101
|
Impact of nutritional stress on drug susceptibility and biofilm structures of Burkholderia pseudomallei and Burkholderia thailandensis grown in static and microfluidic systems. PLoS One 2018; 13:e0194946. [PMID: 29579106 PMCID: PMC5868842 DOI: 10.1371/journal.pone.0194946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis and regarded as a bioterrorism threat. It can adapt to the nutrient-limited environment as the bacteria can survive in triple distilled water for 16 years. Moreover, B. pseudomallei exhibits intrinsic resistance to diverse groups of antibiotics in particular while growing in biofilms. Recently, nutrient-limited condition influenced both biofilm formation and ceftazidime (CAZ) tolerance of B. pseudomallei were found. However, there is no information about how nutrient-limitation together with antibiotics used in melioidosis treatment affects the structure of the biofilm produced by B. pseudomallei. Moreover, no comparative study to investigate the biofilm architectures of B. pseudomallei and the related B. thailandensis under different nutrient concentrations has been reported. Therefore, this study aims to provide new information on the effects of four antibiotics used in melioidosis treatment, viz. ceftazidime (CAZ), imipenem (IMI), meropenem (MEM) and doxycycline (DOX) on biofilm architecture of B. pseudomallei and B. thailandensis with different nutrient concentrations under static and flow conditions using confocal laser scanning microscopy. Impact of nutritional stress on drug susceptibility of B. pseudomallei and B. thailandensis grown planktonically or as biofilm was also evaluated. The findings of this study indicate that nutrient-limited environment enhanced survival of B. pseudomallei in biofilm after exposure to the tested antibiotics. The shedding planktonic B. pseudomallei and B. thailandensis were also found to have increased CAZ tolerance in nutrient-limited environment. However, killing activities of MEM and IMI were stronger than CAZ and DOX on B. pseudomallei and B. thailandensis both in planktonic cells and in 2-day old biofilm. In addition, MEM and IMI were able to inhibit B. pseudomallei and B. thailandensis biofilm formation to a larger extend compared to CAZ and DOX. Differences in biofilm architecture were observed for biofilms grown under static and flow conditions. Under static conditions, biofilms grown in full strength modified Vogel and Bonner’s medium (MVBM) showed honeycomb-like architecture while a knitted-like structure was observed under limited nutrient condition (0.1×MVBM). Under flow conditions, biofilms grown in MVBM showed a multilayer structure while merely dispersed bacteria were found when grown in 0.1×MVBM. Altogether, this study provides more insight on the effect of four antibiotics against B. pseudomallei and B. thailandensis in biofilm under different nutrient and flow conditions. Since biofilm formation is believed to be involved in disease relapse, MEM and IMI may be better therapeutic options than CAZ for melioidosis treatment.
Collapse
|
102
|
Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
103
|
Lee BH, Hébraud M, Bernardi T. Increased Adhesion of Listeria monocytogenes Strains to Abiotic Surfaces under Cold Stress. Front Microbiol 2017; 8:2221. [PMID: 29187836 PMCID: PMC5695204 DOI: 10.3389/fmicb.2017.02221] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
Food contamination by Listeria monocytogenes remains a major concern for some food processing chains, particularly for ready-to-eat foods, including processed foods. Bacterial adhesion on both biotic and abiotic surfaces is a source of contamination by pathogens that have become more tolerant or even persistent in food processing environments, including in the presence of adverse conditions such as cold and dehydration. The most distinct challenge that bacteria confront upon entry into food processing environments is the sudden downshift in temperature, and the resulting phenotypic effects are of interest. Crystal violet staining and the BioFilm Ring Test® were applied to assess the adhesion and biofilm formation of 22 listerial strains from different serogroups and origins under cold-stressed and cold-adapted conditions. The physicochemical properties of the bacterial surface were studied using the microbial adhesion to solvent technique. Scanning electron microscopy was performed to visualize cell morphology and biofilm structure. The results showed that adhesion to stainless-steel and polystyrene was increased by cold stress, whereas cold-adapted cells remained primarily in planktonic form. Bacterial cell surfaces exhibited electron-donating properties regardless of incubation temperature and became more hydrophilic as temperature decreased from 37 to 4°C. Moreover, the adhesion of cells grown at 4°C correlated with affinity for ethyl acetate, indicating the role of cell surface properties in adhesion.
Collapse
Affiliation(s)
- Bo-Hyung Lee
- BioFilm Control, Biopôle Clermont Limagne, Saint-Beauzire, France
- Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michel Hébraud
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR MEDiS, Saint-Genès-Champanelle, France
| | - Thierry Bernardi
- BioFilm Control, Biopôle Clermont Limagne, Saint-Beauzire, France
| |
Collapse
|
104
|
Visvalingam J, Ells TC, Yang X. Impact of persistent and nonpersistent generic Escherichia coli and Salmonella sp. recovered from a beef packing plant on biofilm formation by E. coli O157. J Appl Microbiol 2017; 123:1512-1521. [PMID: 28944561 DOI: 10.1111/jam.13591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/09/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
Abstract
AIMS To examine the influence of meat plant Escherichia coli and Salmonella sp. isolates on E. coli O157 biofilm formation. METHODS AND RESULTS Biofilm formation was quantified by crystal violet staining (A570 nm ) and viable cell numbers for up to 6 days at 15°C. All five persistent E. coli genotypes formed strong biofilms when cultured alone or co-cultured with E. coli O157, with A570 nm values reaching ≥4·8 at day 4, while only two of five nonpersistent genotypes formed such biofilms. For E. coli O157:H7 co-culture biofilms with E. coli genotypes 136 and 533, its numbers were ≥1·5 and ≥1 log CFU per peg lower than those observed for its mono-culture biofilm at days 2 and 4, respectively. The number of E. coli O157:NM in similar co-culture biofilms was 1 log CFU per peg lower than in its mono-culture biofilm at day 4 and 6, respectively. Salmonella sp. lowered the number of E. coli O157:NM by 0·5 log unit, once, at day 6. CONCLUSION Generic E. coli may outcompete E. coli O157 strains while establishing biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Findings advance knowledge regarding inter-strain competition for a similar ecological niche and may aid development of biocontrol strategies for E. coli O157 in food processing environments.
Collapse
Affiliation(s)
- J Visvalingam
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - T C Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | - X Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
105
|
Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
106
|
Fagerlund A, Møretrø T, Heir E, Briandet R, Langsrud S. Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces. Appl Environ Microbiol 2017; 83:e01046-17. [PMID: 28667108 PMCID: PMC5561291 DOI: 10.1128/aem.01046-17] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
Surfaces of food processing premises are exposed to regular cleaning and disinfection (C&D) regimes, using biocides that are highly effective against bacteria growing as planktonic cells. However, bacteria growing in surface-associated communities (biofilms) are typically more tolerant toward C&D than their individual free-cell counterparts, and survival of pathogens such as Listeria monocytogenes may be affected by interspecies interactions within biofilms. In this study, Pseudomonas and Acinetobacter were the most frequently isolated genera surviving on conveyor belts subjected to C&D in meat processing plants. In the laboratory, Pseudomonas, Acinetobacter, and L. monocytogenes dominated the community, both in suspensions and in biofilms formed on conveyor belts, when cultures were inoculated with eleven-genus cocktails of representative bacterial strains from the identified background flora. When biofilms were exposed to daily C&D cycles mimicking treatments used in food industry, the levels of Acinetobacter and Pseudomonas mandelii diminished, and biofilms were instead dominated by Pseudomonas putida (65 to 76%), Pseudomonas fluorescens (11 to 15%) and L. monocytogenes (3 to 11%). The dominance of certain species after daily C&D correlated with high planktonic growth rates at 12°C and tolerance to C&D. In single-species biofilms, L. monocytogenes developed higher tolerance to C&D over time, for both the peracetic acid and quaternary ammonium disinfectants, indicating that a broad-spectrum mechanism was involved. Survival after C&D appeared to be a common property of L. monocytogenes strains, as persistent and sporadic subtypes showed equal survival rates in complex biofilms. Biofilms established preferentially in surface irregularities of conveyor belts, potentially constituting harborage sites for persistent contamination.IMPORTANCE In the food industry, efficient production hygiene is a key measure to avoid the accumulation of spoilage bacteria and eliminate pathogens. However, the persistence of bacteria is an enduring problem in food processing environments. This study demonstrated that environmental bacteria can survive foam cleaning and disinfection (C&D) at concentrations used in the industrial environment. The phenomenon was replicated in laboratory experiments. Important characteristics of persisting bacteria were a high growth rate at low temperature, a tolerance to the cleaning agent, and the ability to form biofilms. This study also supports other recent research suggesting that strain-to-strain variation cannot explain why certain subtypes of Listeria monocytogenes persist in food processing environments while others are found only sporadically. The present investigation highlights the failure of regular C&D and a need for research on improved agents that efficiently detach the biofilm matrix.
Collapse
Affiliation(s)
- Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
107
|
Gkana EN, Doulgeraki AI, Chorianopoulos NG, Nychas GJE. Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens. Front Microbiol 2017; 8:1295. [PMID: 28744277 PMCID: PMC5504163 DOI: 10.3389/fmicb.2017.01295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/27/2017] [Indexed: 12/04/2022] Open
Abstract
Nowadays, modification of surfaces by nanoparticulate coatings is a simple process that may have applications in reducing the prevalence of bacterial cells both on medical devices and food processing surfaces. To this direction, biofilm biological cycle of Salmonella Typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Staphylococcus aureus, and Yersinia enterocolitica on stainless steel and glass surfaces, with or without nanocoating was monitored. To achieve this, four different commercial nanoparticle compounds (two for each surface) based on organo-functionalized silanes were selected. In total 10 strains of above species (two for each species) were selected to form biofilms on modified or not, stainless steel or glass surfaces, incubated at 37°C for 72 h. Biofilm population was enumerated by bead vortexing-plate counting method at four time intervals (3, 24, 48, and 72 h). Organosilane based products seemed to affect bacterial attachment on the inert surfaces and/or subsequent biofilm formation, but it was highly dependent on the species and material of surfaces involved. Specifically, reduced bacterial adhesion (at 3 h) of Salmonella and E. coli was observed (P < 0.05) in nanocoating glass surfaces in comparison with the control ones. Moreover, fewer Salmonella and Yersinia biofilm cells were enumerated on stainless steel coupons coated with organosilanes, than on non-coated surfaces at 24 h (P < 0.05). This study gives an insight to the efficacy of organosilanes based coatings against biofilm formation of foodborne pathogens, however, further studies are needed to better understand the impact of surface modification and the underlying mechanisms which are involved in this phenomenon.
Collapse
Affiliation(s)
- Eleni N. Gkana
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece
| | - Agapi I. Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETERAthens, Greece
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DEMETERAthens, Greece
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of AthensAthens, Greece
| |
Collapse
|
108
|
Substratum attachment location and biofilm formation by Bacillus cereus strains isolated from different sources: Effect on total biomass production and sporulation in different growth conditions. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
109
|
Reis-Teixeira FBD, Alves VF, de Martinis ECP. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces. Braz J Microbiol 2017; 48:587-591. [PMID: 28237677 PMCID: PMC5498454 DOI: 10.1016/j.bjm.2017.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/08/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022] Open
Abstract
The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b) on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface) remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms.
Collapse
|
110
|
Nowak J, Cruz CD, Tempelaars M, Abee T, van Vliet AHM, Fletcher GC, Hedderley D, Palmer J, Flint S. Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. Int J Food Microbiol 2017; 256:45-53. [PMID: 28599174 DOI: 10.1016/j.ijfoodmicro.2017.05.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Contamination of mussels with the human pathogen Listeria monocytogenes occurs during processing in the factory, possibly from bacteria persisting in the factory's indoor and outdoor areas. In this study, a selection of persistent (n=8) and sporadic (n=8) L. monocytogenes isolates associated with mussel-processing premises in New Zealand were investigated for their phenotypic and genomic characteristics. To identify traits that favour or contribute to bacterial persistence, biofilm formation, heat resistance, motility and recovery from dry surfaces were compared between persistent and sporadic isolates. All isolates exhibited low biofilm formation at 20°C, however, at 30°C persistent isolates showed significantly higher biofilm formation after 48h using cell enumeration and near significant difference using the crystal violet assay. All 16 isolates were motile at 20°C and 30°C and motility was fractionally higher for sporadic isolates, but no significant difference was observed. We found persistent isolates tend to exhibit greater recovery after incubation on dry surfaces compared to sporadic isolates. Two of the three most heat-resistant isolates were persistent, while four of five isolates lacking heat resistance were sporadic isolates. Comparison of genome sequences of persistent and sporadic isolates showed that there was no overall clustering of persistent or sporadic isolates, and that differences in prophages and plasmids were not associated with persistence. Our results suggest a link between persistence and biofilm formation, which is most likely multifactorial, combining subtle phenotypic and genotypic differences between isolates.
Collapse
Affiliation(s)
- Jessika Nowak
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Auckland, New Zealand; Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand.
| | - Cristina D Cruz
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
111
|
Branck TA, Hurley MJ, Prata GN, Crivello CA, Marek PJ. Efficacy of a Sonicating Swab for Removal and Capture of Listeria monocytogenes in Biofilms on Stainless Steel. Appl Environ Microbiol 2017; 83:e00109-17. [PMID: 28314729 PMCID: PMC5440701 DOI: 10.1128/aem.00109-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/15/2017] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is of great concern in food processing facilities because it persists in biofilms, facilitating biotransfer. Stainless steel is commonly used for food contact surfaces and transport containers. L. monocytogenes biofilms on stainless steel served as a model system for surface sampling, to test the performance of a sonicating swab in comparison with a standard cotton swab. Swab performance and consistency were determined using total viable counts. Stainless steel coupons sampled with both types of swabs were examined using scanning electron microscopy, to visualize biofilms and surface structures (i.e., polishing grooves and scratches). Laser scanning confocal microscopy was used to image and to quantitate the biofilms remaining after sampling with each swab type. The total viable counts were significantly higher (P ≤ 0.05) with the sonicating swab than with the standard swab in each trial. The sonicating swab was more consistent in cell recovery than was the standard swab, with coefficients of variation ranging from 8.9% to 12.3% and from 7.1% to 37.6%, respectively. Scanning electron microscopic imaging showed that biofilms remained in the polished grooves of the coupons sampled with the standard swab but were noticeably absent with the sonicating swab. Percent area measurements of biofilms remaining on the stainless steel coupons showed significantly (P ≤ 0.05) less biofilm remaining when the sonicating swab was used (median, 1.1%), compared with the standard swab (median, 70.4%). The sonicating swab provided greater recovery of cells, with more consistency, than did the standard swab, and it is employs sonication, suction, and scrubbing.IMPORTANCE Inadequate surface sampling can result in foodborne illness outbreaks from biotransfer, since verification of sanitization protocols relies on surface sampling and recovery of microorganisms for detection and enumeration. Swabbing is a standard method for microbiological sampling of surfaces. Although swabbing offers portability and ease of use, there are limitations, such as high user variability and low recovery rates, which can be attributed to many different causes. This study demonstrates some benefits that a sonicating swab has over a standard swab for removal and collection of microbiological samples from a surface, to provide better verification of surface cleanliness and to help decrease the potential for biotransfer of pathogens into foods.
Collapse
Affiliation(s)
- Tobyn A Branck
- Biological Science and Technology Team, Natick Soldier Research, Development and Engineering Center, Natick, Massachusetts, USA
| | - Matthew J Hurley
- Design, Engineering, and Fabrication Team, Engineering Cell, Natick Soldier Research, Development and Engineering Center, Natick, Massachusetts, USA
| | - Gianna N Prata
- Food Protection and Innovative Packaging Team, Natick Soldier Research, Development and Engineering Center, Natick, Massachusetts, USA
| | - Christina A Crivello
- Food Protection and Innovative Packaging Team, Natick Soldier Research, Development and Engineering Center, Natick, Massachusetts, USA
| | - Patrick J Marek
- Food Protection and Innovative Packaging Team, Natick Soldier Research, Development and Engineering Center, Natick, Massachusetts, USA
| |
Collapse
|
112
|
Cherifi T, Jacques M, Quessy S, Fravalo P. Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System. Front Microbiol 2017; 8:864. [PMID: 28567031 DOI: 10.3389/fmicb.2017.00864] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/28/2017] [Indexed: 12/19/2022] Open
Abstract
Biofilm formation by the pathogen Listeria monocytogenes is a major concern in food industries. The aim of this work was to elucidate the effect of nutrient limitation on both biofilm architecture and on the viability of the bacteria in microfluidic growth conditions. Biofilm formation by two L. monocytogenes strains was performed in a rich medium (BHI) and in a 10-fold diluted BHI (BHI/10) at 30°C for 24 h by using both static conditions and the microfluidic system Bioflux. In dynamic conditions, biofilms grown in rich and poor medium showed significant differences as well in structure and in the resulting biovolume. In BHI/10, biofilm was organized in a knitted network where cells formed long chains, whereas in the rich medium, the observed structure was homogeneous cellular multilayers. Biofilm biovolume production in BHI/10 was significantly higher than in BHI in these dynamic conditions. Interestingly, biovolume of dead cells in biofilms formed under limited nutrient conditions (BHI/10) was significantly higher than in biofilms formed in the BHI medium. In the other hand, in static conditions, biofilm is organized in a multilayer cells and dispersed cells in a rich medium BHI and poor medium BHI/10 respectively. There was significantly more biomass in the rich medium compared to BHI/10 but no difference was noted in the dead/damaged subpopulation showing how L. monocytogenes biofilm could be affected by the growth conditions. This work demonstrated that nutrient concentration affects biofilm structure and the proportion of dead cells in biofilms under microfluidic condition. Our study also showed that limited nutrients play an important role in the structural stability of L. monocytogenes biofilm by enhancing cell death and liberating extracellular DNA.
Collapse
Affiliation(s)
- Tamazight Cherifi
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Réseau canadien de recherche sur la mammite bovine et la qualité du lait, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Sylvain Quessy
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de médecine vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| |
Collapse
|
113
|
Buchanan RL, Gorris LG, Hayman MM, Jackson TC, Whiting RC. A review of Listeria monocytogenes : An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.016] [Citation(s) in RCA: 461] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Prevalence, serotype diversity, biofilm-forming ability and eradication of Listeria monocytogenes isolated from diverse foods in Shanghai, China. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
115
|
Song X, Ma Y, Fu J, Zhao A, Guo Z, Malakar PK, Pan Y, Zhao Y. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
116
|
In Lee SH, Barancelli GV, de Camargo TM, Corassin CH, Rosim RE, da Cruz AG, Cappato LP, de Oliveira CAF. Biofilm-producing ability of Listeria monocytogenes isolates from Brazilian cheese processing plants. Food Res Int 2016; 91:88-91. [PMID: 28290331 DOI: 10.1016/j.foodres.2016.11.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 11/26/2022]
Abstract
The persistence of Listeria monocytogenes in food industry environments has been associated to the ability of specific isolates to produce biofilms. This study aimed to evaluate the biofilm production of 85 L. monocytogenes strains previously isolated from samples of cheese, brine and the environment of two cheese processing plants located in São Paulo, Brazil. The L. monocytogenes isolates belonged to serotypes 4b, 1/2b and 1/2c, yielded 30 different pulsotypes by pulsed-field gel electrophoresis (PFGE), and were submitted to biofilm-formation assays on polystyrene microplates and stainless steel coupons incubated statically at 35±0.5°C for 48h. All isolates from different sources showed ability to produce biofilms on polystyrene microplates, from which 21 (24.7%) also produced biofilms on stainless steel. Four isolates (4.7%) belonging to four different pulsotypes were classified as strong biofilms-producers on polystyrene microplates, while isolates belonging to four pulsotypes previously evaluated as persistent had weak or moderate ability to produce biofilms on polystyrene microplates. No relationship between the serotypes or pulsotypes and their biofilm-forming ability was observed. This study highlights the high variability in the biofilm production among L. monocytogenes strains collected from cheese and cheese-production environment, also indicating that strong biofilm-formation ability is not a key factor for persistence of specific isolates in cheese processing plants.
Collapse
Affiliation(s)
- Sarah Hwa In Lee
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Giovana Verginia Barancelli
- University of São Paulo, College of Agriculture "Luiz de Queiroz", Department of Agro-Industry, Food and Nutrition, CEP 13418-900 Piracicaba, SP, Brazil
| | - Tarsila Mendes de Camargo
- University of São Paulo, School of Pharmaceutical Sciences, Department of Clinical Analyses, São Paulo, SP CEP 05508-900, Brazil
| | - Carlos Humberto Corassin
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Roice Eliana Rosim
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Adriano Gomes da Cruz
- Federal Institute of Rio de Janeiro (IFRJ), Food Department, CEP 20270-021 Rio de Janeiro, RJ, Brazil
| | - Leandro Pereira Cappato
- Federal Rural University of Rio de Janeiro (UFRRJ), Food Technology Department, CEP 23890-000 Rio de Janeiro, RJ, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- University of São Paulo, School of Animal Science and Food Engineering, Department of Food Engineering, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
117
|
Osman KM, Samir A, Abo-Shama UH, Mohamed EH, Orabi A, Zolnikov T. Determination of virulence and antibiotic resistance pattern of biofilm producing Listeria species isolated from retail raw milk. BMC Microbiol 2016; 16:263. [PMID: 27821054 PMCID: PMC5100219 DOI: 10.1186/s12866-016-0880-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/28/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND One of the foodborne pathogens is Listeria monocytogenes, which causes serious invasive illness in elderly and immunocompromised patients, pregnant women, newborns and infants ranking second after salmonellosis because of its high case fatality rate. Listerial cow mastitis marked by abnormal milk, increased cell counts and reduced production has not been reported. Therefore, apparently healthy cows can be reservoirs of L. monocytogenes. A number of 203 udder milk samples from apparently healthy animals (buffalo, n = 100; cow, n = 103) were collected and tested for Listeria. Isolated colonies on the PALCAM agar were Listeria species confirmed according to their biochemical and the Christie-Atkins-Munch-Petersen (CAMP) reactions. The Listeria species pathogenicity of was tested by phosphatidylinositol-specific phospholipase C, DL-alanine-β-naphthylamide HCl, Dalanine-p-nitroanilide tests, chick embryo, mice inoculation tests, Vero cell cytotoxicity and biofilm formation. The virulence-associated genes, hlyA, plcB, actA and iap associated with Listeria were molecularly assayed. RESULTS The 17 isolated Listeria spp. represented a prevalence rate of 8.4 %. Of these 3 (1.4 %), 2 (1 %), 5 (2.5 %), 4 (2 %) and 3 (1.5 %) were confirmed as L. monocytogenes, L. innocua, L. welshimeri, L. seelegeri, respectively. While the L. monocytogenes isolate displayed all the four virulence-associated genes, L. seelegeri carried the hlyA gene only. The L. monocytogenes had a strong in vitro affinity to form a biofilm, in particular serotype 4 which is associated with human infections. L. monocytogenes showed resistance for 9/27 antibiotics. CONCLUSIONS The biofilm forming capability of the Listeria spps. makes them particularly successful in colonizing surfaces within the host thus being responsible for persistence infections and due to their antimicrobial resistant phenotype that this structure confers. In addition, strains belonging to serotypes associated with human infections and characterized by pathogenic potential (serotype 4) are capable to persist within the processing plants forming biofilm and thus being a medical hazard.
Collapse
Affiliation(s)
- Kamelia M. Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Cairo, Egypt
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Cairo, Egypt
| | - Usama H. Abo-Shama
- Department of Microbiology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Essam H. Mohamed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Cairo, Egypt
| | - Tara Zolnikov
- North Dakota State University, Developmental Science, Fargo, ND 58102 USA
| |
Collapse
|
118
|
Costa A, Bertolotti L, Brito L, Civera T. Biofilm Formation and Disinfectant Susceptibility of Persistent and Nonpersistent Listeria monocytogenes Isolates from Gorgonzola Cheese Processing Plants. Foodborne Pathog Dis 2016; 13:602-609. [DOI: 10.1089/fpd.2016.2154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Annalisa Costa
- Dipartimento di Scienze Veterinarie, University of Turin, Grugliasco, Italy
| | - Luigi Bertolotti
- Dipartimento di Scienze Veterinarie, University of Turin, Grugliasco, Italy
| | - Luisa Brito
- LEAF-Linking Landscape, Environment, Agriculture and Food/Laboratório de Microbiologia, DRAT-Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Tiziana Civera
- Dipartimento di Scienze Veterinarie, University of Turin, Grugliasco, Italy
| |
Collapse
|
119
|
Poimenidou SV, Chrysadakou M, Tzakoniati A, Bikouli VC, Nychas GJ, Skandamis PN. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Int J Food Microbiol 2016; 237:164-171. [PMID: 27585076 DOI: 10.1016/j.ijfoodmicro.2016.08.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/11/2016] [Accepted: 08/21/2016] [Indexed: 11/15/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen able to tolerate adverse conditions by forming biofilms or by deploying stress resistant mechanisms, and thus manages to survive for long periods in food processing plants. This study sought to investigate the correlation between biofilm forming ability, tolerance to disinfectants and cell surface characteristics of twelve L. monocytogenes strains. The following attributes were evaluated: (i) biofilm formation by crystal violet staining method on polystyrene, and by standard cell enumeration on stainless steel and polystyrene; (ii) hydrophobicity assay using solvents; (iii) minimum inhibitory concentration (MIC) and biofilm eradication concentration (BEC) of peracetic acid (PAA) and quaternary ammonium compounds (QACs), and (iv) resistance to sanitizers (PAA 2000ppm; QACs 500ppm) of biofilms on polystyrene and stainless steel. After 72h of incubation, higher biofilm levels were formed in TSB at 20°C, followed by TSB at 37°C (P=0.087) and diluted TSB 1/10 at both 20 (P=0.005) and 37°C (P=0.004). Cells grown at 30°C to the stationary phase had significant electron donating nature and a low hydrophobicity, while no significant correlation of cell surface properties to biofilm formation was observed. Strains differed in MICPAA and BECPAA by 24- and 15-fold, respectively, while a positive correlation between MICPAA and BECPAA was observed (P=0.02). The MICQACs was positively correlated with the biofilm-forming ability on stainless steel (P=0.03). Regarding the impact of surface type, higher biofilm populations were enumerated on polystyrene than on stainless steel, which were also more tolerant to disinfectants. Among all strains, the greatest biofilm producer was a persistent strain with significant tolerance to QACs. These results may contribute to better understanding of L. monocytogenes behavior and survival on food processing surfaces.
Collapse
Affiliation(s)
- Sofia V Poimenidou
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Marilena Chrysadakou
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Aikaterini Tzakoniati
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Vasiliki C Bikouli
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - George-John Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
120
|
Kyoui D, Hirokawa E, Takahashi H, Kuda T, Kimura B. Effect of glucose on Listeria monocytogenes biofilm formation, and assessment of the biofilm's sanitation tolerance. BIOFOULING 2016; 32:815-826. [PMID: 27353113 DOI: 10.1080/08927014.2016.1198953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v(-1)) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy.
Collapse
Affiliation(s)
- Daisuke Kyoui
- a Department of Food Science and Technology, Faculty of Marine Science , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Eri Hirokawa
- a Department of Food Science and Technology, Faculty of Marine Science , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Hajime Takahashi
- a Department of Food Science and Technology, Faculty of Marine Science , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Takashi Kuda
- a Department of Food Science and Technology, Faculty of Marine Science , Tokyo University of Marine Science and Technology , Tokyo , Japan
| | - Bon Kimura
- a Department of Food Science and Technology, Faculty of Marine Science , Tokyo University of Marine Science and Technology , Tokyo , Japan
| |
Collapse
|
121
|
Colagiorgi A, Di Ciccio P, Zanardi E, Ghidini S, Ianieri A. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix. Microorganisms 2016; 4:E22. [PMID: 27681916 PMCID: PMC5039582 DOI: 10.3390/microorganisms4030022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS's). In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM) of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.
Collapse
Affiliation(s)
- Angelo Colagiorgi
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Pierluigi Di Ciccio
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Emanuela Zanardi
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Sergio Ghidini
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Adriana Ianieri
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| |
Collapse
|
122
|
Pérez-Ibarreche M, Castellano P, Leclercq A, Vignolo G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol Lett 2016; 363:fnw118. [PMID: 27190146 DOI: 10.1093/femsle/fnw118] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
The effect of the bacteriocin-producing Lactobacillus sakei CRL1862 and its bacteriocin in the control of Listeria biofilm formation on industrial surfaces at 10°C was investigated. A screening among different Listeria species was performed allowing selecting L. monocytogenes FBUNT for its use as a biofilm producer on stainless steel (SS) and polytetrafluoroe-thylene (PTFE) surfaces. Three conditions were simulated to evaluate the ability of the bacteriocinogenic strain to displace, exclude and compete pathogen biofilm formation. Lactobacillus sakei CRL1862 effectively inhibited biofilm formation by L. monocytogenes FBUNT through the three assayed mechanisms, pathogen inhibition being more efficient on PTFE than on SS surface. Moreover, co-culture of L. monocytogenes FBUNT with the bacteriocin-producer displayed the highest efficacy reducing the pathogen by 5.54 ± 0.12 and 4.52 ± 0.01 on PTFE and SS, respectively. Industrially, the pre-treatment with L. sakei CRL1862 or its bacteriocin (exclusion) constitutes the most realistic way to prevent pathogen biofilm settlement. The use of bacteriocins and/or the bacteriocin-producer strain represents a safe and environmentally-friendly sanitation method to mitigate post-processing food contamination.
Collapse
Affiliation(s)
- Mariana Pérez-Ibarreche
- Laboratorio de Tecnología y Desarrollo. Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Laboratorio de Tecnología y Desarrollo. Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Alexandre Leclercq
- Biology of Infection Unit, French National Reference Center and World Health Organization Collaborating Centre on Listeria, Institut Pasteur, 75015 Paris, France
| | - Graciela Vignolo
- Laboratorio de Tecnología y Desarrollo. Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC, Tucumán, Argentina
| |
Collapse
|
123
|
Nowak J, Cruz CD, Palmer J, Fletcher GC, Flint S. Biofilm formation of the L. monocytogenes strain 15G01 is influenced by changes in environmental conditions. J Microbiol Methods 2015; 119:189-95. [PMID: 26524221 DOI: 10.1016/j.mimet.2015.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023]
Abstract
Listeria monocytogenes 15G01, a strain belonging to the persistent pulsotype 5132, was isolated from a seafood processing plant in New Zealand. Simple monoculture assays using crystal violet staining showed good biofilm formation for this strain and it was therefore chosen to be further investigated in regard to its biofilm forming ability. To evaluate its behaviour in different conditions commonly encountered in food processing environments, biofilm assays and growth studies were performed using common laboratory media under a range of temperatures (20 °C, 30 °C and 37 °C). Furthermore, the effects of incubation time and different environmental conditions including static, dynamic and anaerobic incubation on biofilm formation were investigated. Changes in the environmental conditions resulted in different biofilm phenotypes of L. monocytogenes 15G01. We demonstrated that increasing temperature and incubation time led to a higher biofilm mass and that dynamic incubation has little effect on biofilm formation at 37 °C but encourages biofilm formation at 30 °C. Biofilm production at 20 °C was minimal regardless of the medium used. We furthermore observed that anaerobic environment led to reduced biofilm mass at 30 °C for all tested media but not at 37 °C. Biofilm formation could not be narrowed down to one factor but was rather dependent on multiple factors with temperature and medium having the biggest effects.
Collapse
Affiliation(s)
- Jessika Nowak
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Auckland, New Zealand; Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand.
| | - Cristina D Cruz
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Auckland, New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
124
|
Doijad SP, Barbuddhe SB, Garg S, Poharkar KV, Kalorey DR, Kurkure NV, Rawool DB, Chakraborty T. Biofilm-Forming Abilities of Listeria monocytogenes Serotypes Isolated from Different Sources. PLoS One 2015; 10:e0137046. [PMID: 26360831 PMCID: PMC4567129 DOI: 10.1371/journal.pone.0137046] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 11/21/2022] Open
Abstract
A total of 98 previously characterized and serotyped L. monocytogenes strains, comprising 32 of 1/2a; 20 of 1/2b and 46 of 4b serotype, from clinical and food sources were studied for their capability to form a biofilm. The microtiter plate assay revealed 62 (63.26%) strains as weak, 27 (27.55%) strains as moderate, and 9 (9.18%) strains as strong biofilm formers. Among the strong biofilm formers, 6 strains were of serotype 1/2a and 3 strains were of serotype 1/2b. None of the strain from 4b serotype exhibited strong biofilm formation. No firm correlation (p = 0.015) was noticed between any serotype and respective biofilm formation ability. Electron microscopic studies showed that strong biofilm forming isolates could synthesize a biofilm within 24 h on surfaces important in food industries such as stainless steel, ceramic tiles, high-density polyethylene plastics, polyvinyl chloride pipes, and glass. Cell enumeration of strong, moderate, and weak biofilm was performed to determine if the number of cells correlated with the biofilm-forming capabilities of the isolates. Strong, moderate, and weak biofilm showed 570±127× 103 cells/cm2, 33±26× 103 cells/cm2, 5±3× 103 cells/cm2, respectively, indicating that the number of cells was directly proportional to the strength of the biofilm. The hydrophobicity index (HI) analysis revealed higher hydrophobicity with an increased biofilm formation. Fatty acid methyl esterase analysis revealed the amount of certain fatty acids such as iso-C15:0, anteiso-C15:0, and anteiso-C17:0 fatty acids correlated with the biofilm-forming capability of L. monocytogenes. This study showed that different strains of L. monocytogenes form biofilm of different intensities which did not completely correlate with their serotype; however, it correlated with the number of cells, hydrophobicity, and amount of certain fatty acids.
Collapse
Affiliation(s)
| | - Sukhadeo B. Barbuddhe
- ICAR Research Complex for Goa, Old Goa 403 402, India
- National Institute of Biotic Stress Management, IGKV Campus, Krishak Nagar, Raipur, Chhattisgarh, 492012, India
- * E-mail: (SBB); (TC)
| | - Sandeep Garg
- Department of Microbiology, Goa University, Taleigaon Plateau, Goa 403 206, India
| | | | - Dewanand R. Kalorey
- Department of Microbiology and Animal Biotechnology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur 440006, India
| | - Nitin V. Kurkure
- Department of Microbiology and Animal Biotechnology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur 440006, India
| | - Deepak B. Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
- * E-mail: (SBB); (TC)
| |
Collapse
|
125
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
126
|
Montgomery NL, Banerjee P. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Res Notes 2015; 8:235. [PMID: 26054759 PMCID: PMC4467610 DOI: 10.1186/s13104-015-1206-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The inactivation of biofilms formed by pathogenic bacteria on ready-to-eat and minimally processed fruits and vegetables by nonthermal processing methods is critical to ensure food safety. Pulsed ultraviolet (PUV) light has shown promise in the surface decontamination of liquid, powdered, and solid foods. In this study, the antimicrobial efficacy of PUV light treatment on nascent biofilms formed by Escherichia coli O157:H7 and Listeria monocytogenes on the surfaces of food packaging materials, such as low-density polyethylene (LDPE), and fresh produce, such as lettuce (Lactuca sativa) leaves, was investigated. RESULTS The formation of biofilms on Romaine lettuce leaves and LDPE films was confirmed by crystal violet and Alcian blue staining methods. Inactivation of cells in the biofilm was determined by standard plating procedures, and by a luminescence-based bacterial cell viability assay. Upon PUV treatment of 10 s at two different light source to sample distances (4.5 and 8.8 cm), viable cell counts of L. monocytogenes and E. coli O157:H7 in biofilms on the lettuce surface were reduced by 0.6-2.2 log CFU mL(-1) and 1.1-3.8 log CFU mL(-1), respectively. On the LDPE surface, the efficiency of inactivation of biofilm-encased cells was slightly higher. The maximum values for microbial reduction on LDPE were 2.7 log CFU mL(-1) and 3.9 log CFU mL(-1) for L. monocytogenes and E. coli O157:H7, respectively. Increasing the duration of PUV light exposure resulted in a significant (P < 0.05) reduction in biofilm formation by both organisms. The results also revealed that PUV treatment was more effective at reducing E. coli biofilms compared with Listeria biofilms. A moderate increase in temperature (~7-15°C) was observed for both test materials. CONCLUSIONS PUV is an effective nonthermal intervention method for surface decontamination of E. coli O157:H7 and L. monocytogenes on fresh produce and packaging materials.
Collapse
Affiliation(s)
- Nedra L Montgomery
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, AL, 35762, USA.
- General Mills, Inc., Golden Valley, MN, USA.
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, AL, 35762, USA.
- Division of Epidemiology, Biostatistics, and Environmental Health Science, School of Public Health, The University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
127
|
Saá Ibusquiza P, Nierop Groot M, Debán-Valles A, Abee T, den Besten HM. Impact of growth conditions and role of sigB on Listeria monocytogenes fitness in single and mixed biofilms cultured with Lactobacillus plantarum. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
128
|
Fernández Ramírez MD, Smid EJ, Abee T, Nierop Groot MN. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. Int J Food Microbiol 2015; 207:23-9. [PMID: 25965141 DOI: 10.1016/j.ijfoodmicro.2015.04.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 04/19/2015] [Indexed: 12/25/2022]
Abstract
Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.
Collapse
Affiliation(s)
- Mónica D Fernández Ramírez
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University and Research Centre, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
| | - Eddy J Smid
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University and Research Centre, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University and Research Centre, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands.
| | - Masja N Nierop Groot
- Top Institute Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Wageningen UR Food and Biobased Research, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
129
|
Whitehead KA, Verran J. Formation, architecture and functionality of microbial biofilms in the food industry. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
130
|
Guilbaud M, Piveteau P, Desvaux M, Brisse S, Briandet R. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Appl Environ Microbiol 2015; 81:1813-9. [PMID: 25548046 PMCID: PMC4325147 DOI: 10.1128/aem.03173-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes is involved in food-borne illness with a high mortality rate. The persistence of the pathogen along the food chain can be associated with its ability to form biofilms on inert surfaces. While most of the phenotypes associated with biofilms are related to their spatial organization, most published data comparing biofilm formation by L. monocytogenes isolates are based on the quantitative crystal violet assay, which does not give access to structural information. Using a high-throughput confocal-imaging approach, the aim of this work was to decipher the structural diversity of biofilms formed by 96 L. monocytogenes strains isolated from various environments. Prior to large-scale analysis, an experimental design was created to improve L. monocytogenes biofilm formation in microscopic-grade microplates, with special emphasis on the growth medium composition. Microscopic analysis of biofilms formed under the selected conditions by the 96 isolates revealed only weak correlation between the genetic lineages of the isolates and the structural properties of the biofilms. However, a gradient in their geometric descriptors (biovolume, mean thickness, and roughness), ranging from flat multilayers to complex honeycomb-like structures, was shown. The dominant honeycomb-like morphotype was characterized by hollow voids hosting free-swimming cells and localized pockets containing mixtures of dead cells and extracellular DNA (eDNA).
Collapse
Affiliation(s)
- Morgan Guilbaud
- INRA, UMR 1319 MICALIS, Jouy-en-Josas, France AgroParisTech, UMR MICALIS, Massy, France
| | - Pascal Piveteau
- Université de Bourgogne, UMR 1229, Dijon, France INRA, UMR 1347, Dijon, France
| | | | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR 3525, Paris, France
| | - Romain Briandet
- INRA, UMR 1319 MICALIS, Jouy-en-Josas, France AgroParisTech, UMR MICALIS, Massy, France
| |
Collapse
|
131
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
132
|
Chen M, Wu Q, Zhang J, Guo W, Wu S, Yang X. Prevalence and contamination patterns of Listeria monocytogenes in Flammulina velutipes plants. Foodborne Pathog Dis 2014; 11:620-7. [PMID: 24824447 DOI: 10.1089/fpd.2013.1727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Four mushroom (Flammulina velutipes) production plants were sampled to investigate the prevalence and contamination source of Listeria monocytogenes. Among 295 samples, the prevalence of L. monocytogenes was 18.6%; the contamination appeared to originate from the mycelium-scraping machinery, contaminating both the product and upstream packaging equipment. Of 55 L. monocytogenes isolates, lineages I.1 (1/2a-3a) and II.2 (1/2b-3b-7) accounted for 65.5% and 34.5%, respectively. In addition, lineage I.1 formed significantly thicker biofilms than those within lineage II.2, as determined by crystal violet staining and scanning electron microscopy. Genotype analyses of L. monocytogenes isolates using enterobacteria repetitive intergenic consensus-polymerase chain reaction, and random amplified polymorphic DNA revealed that the surfaces of mycelium-scraping machinery may serve as the main source of L. monocytogenes contamination in three of the four plants. This study was the first report to explore the potential contamination sources of L. monocytogenes in the mushroom production chain, thereby providing baseline information for adopting prophylactic measures for critical control points during production in mushroom plants to avoid L. monocytogenes contamination.
Collapse
Affiliation(s)
- Moutong Chen
- 1 School of Bioscience and Bioengineering, South China University of Technology , Guangzhou, China
| | | | | | | | | | | |
Collapse
|