction between β-cyclodextrin and cross-linker diphenylcarbonate. Critical parameters selected were polymer to cross-linker ratio, Watt power, reaction time and solvent volume. Characterization studies were performed using FTIR, DSC, SEM, 1H-NMR and PXRD. Molecular modeling was applied to confirm the possibility of drug entrapment. In vitro drug dissolution followed by oral bioavailability studies was performed in Sprawley rats. Samples were analyzed using HPLC. RESULTS Microwave synthesis yields para-crystalline, porous nanosponges (∼205 nm). Drug entrapment led to enhancement of solubility and a two-fold increase in drug dissolution (P < 0.001) following Higuchi release model. Enhanced oral bioavailability was observed in fasted Sprawley rats where Cmax and AUC0-∞ increases significantly (Cmax of NS∼ 586 ± 5.91 ng/mL; plain RLP ∼310 ± 5. 74 ng/mL). CONCLUSION The approach offers a comfortable dosing zone for AIDs patients, negating the requirement of consuming the formulation in a fed state due to enhancement in drugs' oral bioavailability.
Collapse
Affiliation(s)
- Rana Zainuddin
- a Depatment of Quality Assurance, Y.B. Chavan College of Pharmacy , Dr. Rafiq Zakaria Campus , Aurangabad , India
| | - Zahid Zaheer
- a Depatment of Quality Assurance, Y.B. Chavan College of Pharmacy , Dr. Rafiq Zakaria Campus , Aurangabad , India
| | - Jaiprakash N Sangshetti
- a Depatment of Quality Assurance, Y.B. Chavan College of Pharmacy , Dr. Rafiq Zakaria Campus , Aurangabad , India
| | - Mufassir Momin
- a Depatment of Quality Assurance, Y.B. Chavan College of Pharmacy , Dr. Rafiq Zakaria Campus , Aurangabad , India
| |
Collapse
|
127
|
Kim S, Traore YL, Lee JS, Kim JH, Ho EA, Liu S. Self-assembled nanoparticles made from a new PEGylated poly(aspartic acid) graft copolymer for intravaginal delivery of poorly water-soluble drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2082-2099. [DOI: 10.1080/09205063.2017.1374032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Seungil Kim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Yannick Leandre Traore
- Laboratory for Drug Delivery and Biomaterials, Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Jae Sang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Emmanuel A. Ho
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Laboratory for Drug Delivery and Biomaterials, Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Song Liu
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Faculty of Agricultural and Food Sciences, Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
- Faculty of Science, Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
128
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
129
|
Abou-El-Naga IF, El Kerdany ED, Mady RF, Shalaby TI, Zaytoun EM. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol Int 2017; 66:735-747. [PMID: 28838776 DOI: 10.1016/j.parint.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
A marked reduction has been achieved in the incidence and clinical course of toxoplasmic encephalitis after the introduction of protease inhibitors within the treatment regimen of HIV (HIV-PIs). This work was undertaken to study for the first time, the efficacy of HIV-PIs, lopinavir/ritonavir (L/R), as a therapeutic agent in acute experimental toxoplasmosis. Lopinavir/ritonavir (L/R) were used in the same ratio present in aluvia, a known HIV-PIs drug used in the developing countries in the treatment regimens of AID's patient. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as a delivery system to L/R therapy. L/R alone or after its encapsulation on PLGA were given to Swiss strain albino mice that were infected with RH virulent toxoplasma strain. Both forms caused parasitological improvement in both mortality rate and parasite count. The higher efficacy was achieved by using L/R PLGA together with minimizing the effective dose. There was significant reduction in the parasite count in the peritoneal fluid and the liver. Parasite viability and infectivity were also significantly reduced. The anti-toxoplasma effect of the drug was attributed to the morphological distortion of the tachyzoites as evident by the ultrastructure examination and suppressed the egress of tachyzoites. L/R also induced changes that suggest apoptosis and autophagy of tachyzoites. The parasitophorous vacuole membrane was disrupted and vesiculated. The nanotubular networks inside the parasitophorous vacuole were disrupted. Therefore, the present work opens a new possible way for the approved HIV-PIs as an alternative treatment against acute toxoplasmosis. Furthermore, it increases the list of the opportunistic parasites that can be treated by this drug. The successful in vivo effect of HIV-PIs against Toxoplasma gondii suggests that this parasite may be a target in HIV treated patients, thus decrease the possibility of toxoplasmic encephalitis development.
Collapse
Affiliation(s)
| | | | - Rasha Fadly Mady
- Medical Parasitology Department, Alexandria Faculty of Medicine, Egypt.
| | | | | |
Collapse
|
130
|
La Cruz TE, Saurer EM, Engstrom J, Bultman MS, Forest R, Akpinar F, Ferreira G, Ho JW, Huang M, Soltani M, Murugesan S, Fanfair D, Ramirez A, Rosso VW, Erdemir D, Rosenbaum T, Haslam M, Grier S, Peddicord M, Pathirana C, Marshall J, Ding W, Huang Y, Ayers S, Braem A, Schild RL, Ivy SE, Payack J, McLeod DD, Nikitczuk W, Doubleday W, Shah S, Conlon DA. Preparation of the HIV Attachment Inhibitor BMS-663068. Part 9. Active Pharmaceutical Ingredient Process Development and Powder Properties. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas E. La Cruz
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Eric M. Saurer
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Joshua Engstrom
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Michael S. Bultman
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Robert Forest
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Fulya Akpinar
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Glenn Ferreira
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Jeanne W. Ho
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Masano Huang
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Michelle Soltani
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Saravanababu Murugesan
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Dayne Fanfair
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Antonio Ramirez
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Victor W. Rosso
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Deniz Erdemir
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Tamar Rosenbaum
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Michelle Haslam
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Stephen Grier
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Michael Peddicord
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Charles Pathirana
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Jonathan Marshall
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Wei Ding
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Yande Huang
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Sloan Ayers
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Alan Braem
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Richard L. Schild
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Sabrina E. Ivy
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Joseph Payack
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Douglas D. McLeod
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Whitney Nikitczuk
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Wendel Doubleday
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - Sapna Shah
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| | - David A. Conlon
- Chemical and Synthetic Development, ‡Drug Product Science and Technology, §API Operations, ∥Analytical and Bioanalytical
Operations, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903-0191, United States
| |
Collapse
|
131
|
Barzegar A, Hamidi H. Quantitative structure–activity relationships study of potent pyridinone scaffold derivatives as HIV-1 integrase inhibitors with therapeutic applications. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) integrase appears to be a crucial target for developing new anti-HIV-1 therapeutic agents. Different quantitative structure–activity relationships (QSARs) algorithms have been used in order to develop efficient model(s) to predict the activity of new pyridinone derivatives against HIV-1 integrase. Multiple linear regression (MLR) and combined principal component analysis (PCA) with MLR have been applied to build QSAR models for a set of new pyridinone derivatives as potent anti-HIV-1 therapeutic agents. Four different approaches based on MLR method including; concrete-MLR, stepwise-MLR, concrete PCA–MLR and stepwise PCA–MLR were utilized for this aim. Twenty two different sets of descriptors containing 1613 descriptors were constructed for each optimized molecule. Comparison between predictability of the “concrete” and “stepwise” procedure in two different algorithms of MLR and PCA models indicated the advantage of the stepwise procedure over that of the simple concrete method. Although the PCA was employed for dimension reduction, using stepwise PCA–MLR model showed that the method has higher ability to predict the compounds’ activity. The stepwise PCA–MLR model showed highly validated statistical results both in fitting and prediction processes ([Formula: see text] and [Formula: see text]). Therefore, using stepwise PCA approach is suitable to remove ineffective descriptors, which results in remaining efficient descriptors for building good predictability stepwise PCA–MLR. The stepwise hybrid approach of PCA–MLR may be useful in derivation of highly predictive and interpretable QSAR models.
Collapse
Affiliation(s)
- Abolfazl Barzegar
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Hossein Hamidi
- Department of Control Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
132
|
Samanta PN, Das KK. Inhibition activities of catechol diether based non-nucleoside inhibitors against the HIV reverse transcriptase variants: Insights from molecular docking and ONIOM calculations. J Mol Graph Model 2017. [DOI: 10.1016/j.jmgm.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
133
|
de Moraes Filho AV, de Jesus Silva Carvalho C, Verçosa CJ, Gonçalves MW, Rohde C, de Melo e Silva D, Cunha KS, Chen-Chen L. In vivo genotoxicity evaluation of efavirenz (EFV) and tenofovir disoproxil fumarate (TDF) alone and in their clinical combinations in Drosophila melanogaster. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:31-38. [DOI: 10.1016/j.mrgentox.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
|
134
|
Apostolova N, Blas-Garcia A, Galindo MJ, Esplugues JV. Efavirenz: What is known about the cellular mechanisms responsible for its adverse effects. Eur J Pharmacol 2017; 812:163-173. [PMID: 28690189 DOI: 10.1016/j.ejphar.2017.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
Abstract
The HIV infection remains an important health problem worldwide. However, due to the efficacy of combined antiretroviral therapy (cART), it has ceased to be a mortal condition, becoming a chronic disease instead. Efavirenz, the most prescribed non-nucleoside analogue reverse transcriptase inhibitor (NNRTI), has been a key component of cART since its commercialization in 1998. Though still a drug of choice in many countries, its primacy has been challenged by the arrival of newer antiretroviral agents with better toxicity profiles and treatment adherence. The major side effects related to EFV have been widely described in clinical studies, however the mechanisms that participate in their pathogenesis remain largely ununderstood. This review provides an insight into the cellular and molecular mechanisms responsible for the development of the most significant undesired effects induced by efavirenz, both short- and long-term, revealed by in vitro and in vivo experimental pharmacological research. Growing evidence implicates the drug in energy metabolism, mitochondrial function, and other cellular processes involved in stress responses including oxidative stress, inflammation and autophagy.
Collapse
Affiliation(s)
- Nadezda Apostolova
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia-Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain.
| | - Ana Blas-Garcia
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia-Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain
| | - Maria J Galindo
- Unidad de Enfermedades Infecciosas - Medicina Interna, Hospital Clínico Universitario de Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia-Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBERehd), Valencia, Spain; FISABIO-Hospital Universitario Dr. Peset, Valencia, Spain
| |
Collapse
|
135
|
Ghosh AK, Sarkar A. An enantioselective enzymatic desymmetrization route to hexahydro-4 H-furopyranol, a high-affinity ligand for HIV-1 protease inhibitors. Tetrahedron Lett 2017; 58:3230-3233. [PMID: 29200514 DOI: 10.1016/j.tetlet.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An enantioselective synthesis of (3aS,4S,7aR)-hexahydro-4H-furo[2,3-b]pyran-4-ol, a high-affinity nonpeptide ligand for a variety of potent HIV-1 protease inhibitors is described. The key steps involved a highly enantioselective enzymatic desymmetrization of meso-diacetate, an efficient transacetalization, and a highly diastereoselective reduction of a ketone. This route is amenable to large-scale synthesis using readily available starting materials.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 479 07, United States
| | - Anindya Sarkar
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 479 07, United States
| |
Collapse
|
136
|
Hilimire TA, Chamberlain JM, Anokhina V, Bennett RP, Swart O, Myers JR, Ashton JM, Stewart RA, Featherston AL, Gates K, Helms ED, Smith HC, Dewhurst S, Miller BL. HIV-1 Frameshift RNA-Targeted Triazoles Inhibit Propagation of Replication-Competent and Multi-Drug-Resistant HIV in Human Cells. ACS Chem Biol 2017; 12:1674-1682. [PMID: 28448121 PMCID: PMC5477779 DOI: 10.1021/acschembio.7b00052] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The
HIV-1 frameshift-stimulating (FSS) RNA, a regulatory RNA of
critical importance in the virus’ life cycle, has been posited
as a novel target for anti-HIV drug development. We report the synthesis
and evaluation of triazole-containing compounds able to bind the FSS
with high affinity and selectivity. Readily accessible synthetically,
these compounds are less toxic than previously reported olefin congeners.
We show for the first time that FSS-targeting compounds have antiviral
activity against replication-competent HIV in human cells, including
a highly cytopathic, multidrug-resistant strain. These results support
the viability of the HIV-1 FSS RNA as a therapeutic target and more
generally highlight opportunities for synthetic molecule-mediated
interference with protein recoding in a wide range of organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eric D. Helms
- Department of Chemistry, SUNY Geneseo, Geneseo, New York 14454, United States
| | | | | | | |
Collapse
|
137
|
Joshy KS, George A, Jose J, Kalarikkal N, Pothen LA, Thomas S. Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. Int J Biol Macromol 2017; 103:1265-1275. [PMID: 28559185 DOI: 10.1016/j.ijbiomac.2017.05.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Lipid-polymer hybrid nanoparticles have recently gathered much attention as nanoplatforms for drug delivery applications due to their unique structural properties. In this study zidovudine (AZT) loaded hybrid nanoparticles of alginate (ALG) and stearic acid- poly ethylene glycol (SA-PEG) were synthesized. The structural characterization of drug loaded hybrid nanoparticles were studied using FT-IR spectroscopy, DLS and TEM analysis. These hybrid nanoparticles showed dendritic morphology and it can be used as an efficient carrier for zidovudine. In this drug loaded hybrid system of Alginate -Stearicacid/Poly (ethyleneglycol) Nanoparticles (ASNPs), AZT and alginate form the core wherein SA-PEG forms the external shell. We observed a dendritic morphology with internal voids and channels formed by the core molecule and the external shell forms the closed pack surface groups. The optimized formulation achieved a sub micron size of 407.67±19.18nm with drug encapsulation of 83.18±1.22%, and surface potential of -42.53mV, and has significant stability for six months. Haemolysis and aggregation studies revealed that there were no lysis and aggregation in WBC, RBC and platelets. In-vitro cytotoxicity and cellular uptake of the nanoparticles in Glioma, Neuro2a and Hela cells showed that ASNPs are non toxic. The results indicate that the synthesized hybrid nanoparticles represent a potential carrier for zidovudine, thus possibly increasing zidovudine's efficiency as an anti-HIV drug.
Collapse
Affiliation(s)
- K S Joshy
- Department of Chemistry, CMS College, Kottayam, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Anne George
- Department of Anatomy, Government Medical College, Kottayam, India
| | - Jiya Jose
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India; School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Laly A Pothen
- Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala, India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India.
| |
Collapse
|
138
|
Thummar M, Patel PN, Petkar AL, Swain D, Srinivas R, Samanthula G. Identification of degradation products of saquinavir mesylate by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry and its application to quality control. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:771-781. [PMID: 28233930 DOI: 10.1002/rcm.7842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
RATIONALE Saquinavir mesylate (SQM) is an antiviral drug used for the treatment of HIV infections. The identification and characterization of all degradation products are essential for achieving the quality in pharmaceutical product development and also for patient safety. METHODS The drug was subjected to hydrolytic (HCl, NaOH and water), oxidative (H2 O2 ), photolytic (UV and fluorescence light) and thermal (dry heat) forced degradation conditions as per ICH guidelines. The best chromatographic separation of the drug and all degradation products (DPs) was achieved on a CSH-Phenyl Hexyl column (100 × 2.1 mm, 1.7 μm) with ammonium acetate (10 mM, pH 5.0) and methanol as mobile phase in gradient mode at a flow rate of 0.28 mL/min. RESULTS Nine DPs were obtained under various forced degradation conditions. All the DPs were characterized by using ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-QTOF MS/MS) and the degradation pathway of the drug was justified by mechanistic explanations. The main DPs were formed by amide hydrolysis, conversion into diastereomers, an N-oxide and dehydration as well as oxidation of the alcohol from the drug. The method was validated and can be used in a quality control (QC) laboratory to assure the quality of SQM in bulk and finished formulations. CONCLUSIONS A simple UHPLC/photodiode array (PDA) method was developed and successfully transferred to UHPLC/ESI-Q-TOF MS/MS for the identification and characterization of DPs. Very interestingly, diastereomeric DPs were obtained and successfully resolved by the chromatographic method. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohit Thummar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Prinesh N Patel
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Arun L Petkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Debasish Swain
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - R Srinivas
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
- National Centre for Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| |
Collapse
|
139
|
Zeba Hashmi S, Kishore D. Novel Synthesis of Imidazo-based and Benzimidazo-based privileged Templates on s
-Triazine Nucleus through a Phenoxyl Spacer. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- S. Zeba Hashmi
- Department of Chemistry; Banasthali University; Banasthali-304022 Rajasthan India
| | - D. Kishore
- Department of Chemistry; Banasthali University; Banasthali-304022 Rajasthan India
| |
Collapse
|
140
|
Lutete LM, Ikemoto T. Novel Diarylprolinol-derived Amino Perfluoroalkanesulfonamide Catalysts: Highly Enantio- and Diastereoselective Aldol Reaction. CHEM LETT 2017. [DOI: 10.1246/cl.170034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Léopold M. Lutete
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558
| | - Tetsuya Ikemoto
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558
| |
Collapse
|
141
|
Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5245021. [PMID: 28286767 PMCID: PMC5327784 DOI: 10.1155/2017/5245021] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
Abstract
Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases.
Collapse
|
142
|
Sevenich A, Liu GQ, Arduengo AJ, Gupton BF, Opatz T. Asymmetric One-Pot Synthesis of (3R,3aS,6aR)-Hexahydrofuro[2,3-b]furan-3-ol: A Key Component of Current HIV Protease Inhibitors. J Org Chem 2017; 82:1218-1223. [DOI: 10.1021/acs.joc.6b02588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Sevenich
- Institute
of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Gong-Qing Liu
- Institute
of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Anthony J. Arduengo
- Department
of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - B. Frank Gupton
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Till Opatz
- Institute
of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
143
|
Qureshi A, Kaur G, Kumar M. AVCpred: an integrated web server for prediction and design of antiviral compounds. Chem Biol Drug Des 2017; 89:74-83. [PMID: 27490990 PMCID: PMC7162012 DOI: 10.1111/cbdd.12834] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Viral infections constantly jeopardize the global public health due to lack of effective antiviral therapeutics. Therefore, there is an imperative need to speed up the drug discovery process to identify novel and efficient drug candidates. In this study, we have developed quantitative structure-activity relationship (QSAR)-based models for predicting antiviral compounds (AVCs) against deadly viruses like human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), human herpesvirus (HHV) and 26 others using publicly available experimental data from the ChEMBL bioactivity database. Support vector machine (SVM) models achieved a maximum Pearson correlation coefficient of 0.72, 0.74, 0.66, 0.68, and 0.71 in regression mode and a maximum Matthew's correlation coefficient 0.91, 0.93, 0.70, 0.89, and 0.71, respectively, in classification mode during 10-fold cross-validation. Furthermore, similar performance was observed on the independent validation sets. We have integrated these models in the AVCpred web server, freely available at http://crdd.osdd.net/servers/avcpred. In addition, the datasets are provided in a searchable format. We hope this web server will assist researchers in the identification of potential antiviral agents. It would also save time and cost by prioritizing new drugs against viruses before their synthesis and experimental testing.
Collapse
Affiliation(s)
- Abid Qureshi
- Bioinformatics CentreInstitute of Microbial TechnologyCouncil of Scientific and Industrial ResearchChandigarhIndia
| | - Gazaldeep Kaur
- Bioinformatics CentreInstitute of Microbial TechnologyCouncil of Scientific and Industrial ResearchChandigarhIndia
| | - Manoj Kumar
- Bioinformatics CentreInstitute of Microbial TechnologyCouncil of Scientific and Industrial ResearchChandigarhIndia
| |
Collapse
|
144
|
Achuthan V, Singh K, DeStefano JJ. Physiological Mg 2+ Conditions Significantly Alter the Inhibition of HIV-1 and HIV-2 Reverse Transcriptases by Nucleoside and Non-Nucleoside Inhibitors in Vitro. Biochemistry 2016; 56:33-46. [PMID: 27936595 DOI: 10.1021/acs.biochem.6b00943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse transcriptases (RTs) are typically assayed in vitro with 5-10 mM Mg2+, whereas the free Mg2+ concentration in cells is much lower. Artificially high Mg2+ concentrations used in vitro can misrepresent different properties of human immunodeficiency virus (HIV) RT, including fidelity, catalysis, pausing, and RNase H activity. Here, we analyzed nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) in primer extension assays at different concentrations of free Mg2+. At low concentrations of Mg2+, NRTIs and dideoxynucleotides (AZTTP, ddCTP, ddGTP, and 3TCTP) inhibited HIV-1 and HIV-2 RT synthesis less efficiently than they did with large amounts of Mg2+, whereas inhibition by the "translocation-defective RT inhibitor" EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) was unaffected by Mg2+ concentrations. Steady-state kinetic analyses revealed that the reduced level of inhibition at low Mg2+ concentrations resulted from a 3-9-fold (depending on the particular nucleotide and inhibitor) less efficient incorporation (based on kcat/Km) of these NRTIs under this condition compared to incorporation of natural dNTPs. In contrast, EFdATP was incorporated with an efficiency similar to that of its analogue dATP at low Mg2+ concentrations. Unlike NRTIs, NNRTIs (nevirapine, efavirenz, and rilviripine), were approximately 4-fold (based on IC50 values) more effective at low than at high Mg2+ concentrations. Drug-resistant HIV-1 RT mutants also displayed the Mg2+-dependent difference in susceptibility to NRTIs and NNRTIs. In summary, analyzing the efficiency of inhibitors under more physiologically relevant low-Mg2+ conditions yielded results dramatically different from those from measurements using commonly employed high-Mg2+ in vitro conditions. These results also emphasize differences in Mg2+ sensitivity between the translocation inhibitor EFdATP and other NRTIs.
Collapse
Affiliation(s)
- Vasudevan Achuthan
- Cell Biology and Molecular Genetics, University of Maryland , College Park, Maryland 20742, United States.,Maryland Pathogen Research Institute , College Park, Maryland 20742, United States
| | - Kamlendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States.,Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine , Columbia, Missouri 65211, United States
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, University of Maryland , College Park, Maryland 20742, United States.,Maryland Pathogen Research Institute , College Park, Maryland 20742, United States
| |
Collapse
|
145
|
Structure-activity relationship studies on a Trp dendrimer with dual activities against HIV and enterovirus A71. Modifications on the amino acid. Antiviral Res 2016; 139:32-40. [PMID: 28017762 DOI: 10.1016/j.antiviral.2016.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
We have recently described a new class of dendrimers with tryptophan (Trp) on the surface that show dual antiviral activities against HIV and EV71 enterovirus. The prototype compound of this family is a pentaerythritol derivative with 12 Trps on the periphery. Here we complete the structure-activity relationship studies of this family to identify key features that might be significant for the antiviral activity. With this aim, novel dendrimers containing different amino acids (aromatic and non-aromatic), tryptamine (a "decarboxylated" analogue of Trp) and N-methyl Trp on the periphery have been prepared. Dendrimer with N-Methyl Trp was the most active against HIV-1 and HIV-2 while dendrimer with tyrosine was endowed with the most potent antiviral activity against EV71. This tyrosine dendrimer proved to inhibit a large panel of EV71 clinical isolates (belonging to different clusters) in the low nanomolar/high picomolar range. In addition, a new synthetic procedure (convergent approach) has been developed for the synthesis of the prototype and some other dendrimers. This convergent approach proved more efficient (higher yields, easier purification) than the divergent approach previously reported.
Collapse
|
146
|
Agniswamy J, Louis JM, Roche J, Harrison RW, Weber IT. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics. PLoS One 2016; 11:e0168616. [PMID: 27992544 PMCID: PMC5161481 DOI: 10.1371/journal.pone.0168616] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
We report structural analysis of HIV protease variant PRS17 which was rationally selected by machine learning to represent wide classes of highly drug-resistant variants. Crystal structures were solved of PRS17 in the inhibitor-free form and in complex with antiviral inhibitor, darunavir. Despite its 17 mutations, PRS17 has only one mutation (V82S) in the inhibitor/substrate binding cavity, yet exhibits high resistance to all clinical inhibitors. PRS17 has none of the major mutations (I47V, I50V, I54ML, L76V and I84V) associated with darunavir resistance, but has 10,000-fold weaker binding affinity relative to the wild type PR. Comparable binding affinity of 8000-fold weaker than PR is seen for drug resistant mutant PR20, which bears 3 mutations associated with major resistance to darunavir (I47V, I54L and I84V). Inhibitor-free PRS17 shows an open flap conformation with a curled tip correlating with G48V flap mutation. NMR studies on inactive PRS17D25N unambiguously confirm that the flaps adopt mainly an open conformation in solution very similar to that in the inhibitor-free crystal structure. In PRS17, the hinge loop cluster of mutations, E35D, M36I and S37D, contributes to the altered flap dynamics by a mechanism similar to that of PR20. An additional K20R mutation anchors an altered conformation of the hinge loop. Flap mutations M46L and G48V in PRS17/DRV complex alter the Phe53 conformation by steric hindrance between the side chains. Unlike the L10F mutation in PR20, L10I in PRS17 does not break the inter-subunit ion pair or diminish the dimer stability, consistent with a very low dimer dissociation constant comparable to that of wild type PR. Distal mutations A71V, L90M and I93L propagate alterations to the catalytic site of PRS17. PRS17 exhibits a molecular mechanism whereby mutations act synergistically to alter the flap dynamics resulting in significantly weaker binding yet maintaining active site contacts with darunavir.
Collapse
Affiliation(s)
- Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
| | - Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Robert W. Harrison
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- Department of Computer Science, Georgia State University, Atlanta, Georgia, United States of America
| | - Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
- Department of Chemistry, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
147
|
Thammaporn R, Ishii K, Yagi-Utsumi M, Uchiyama S, Hannongbua S, Kato K. Mass Spectrometric Characterization of HIV-1 Reverse Transcriptase Interactions with Non-nucleoside Reverse Transcriptase Inhibitors. Biol Pharm Bull 2016; 39:450-4. [PMID: 26934936 DOI: 10.1248/bpb.b15-00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) have been developed for the treatment of acquired immunodeficiency syndrome. HIV-1 RT binding to NNRTIs has been characterized by various biophysical techniques. However, these techniques are often hampered by the low water solubility of the inhibitors, such as the current promising diarylpyrimidine-based inhibitors rilpivirine and etravirine. Hence, a conventional and rapid method that requires small sample amounts is desirable for studying NNRTIs with low water solubility. Here we successfully applied a recently developed mass spectrometric technique under non-denaturing conditions to characterize the interactions between the heterodimeric HIV-1 RT enzyme and NNRTIs with different inhibitory activities. Our data demonstrate that mass spectrometry serves as a semi-quantitative indicator of NNRTI binding affinity for HIV-1 RT using low and small amounts of samples, offering a new high-throughput screening tool for identifying novel RT inhibitors as anti-HIV drugs.
Collapse
|
148
|
Xu HR, Fu L, Zhan P, Liu XY. 3D-QSAR analysis of a series of S-DABO derivatives as anti-HIV agents by CoMFA and CoMSIA. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:999-1014. [PMID: 27667445 DOI: 10.1080/1062936x.2016.1233580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
In this study, we retrieved a series of 59 dihydroalkylthio-benzyloxopyrimidine (S-DABO) derivatives, which is a class of highly potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) reported from published articles, and analysed them with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Statistically significant three-dimensional quantitative structure-activity relationship (3D-QSAR) models by CoMFA and CoMSIA were derived from a training set of 46 compounds on the basis of the rigid body alignment. Further, the predictive ability of the QSAR models was validated by a test set of 13 compounds. Based on the information derived from CoMFA and CoMSIA contour maps, we have identified some steric and electrostatic features for improving the activities of these inhibitors, and we validated the 3D-QSAR results by a molecular docking method. On the basis of the obtained results, we designed a new series of S-DABO derivatives with high activities. Therefore, this study could be utilized to design more potent S-DABO analogues as anti-HIV agents.
Collapse
Affiliation(s)
- H R Xu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Ji'nan , Shandong , PR China
| | - L Fu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Ji'nan , Shandong , PR China
| | - P Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Ji'nan , Shandong , PR China
| | - X Y Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Ji'nan , Shandong , PR China
| |
Collapse
|
149
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
150
|
Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. J Comput Chem 2016; 37:2734-2742. [DOI: 10.1002/jcc.24502] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
|