101
|
Multi-object tracking in MRI-guided radiotherapy using the tracking-learning-detection framework. Radiother Oncol 2019; 138:25-29. [DOI: 10.1016/j.radonc.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/25/2022]
|
102
|
Rühle A, Andratschke N, Siva S, Guckenberger M. Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clin Transl Radiat Oncol 2019; 18:104-112. [PMID: 31341985 PMCID: PMC6630187 DOI: 10.1016/j.ctro.2019.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) has traditionally been regarded as radioresistant tumor based on preclinical data and negative clinical trials using conventional fractionated radiotherapy. However, there is emerging evidence that radiotherapy delivered in few fractions with high single-fraction and total doses may overcome RCC s radioresistance. Stereotactic radiotherapy (SRT) has been successfully used in the treatment of intra- and extracranial RCC metastases showing high local control rates accompanied by low toxicity. Although surgery is standard of care for non-metastasized RCC, a significant number of patients is medically inoperable or refuse surgery. Alternative local approaches such as radiofrequency ablation or cryoablation are invasive and often restricted to small RCC, so that there is a need for alternative local therapies such as stereotactic body radiotherapy (SBRT). Recently, both retrospective and prospective trials demonstrated that SBRT is an attractive treatment alternative for localized RCC. Here, we present a comprehensive review of the published data regarding SBRT for primary RCC. The radiobiological rationale to use higher radiation doses in few fractions is discussed, and technical aspects enabling the safe delivery of SBRT despite intra- and inter-fraction motion and the proximity to organs at risk are outlined.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University Hospital of Zurich, University Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University Zurich, Zurich, Switzerland
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
103
|
Brůža P, Gladstone D, Cammin J, Green O, Pogue BW. 4D scintillation dosimetry for the MRI-linac: proof of concept. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1305/1/012015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
104
|
Pasquier D, Lacornerie T, Mirabel X, Brassart C, Vanquin L, Lartigau E. [Stereotactic body radiotherapy. How to better protect normal tissues?]. Cancer Radiother 2019; 23:630-635. [PMID: 31447339 DOI: 10.1016/j.canrad.2019.07.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022]
Abstract
The use of stereotactic body radiotherapy (SBRT) has increased rapidly over the past decade. Optimal preservation of normal tissues is a major issue because of their high sensitivity to high doses per session. Extreme hypofractionation can convert random errors into systematic errors. Optimal preservation of organs at risk requires first of all a rigorous implementation of this technique according to published guidelines. The robustness of the imaging modalities used for planning, and training medical and paramedical staff are an integral part of these guidelines too. The choice of SBRT indications, dose fractionation, dose heterogeneity, ballistics, are also means of optimizing the protection of normal tissues. Non-coplanarity and tracking of moving targets allow dosimetric improvement in some clinical settings. Automatic planning could also improve normal tissue protection. Adaptive SBRT, with new image guided radiotherapy modalities such as MRI, could further reduce the risk of toxicity.
Collapse
Affiliation(s)
- D Pasquier
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France; Centre de recherche en informatique, signal et automatique de Lille UMR CNRS 9189, université de Lille, M3, avenue Carl-Gauss, 59650 Villeneuve-d'Ascq, France.
| | - T Lacornerie
- Service de physique médicale, centre Oscar-Lambret, 3, rue Combemale, 59020 Lille cedex, France
| | - X Mirabel
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France
| | - C Brassart
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France
| | - L Vanquin
- Service de physique médicale, centre Oscar-Lambret, 3, rue Combemale, 59020 Lille cedex, France
| | - E Lartigau
- Département universitaire de radiothérapie, centre Oscar-Lambret, université de Lille, 3, rue Combemale, 59020 Lille cedex, France; Centre de recherche en informatique, signal et automatique de Lille UMR CNRS 9189, université de Lille, M3, avenue Carl-Gauss, 59650 Villeneuve-d'Ascq, France
| |
Collapse
|
105
|
Kim JI, Park JM, Choi CH, An HJ, Kim YJ, Kim JH. Retrospective study comparing MR-guided radiation therapy (MRgRT) setup strategies for prostate treatment: repositioning vs. replanning. Radiat Oncol 2019; 14:139. [PMID: 31387593 PMCID: PMC6683369 DOI: 10.1186/s13014-019-1349-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study compared adaptive replanning and repositioning corrections based on soft-tissue matching for prostate cancer by using the magnetic resonance-guided radiation therapy (MRgRT) system. METHODS A total of 19 patients with prostate cancer were selected retrospectively. Weekly magnetic resonance image (MRI) scans were acquired for 5 weeks for each patient to observe the anatomic changes during the treatment course. Initial intensity-modulated radiation therapy (IMRT) plans (iIMRT) were generated for each patient with 13 coplanar 60Co beams on a ViewRay™ system. Two techniques were applied: patient repositioning and replanning. For patient repositioning, one plan was created: soft-tissue (prostate) matching (Soft). The dose distribution was calculated for each MRI with the beam delivery parameters from the initial IMRT plan. The replanning technique was used to generate the Adaptive plan, which was the reoptimized plan for the weekly MRI. The dose-volumetric parameters of the planning target volume (PTV), bladder, and rectum were calculated for all plans. During the treatment course, the PTV, bladder, and rectum were evaluated for changes in volume and the effect on dosimetric parameters. The differences between the dose-volumetric parameters of the plans were examined through the Wilcoxon test. The initial plan was used as a baseline to compare the differences. RESULTS The Adaptive plan showed better target coverage during the treatment period, but the change was not significant in the Soft plan. There were significant differences in D98%, D95%, and D2% in PTV between the Soft and Adaptive plans (p < 0.05) except for Dmean. There was no significant change in Dmax and Dmean as the treatment progressed with all plans. All indices for the Adaptive plan stayed the same compared to those of iIMRT during the treatment course. There were significant differences in D15%, D25%, D35%, and D50% in the bladder between the Soft and Adaptive plans. The Adaptive plan showed the worse dose sparing than the Soft plan for the bladder according to each dosimetric index. In contrast to the bladder, the Adaptive plan achieved better sparing than the Soft plan during the treatment course. The significant differences were only observed in D15% and D35% between the Soft and Adaptive plans (p < 0.05). CONCLUSIONS Patient repositioning based on the target volume (Soft plan) can relatively retain the target coverage for patients and the OARs remain at a clinically tolerance level during the treatment course. The Adaptive plan did not clinically improve for the dose delivered to OARs, it kept the dose delivered to the target volume constant. However, the Adaptive plan is beneficial when the organ positions and volumes change considerable during treatment.
Collapse
Affiliation(s)
- Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Center for Convergence Research on Robotics, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hyun Joon An
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yi-Jun Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
106
|
Hagen M, Kretschmer M, Würschmidt F, Gauer T, Giro C, Karsten E, Lorenzen J. Clinical relevance of metal artefact reduction in computed tomography (iMAR) in the pelvic and head and neck region: Multi-institutional contouring study of gross tumour volumes and organs at risk on clinical cases. J Med Imaging Radiat Oncol 2019; 63:842-851. [PMID: 31265214 DOI: 10.1111/1754-9485.12924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/03/2019] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Artefacts caused by dental implants and hip replacements may impede target volume definition and dose calculation accuracy. The iterative metal artefact reduction (iMAR) algorithm can provide a solution for this problem. The present study compares delineation of gross tumour volumes (GTVs) and organs at risk (OARs) in the pelvic and the head and neck (H & N) regions using computed tomography (CT) with and without iMAR, and thus the practical applicability of iMAR for routine clinical use. METHODS The native planning CT and CT-iMAR data of two typical clinical cases with image-distorting artefacts were used for multi-institutional contouring and analysis using the Dice similarity coefficient (DSC). GTV/OAR contours were compared with an intraobserver approach and compared to predefined reference structures. RESULTS Mean volume for GTVprostate in the intraobserver approach decreased from 87 ± 44 cm3 (native CT) to 75 ± 22 cm3 (CT-iMAR) (P = 0.168). Compared to the reference, DSC values for GTVP rostate increased from 0.68 ± 0.15 to 0.78 ± 0.07 (CT vs. iMAR) (P < 0.05). In the H & N region, the reference for GTVT ongue (34 cm3 ) was underestimated on both data sets. No significant improvement in DSC values (0.83 ± 0.06 (native CT) versus 0.86 ± 0.06 (CT-iMAR)) was observed. CONCLUSION The use of iMAR improves the anatomical delineation at the transition of prostate and bladder in cases of bilateral hip replacement. In the H & N region, anatomical residual structures and experience were apparently sufficient for precise contouring.
Collapse
Affiliation(s)
| | | | | | - Tobias Gauer
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Elias Karsten
- Department of Radiotherapy, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
107
|
den Hartogh MD, de Boer HC, de Groot-van Breugel EN, van der Voort van Zyp JR, Hes J, van der Heide UA, Pos F, Haustermans K, Depuydt T, Jan Smeenk R, Kunze-Busch M, Raaymakers BW, Kerkmeijer LG. Planning feasibility of extremely hypofractionated prostate radiotherapy on a 1.5 T magnetic resonance imaging guided linear accelerator. Phys Imaging Radiat Oncol 2019; 11:16-20. [PMID: 33458271 PMCID: PMC7807729 DOI: 10.1016/j.phro.2019.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, intermediate and high-risk prostate cancer patients have been treated in a multicenter phase II trial with extremely hypofractionated prostate radiotherapy (hypo-FLAME trial). The purpose of the current study was to investigate whether a 1.5 T magnetic resonance imaging guided linear accelerator (MRI-linac) could achieve complex dose distributions of a quality similar to conventional linac state-of-the-art prostate treatments. MATERIALS AND METHODS The clinically delivered treatment plans of 20 hypo-FLAME patients (volumetric modulated arc therapy, 10 MV, 5 mm leaf width) were included. Prescribed dose to the prostate was 5 × 7 Gy, with a focal tumor boost up to 5 × 10 Gy. MRI-linac treatment plans (intensity modulated radiotherapy, 7 MV, 7 mm leaf width, fixed collimator angle and 1.5 T magnetic field) were calculated. Dose distributions were compared. RESULTS In both conventional and MRI-linac treatment plans, the V35Gy to the whole prostate was >99% in all patients. Mean dose to the gross tumor volume was 45 Gy for conventional and 44 Gy for MRI-linac plans, respectively. Organ at risk doses were met in the majority of plans, except for a rectal V35Gy constraint, which was exceeded in one patient, by 1 cc, for both modalities. The bladder V32Gy and V28Gy constraints were exceeded in two and one patient respectively, for both modalities. CONCLUSION Planning of stereotactic radiotherapy with focal ablative boosting in prostate cancer on a high field MRI-linac is feasible with the current MRI-linac properties, without deterioration of plan quality compared to conventional treatments.
Collapse
Affiliation(s)
- Mariska D. den Hartogh
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans C.J. de Boer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jochem Hes
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Uulke A. van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Floris Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Depuydt
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martina Kunze-Busch
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda G.W. Kerkmeijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
108
|
Corradini S, Alongi F, Andratschke N, Belka C, Boldrini L, Cellini F, Debus J, Guckenberger M, Hörner-Rieber J, Lagerwaard FJ, Mazzola R, Palacios MA, Philippens MEP, Raaijmakers CPJ, Terhaard CHJ, Valentini V, Niyazi M. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol 2019; 14:92. [PMID: 31167658 PMCID: PMC6551911 DOI: 10.1186/s13014-019-1308-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 11/23/2022] Open
Abstract
Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites.MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.
Collapse
Affiliation(s)
- S. Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - F. Alongi
- Department of Radiation Oncology, IRCSS Sacro Cuore don Calabria Hospital, Negrar-Verona, Italy
- University of Brescia, Brescia, Italy
| | - N. Andratschke
- Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - C. Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - L. Boldrini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - F. Cellini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - J. Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M. Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zurich, Zürich, Switzerland
| | - J. Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. J. Lagerwaard
- Department of Radiation Oncology, VU medical center, Amsterdam, The Netherlands
| | - R. Mazzola
- Department of Radiation Oncology, IRCSS Sacro Cuore don Calabria Hospital, Negrar-Verona, Italy
- University of Brescia, Brescia, Italy
| | - M. A. Palacios
- Department of Radiation Oncology, VU medical center, Amsterdam, The Netherlands
| | - M. E. P. Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. P. J. Raaijmakers
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. H. J. Terhaard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - V. Valentini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - M. Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
109
|
Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol 2019; 18:98-101. [PMID: 31341983 PMCID: PMC6630153 DOI: 10.1016/j.ctro.2019.04.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 01/28/2023] Open
Abstract
The integration of magnetic resonance (MR) imaging and linear accelerators into hybrid treatment systems has made MR-guided radiation therapy a clinical reality. This work summarizes the technical design of a 0.35 T MR-Linac and corresponding clinical concepts. The system facilitates 3D-conformal as well as IMRT treatments with 6MV photons. Daily MR imaging provides superior soft-tissue contrast for patient setup and also enables on-table adaption of treatment plans, which is fully integrated into the treatment workflow of the system. Automated beam gating during delivery is facilitated by cine MR imaging and structure tracking. Combining different novel features compared to conventional image-guided radiotherapy, this technology offers the potential for margin reduction as well as dose escalation.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
110
|
de Muinck Keizer DM, Pathmanathan AU, Andreychenko A, Kerkmeijer LGW, van der Voort van Zyp JRN, Tree AC, van den Berg CAT, de Boer JCJ. Fiducial marker based intra-fraction motion assessment on cine-MR for MR-linac treatment of prostate cancer. Phys Med Biol 2019; 64:07NT02. [PMID: 30794995 DOI: 10.1088/1361-6560/ab09a6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have developed a method to determine intrafraction motion of the prostate through automatic fiducial marker (FM) tracking on 3D cine-magnetic resonance (MR) images with high spatial and temporal resolution. Twenty-nine patients undergoing prostate stereotactic body radiotherapy (SBRT), with four implanted cylindrical gold FMs, had cine-MR imaging sessions after each of five weekly fractions. Each cine-MR examination consisted of 55 sequentially obtained 3D datasets ('dynamics'), acquired over a 11 s period, covering a total of 10 min. FM locations in the first dynamic were manually identified by a clinician, FM centers in subsequent dynamics were automatically determined. Center of mass (COM) translations and rotations were determined by calculating the rigid transformations between the FM template of the first and subsequent dynamics. The algorithm was applied to 7315 dynamics over 133 scans of 29 patients and the obtained results were validated by comparing the COM locations recorded by the clinician at the halfway-dynamic (after 5 min) and end dynamic (after 10 min). The mean COM translations at 10 min were X: 0.0 [Formula: see text] 0.8 mm, Y: 1.0 [Formula: see text] 1.9 mm and Z: 0.9 [Formula: see text] 2.0 mm. The mean rotation results at 10 min were X: 0.1 [Formula: see text] 3.9°, Y: 0.0 [Formula: see text] 1.3° and Z: 0.1 [Formula: see text] 1.2°. The tracking success rate was 97.7% with a mean 3D COM error of 1.1 mm. We have developed a robust, fast and accurate FM tracking algorithm for cine-MR data, which allows for continuous monitoring of prostate motion during MR-guided radiotherapy (MRgRT). These results will be used to validate automatic prostate tracking based on soft-tissue contrast.
Collapse
Affiliation(s)
- D M de Muinck Keizer
- Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands. Joint first author. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Caravatta L, Cellini F, Simoni N, Rosa C, Niespolo RM, Lupattelli M, Picardi V, Macchia G, Sainato A, Mantello G, Dionisi F, Rosetto ME, Fusco V, Navarria F, De Paoli A, Guido A, Vecchi C, Basilico R, Cianci R, Delli Pizzi A, Di Nicola M, Mattiucci GC, Valentini V, Morganti AG, Genovesi D. Magnetic resonance imaging (MRI) compared with computed tomography (CT) for interobserver agreement of gross tumor volume delineation in pancreatic cancer: a multi-institutional contouring study on behalf of the AIRO group for gastrointestinal cancers. Acta Oncol 2019; 58:439-447. [PMID: 30632876 DOI: 10.1080/0284186x.2018.1546899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Due to the high soft tissue resolution, magnetic resonance imaging (MRI) could improve the accuracy of pancreatic tumor delineation in radiation treatment planning. A multi-institutional study was proposed to evaluate the impact of MRI on inter-observer agreement in gross tumor volume (GTV) and duodenum delineation for pancreatic cancer compared with computer tomography (CT). MATERIAL AND METHODS Two clinical cases of borderline resectable (Case 1) and unresectable (Case 2) pancreatic cancer were selected. In two sequential steps, diagnostic contrast-enhanced CT scan and MRI sequences were sent to the participating centers. CT-GTVs were contoured while blinded to MRI data sets. DICE index was used to evaluate the spatial overlap accuracy. RESULTS Thirty-one radiation oncologists from different Institutions submitted the delineated volumes. CT- and MRI-GTV mean volumes were 21.6 ± 9.0 cm3 and 17.2 ± 6.0 cm3, respectively for Case 1, and 31.3 ± 15.6 cm3 and 33.2 ± 20.2 cm3, respectively for Case 2. Resulting MRI-GTV mean volume was significantly smaller than CT-GTV in the borderline resectable case (p < .05). A substantial agreement was shown by the median DICE index for CT- and MRI-GTV resulting as 0.74 (IQR: 0.67-0.75) and 0.61 (IQR: 0.57-0.67) for Case 1; a moderate agreement was instead reported for Case 2: 0.59 (IQR:0.52-0.66) and 0.53 (IQR:0.42-0.62) for CT- and MRI-GTV, respectively. CONCLUSION Diagnostic MRI resulted in smaller GTV in borderline resectable case with a substantial agreement between observers, and was comparable to CT scan in interobserver variability, in both cases. The greater variability in the unresectable case underlines the critical issues related to the outlining when vascular structures are more involved. The integration of MRI with contrast-enhancement CT, thanks to its high definition of tumor relationship with neighboring vessels, could offer a greater accuracy of target delineation.
Collapse
Affiliation(s)
- Luciana Caravatta
- Department of Radiotherapy, ‘SS Annunziata’ Hospital ‘G. D’Annunzio’ University, Chieti, Italy
| | - Francesco Cellini
- Gemelli Advanced Radiation Therapy Center Fondazione Policlinico Universitario ‘A. Gemelli’ Catholic University of Sacred Heart, Rome, Italy
| | - Nicola Simoni
- Radiotherapy Unit Azienda Ospedaliera Universitaria, Verona, Italy
| | - Consuelo Rosa
- Department of Radiotherapy, ‘SS Annunziata’ Hospital ‘G. D’Annunzio’ University, Chieti, Italy
| | | | - Marco Lupattelli
- Radiation Oncology Section University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Vincenzo Picardi
- Radiotherapy Unit Department of Oncology, ‘Giovanni Paolo II’ Foundation Catholic University of Sacred Heart, Campobasso, Italy
| | - Gabriella Macchia
- Radiotherapy Unit Department of Oncology, ‘Giovanni Paolo II’ Foundation Catholic University of Sacred Heart, Campobasso, Italy
| | - Aldo Sainato
- Radiotherapy Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | - Francesco Dionisi
- Proton Therapy Unit, Department of Oncology, Azienda Provinciale per i Servizi Sanitari, APSS, Trento, Italy
| | | | - Vincenzo Fusco
- Department of Radiation Oncology, Centro di Riferimento Oncologico Regionale, Rionero in Vulture, Potenza, Italy
| | - Federico Navarria
- Department of Radiation Oncology Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Antonino De Paoli
- Department of Radiation Oncology Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Alessandra Guido
- Radiation Oncology Center, Department of Experimental Diagnostic and Specialty Medicine - DIMES, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Raffaella Basilico
- Department of Radiology, ‘SS Annunziata’ Hospital ‘G. D’Annunzio’ University, Chieti, Italy
| | - Roberta Cianci
- Department of Radiology, ‘SS Annunziata’ Hospital ‘G. D’Annunzio’ University, Chieti, Italy
| | - Andrea Delli Pizzi
- Department of Radiology, ‘SS Annunziata’ Hospital ‘G. D’Annunzio’ University, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics Department of Medical, Oral and Biotechnological Sciences ‘G. D'Annunzio’ University, Chieti, Italy
| | - Gian Carlo Mattiucci
- Gemelli Advanced Radiation Therapy Center Fondazione Policlinico Universitario ‘A. Gemelli’ Catholic University of Sacred Heart, Rome, Italy
| | - Vincenzo Valentini
- Gemelli Advanced Radiation Therapy Center Fondazione Policlinico Universitario ‘A. Gemelli’ Catholic University of Sacred Heart, Rome, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, Department of Experimental Diagnostic and Specialty Medicine - DIMES, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Domenico Genovesi
- Department of Radiotherapy, ‘SS Annunziata’ Hospital ‘G. D’Annunzio’ University, Chieti, Italy
| |
Collapse
|
112
|
Peters M, van Son MJ, Moerland MA, Kerkmeijer LGW, Eppinga WSC, Meijer RP, Lagendijk JJW, Shah TT, Ahmed HU, van der Voort van Zijp JRN. MRI-Guided Ultrafocal HDR Brachytherapy for Localized Prostate Cancer: Median 4-Year Results of a feasibility study. Int J Radiat Oncol Biol Phys 2019; 104:1045-1053. [PMID: 30926575 DOI: 10.1016/j.ijrobp.2019.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE For the treatment of localized prostate cancer, focal therapy has the potential to cure with fewer side effects than traditional whole-gland treatments. We report an update on toxicity, quality of life (QoL), and tumor control in our magnetic resonance imaging (MRI)-guided ultrafocal high-dose-rate brachytherapy cohort. METHODS AND MATERIALS Disease status was evaluated by systematic biopsies and 3T multiparametric MRI. The brachytherapy implant procedure under fused transrectal ultrasound/MRI guidance was followed by a 1.5 T MRI for contour adjustments and catheter position verification. A single dose of 19 Gy was delivered to the tumor with a margin of 5 mm. Genitourinary (GU) toxicity, gastrointestinal (GI) toxicity, and erectile dysfunction (ED) were graded with the Common Terminology Criteria for Adverse Events version 4.0. QoL was measured with RAND-36, European Organisation for Research and Treatment of Cancer QLQ-C30 and PR25. International Prostate Symptom Scores and International Index of Erectile Function scores were obtained. Prostate-specific antigen level was monitored, with biochemical recurrence defined as nadir + 2 ng/mL (Phoenix). RESULTS Thirty patients with National Comprehensive Cancer Network low- (13%) to intermediate-risk (87%) prostate cancer were treated between May 2013 and April 2016. Median follow-up was 4 years. Median age was 71 years (interquartile range, 68-73) and median initial prostate-specific antigen level was 7.3 ng/mL (5.2-8.1). Maximum Gleason score was 4 + 3 = 7 (in 2 patients). All tumors were radiologic (MRI) stage T2. No grade >2 GU or >1 GI toxicity occurred. International Prostate Symptom Scores only deteriorated temporarily. Mild pretreatment ED deteriorated to moderate/severe ED in 50% of patients. Long-term clinically relevant QoL deterioration was seen in sexual activity and tiredness, whereas emotional and cognitive functioning improved. At 4 years, biochemical disease-free survival was 70% (95% confidence interval, 52%-93%), metastases-free survival was 93% (85%-100%), and overall survival was 100%. Of intraprostatic recurrences, 7 of 9 were out of field. CONCLUSIONS Ultrafocal high-dose-rate brachytherapy conveys minimal GU or GI toxicity and has a marginal effect on QoL. An early decline in erectile function was seen. Tumor control outcomes are poor (biochemical disease-free survival of 70% [52%-93%] at 4 years), most likely as a result of poor patient selection.
Collapse
Affiliation(s)
- Max Peters
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Marieke J van Son
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marinus A Moerland
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda G W Kerkmeijer
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wietse S C Eppinga
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Richard P Meijer
- Department of Oncological Urology, University Medical Center Utrecht, Utrecht, Netherlands; Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Taimur T Shah
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Hashim U Ahmed
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | |
Collapse
|
113
|
Tanabe Y, Ishida T. Optimizing multiple acquisition planning CT for prostate cancer IMRT. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0dc7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
114
|
Tetar SU, Bruynzeel AME, Lagerwaard FJ, Slotman BJ, Bohoudi O, Palacios MA. Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 9:69-76. [PMID: 33458428 PMCID: PMC7807673 DOI: 10.1016/j.phro.2019.02.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022]
Abstract
Background and purpose Magnetic resonance-guided radiation therapy (MRgRT) has recently become available in clinical practice and is expected to expand significantly in coming years. MRgRT offers marker-less continuous imaging during treatment delivery, use of small clinical target volume (CTV) to planning target volume (PTV) margins, and finally the option to perform daily plan re-optimization. Materials and methods A total of 140 patients (700 fractions) have been treated with MRgRT and online plan adaptation for localized prostate cancer since early 2016. Clinical workflow for MRgRT of prostate cancer consisted of patient selection, simulation on both MR- and computed tomography (CT) scan, inverse intensity-modulated radiotherapy (IMRT) treatment planning and daily plan re-optimization prior to treatment delivery with partial organs at risk (OAR) recontouring within the first 2 cm outside the PTV. For each adapted plan online patient-specific quality assurance (QA) was performed by means of a secondary Monte Carlo 3D dose calculation and gamma analysis comparison. Patient experiences with MRgRT were assessed using a patient-reported outcome questionnaire (PRO-Q) after the last fraction. Results In 97% of fractions, MRgRT was delivered using the online adapted plan. Intrafractional prostate drifts necessitated 2D-corrections during treatment in approximately 20% of fractions. The average duration of an uneventful fraction of MRgRT was 45 min. PRO-Q’s (N = 89) showed that MRgRT was generally well tolerated, with disturbing noise sensations being most commonly reported. Conclusions MRgRT with daily online plan adaptation constitutes an innovative approach for delivering SBRT for prostate cancer and appears to be feasible, although necessitating extended timeslots and logistical challenges.
Collapse
Affiliation(s)
- Shyama U Tetar
- Dept. of Radiation Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Anna M E Bruynzeel
- Dept. of Radiation Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Frank J Lagerwaard
- Dept. of Radiation Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J Slotman
- Dept. of Radiation Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Omar Bohoudi
- Dept. of Radiation Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Miguel A Palacios
- Dept. of Radiation Oncology, VU University Medical Center, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
115
|
Pathmanathan AU, McNair HA, Schmidt MA, Brand DH, Delacroix L, Eccles CL, Gordon A, Herbert T, van As NJ, Huddart RA, Tree AC. Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy. Br J Radiol 2019; 92:20180948. [PMID: 30676772 PMCID: PMC6540870 DOI: 10.1259/bjr.20180948] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE: With increasing incorporation of MRI in radiotherapy, we investigate two MRI sequences for prostate delineation in radiographer-led image guidance. METHODS: Five therapeutic radiographers contoured the prostate individually on CT, T2 weighted (T2W) and T2* weighted (T2*W) imaging for 10 patients. Contours were analysed with Monaco ADMIRE (research v. 2.0) to assess interobserver variability and accuracy by comparison with a gold standard clinician contour. Observers recorded time taken for contouring and scored image quality and confidence in contouring. RESULTS: There is good agreement when comparing radiographer contours to the gold-standard for all three imaging types with Dice similarity co-efficient 0.91-0.94, Cohen's κ 0.85-0.91, Hausdorff distance 4.6-7.6 mm and mean distance between contours 0.9-1.2 mm. In addition, there is good concordance between radiographers across all imaging modalities. Both T2W and T2*W MRI show reduced interobserver variability and improved accuracy compared to CT, this was statistically significant for T2*W imaging compared to CT across all four comparison metrics. Comparing MRI sequences reveals significantly reduced interobserver variability and significantly improved accuracy on T2*W compared to T2W MRI for DSC and Cohen's κ. Both MRI sequences scored significantly higher compared to CT for image quality and confidence in contouring, particularly T2*W. This was also reflected in the shorter time for contouring, measuring 15.4, 9.6 and 9.8 min for CT, T2W and T2*W MRI respectively. Conclusion: Therapeutic radiographer prostate contours are more accurate, show less interobserver variability and are more confidently and quickly outlined on MRI compared to CT, particularly using T2*W MRI. Advances in knowledge: Our work is relevant for MRI sequence choice and development of the roles of the interprofessional team in the advancement of MRI-guided radiotherapy.
Collapse
Affiliation(s)
| | - Helen A McNair
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | | | - Louise Delacroix
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | - Alexandra Gordon
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | - Trina Herbert
- The Royal Marsden Hospital NHS Foundation Trust, Downs Road, Sutton, United Kingdom
| | | | | | | |
Collapse
|
116
|
Pathmanathan AU, Schmidt MA, Brand DH, Kousi E, van As NJ, Tree AC. Improving fiducial and prostate capsule visualization for radiotherapy planning using MRI. J Appl Clin Med Phys 2019; 20:27-36. [PMID: 30756456 PMCID: PMC6414142 DOI: 10.1002/acm2.12529] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Intraprostatic fiducial markers (FM) improve the accuracy of radiotherapy (RT) delivery. Here we assess geometric integrity and contouring consistency using a T2*-weighted (T2*W) sequence alone, which allows visualization of the FM. MATERIAL AND METHODS Ten patients scanned within the Prostate Advances in Comparative Evidence (PACE) trial (NCT01584258) had prostate images acquired with computed tomography (CT) and Magnetic Resonance (MR) Imaging: T2-weighted (T2W) and T2*W sequences. The prostate was contoured independently on each imaging dataset by three clinicians. Interobserver variability was assessed using comparison indices with Monaco ADMIRE (research version 2.0, Elekta AB) and examined for statistical differences between imaging sets. CT and MR images of two test objects were acquired to assess geometric distortion and accuracy of marker positioning. The first was a linear test object comprising straight tubes in three orthogonal directions, the second was a smaller test object with markers suspended in gel. RESULTS Interobserver variability for prostate contouring was lower for both T2W and T2*W compared to CT, this was statistically significant when comparing CT and T2*W images. All markers are visible in T2*W images with 29/30 correctly identified, only 3/30 are visible in T2W images. Assessment of geometric distortion revealed in-plane displacements were under 0.375 mm in MRI, and through plane displacements could not be detected. The signal loss in the MR images is symmetric in relation to the true marker position shown in CT images. CONCLUSION Prostate T2*W images are geometrically accurate, and yield consistent prostate contours. This single sequence can be used to identify FM and for prostate delineation in a mixed MR-CT workflow.
Collapse
Affiliation(s)
- Angela U Pathmanathan
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Maria A Schmidt
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Douglas H Brand
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Evanthia Kousi
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Nicholas J van As
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| | - Alison C Tree
- The Royal Marsden Hospital NHS Foundation Trust, London, UK.,The Institute of Cancer Research, London, UK
| |
Collapse
|
117
|
Winkel D, Bol GH, Werensteijn-Honingh AM, Kiekebosch IH, van Asselen B, Intven MP, Eppinga WS, Raaymakers BW, Jürgenliemk-Schulz IM, Kroon PS. Evaluation of plan adaptation strategies for stereotactic radiotherapy of lymph node oligometastases using online magnetic resonance image guidance. Phys Imaging Radiat Oncol 2019; 9:58-64. [PMID: 33458426 PMCID: PMC7807584 DOI: 10.1016/j.phro.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies have shown that the use of magnetic resonance (MR) guided online plan adaptation yields beneficial dosimetric values and reduces unplanned violations of the dose constraints for stereotactic body radiation therapy (SBRT) of lymph node oligometastases. The purpose of this R-IDEAL stage 0 study was to determine the optimal plan adaptation approach for MR-guided SBRT treatment of lymph node oligometastases. MATERIALS AND METHODS Using pre-treatment computed tomography (CT) and repeated MR data from five patients with in total 17 pathological lymph nodes, six different methods of plan adaptation were performed on the daily MRI and contours. To determine the optimal plan adaptation approach for treatment of lymph node oligometastases, the adapted plans were evaluated using clinical dose criteria and the time required for performing the plan adaptation. RESULTS The average time needed for the different plan adaptation methods ranged between 11 and 119 s. More advanced adaptation methods resulted in more plans that met the clinical dose criteria [range, 0-16 out of 17 plans]. The results show a large difference between target coverage achieved by the different plan adaptation methods. CONCLUSION Results suggested that multiple plan adaptation methods, based on plan adaptation on the daily anatomy, were feasible for MR-guided SBRT treatment of lymph node oligometastases. The most advanced method, in which a full online replanning was performed by segment shape and weight optimization after fluence optimization, yielded the most favourable dosimetric values and could be performed within a time-frame acceptable (<5 min) for MR-guided treatment.
Collapse
Affiliation(s)
- Dennis Winkel
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | - Gijsbert H. Bol
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | | | - Ilse H. Kiekebosch
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | - Martijn P.W. Intven
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | - Wietse S.C. Eppinga
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| | | | - Petra S. Kroon
- Department of Radiotherapy, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
118
|
Chaddad A, Niazi T, Probst S, Bladou F, Anidjar M, Bahoric B. Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis. Front Oncol 2018; 8:630. [PMID: 30619764 PMCID: PMC6305278 DOI: 10.3389/fonc.2018.00630] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose: Use of quantitative imaging features and encoding the intra-tumoral heterogeneity from multi-parametric magnetic resonance imaging (mpMRI) for the prediction of Gleason score is gaining attention as a non-invasive biomarker for prostate cancer (PCa). This study tested the hypothesis that radiomic features, extracted from mpMRI, could predict the Gleason score pattern of patients with PCa. Methods: This analysis included T2-weighted (T2-WI) and apparent diffusion coefficient (ADC, computed from diffusion-weighted imaging) scans of 99 PCa patients from The Cancer Imaging Archive (TCIA). A total of 41 radiomic features were calculated from a local tumor sub-volume (i.e., regions of interest) that is determined by a centroid coordinate of PCa volume, grouped based on their Gleason score patterns. Kruskal-Wallis and Spearman's rank correlation tests were used to identify features related to Gleason score groups. Random forest (RF) classifier model was used to predict Gleason score groups and identify the most important signature among the 41 radiomic features. Results: Gleason score groups could be discriminated based on zone size percentage, large zone size emphasis and zone size non-uniformity values (p < 0.05). These features also showed a significant correlation between radiomic features and Gleason score groups with a correlation value of -0.35, 0.32, 0.42 for the large zone size emphasis, zone size non-uniformity and zone size percentage, respectively (corrected p < 0.05). RF classifier model achieved an average of the area under the curves of the receiver operating characteristic (ROC) of 83.40, 72.71, and 77.35% to predict Gleason score groups (G1) = 6; 6 < (G2) < (3 + 4) and (G3) ≥ 4 + 3, respectively. Conclusion: Our results suggest that the radiomic features can be used as a non-invasive biomarker to predict the Gleason score of the PCa patients.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada.,Department of Automated Production Engineering, ETS, Montreal, QC, Canada
| | - Tamim Niazi
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada
| | - Stephan Probst
- Division of Nuclear Medicine, McGill University, Montreal, QC, Canada
| | - Franck Bladou
- Depatment of Urology, McGill University, Montreal, QC, Canada
| | - Maurice Anidjar
- Depatment of Urology, McGill University, Montreal, QC, Canada
| | - Boris Bahoric
- Division of Radiation Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
119
|
Grimwood A, McNair HA, O'Shea TP, Gilroy S, Thomas K, Bamber JC, Tree AC, Harris EJ. In Vivo Validation of Elekta's Clarity Autoscan for Ultrasound-based Intrafraction Motion Estimation of the Prostate During Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:912-921. [PMID: 29859785 PMCID: PMC6202949 DOI: 10.1016/j.ijrobp.2018.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Our purpose was to perform an in vivo validation of ultrasound imaging for intrafraction motion estimation using the Elekta Clarity Autoscan system during prostate radiation therapy. The study was conducted as part of the Clarity-Pro trial (NCT02388308). METHODS AND MATERIALS Initial locations of intraprostatic fiducial markers were identified from cone beam computed tomography scans. Marker positions were translated according to Clarity intrafraction 3-dimensional prostate motion estimates. The updated locations were projected onto the 2-dimensional electronic portal imager plane. These Clarity-based estimates were compared with the actual portal-imaged 2-dimensional marker positions. Images from 16 patients encompassing 80 fractions were analyzed. To investigate the influence of intraprostatic markers and image quality on ultrasound motion estimation, 3 observers rated image quality, and the marker visibility on ultrasound images was assessed. RESULTS The median difference between Clarity-defined intrafraction marker locations and portal-imaged marker locations was 0.6 mm (with 95% limit of agreement at 2.5 mm). Markers were identified on ultrasound in only 3 of a possible 240 instances. No linear relationship between image quality and Clarity motion estimation confidence was identified. The difference between Clarity-based motion estimates and electronic portal-imaged marker location was also independent of image quality. Clarity estimation confidence was degraded in a single fraction owing to poor probe placement. CONCLUSIONS The accuracy of Clarity intrafraction prostate motion estimation is comparable with that of other motion-monitoring systems in radiation therapy. The effect of fiducial markers in the study was deemed negligible as they were rarely visible on ultrasound images compared with intrinsic anatomic features. Clarity motion estimation confidence was robust to variations in image quality and the number of ultrasound-imaged anatomic features; however, it was degraded as a result of poor probe placement.
Collapse
Affiliation(s)
- Alexander Grimwood
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK.
| | - Helen A McNair
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Tuathan P O'Shea
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Stephen Gilroy
- North West Cancer Centre, Altnagelvin Area Hospital, Londonderry, Ireland
| | - Karen Thomas
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Jeffrey C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Alison C Tree
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| | - Emma J Harris
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital Trust, Sutton, UK
| |
Collapse
|
120
|
Tree AC, Huddart R, Choudhury A. Magnetic Resonance-guided Radiotherapy - Can We Justify More Expensive Technology? Clin Oncol (R Coll Radiol) 2018; 30:677-679. [PMID: 30217480 DOI: 10.1016/j.clon.2018.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 11/18/2022]
Affiliation(s)
- A C Tree
- Royal Marsden NHS Foundation Trust, Institute of Cancer Research, London, UK
| | - R Huddart
- Royal Marsden NHS Foundation Trust, Institute of Cancer Research, London, UK
| | - A Choudhury
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
121
|
Hunt A, Hansen VN, Oelfke U, Nill S, Hafeez S. Adaptive Radiotherapy Enabled by MRI Guidance. Clin Oncol (R Coll Radiol) 2018; 30:711-719. [PMID: 30201276 DOI: 10.1016/j.clon.2018.08.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Adaptive radiotherapy (ART) strategies systematically monitor variations in target and neighbouring structures to inform treatment-plan modification during radiotherapy. This is necessary because a single plan designed before treatment is insufficient to capture the actual dose delivered to the target and adjacent critical structures during the course of radiotherapy. Magnetic resonance imaging (MRI) provides superior soft-tissue image contrast over current standard X-ray-based technologies without additional radiation exposure. With integrated MRI and radiotherapy platforms permitting motion monitoring during treatment delivery, it is possible that adaption can be informed by real-time anatomical imaging. This allows greater treatment accuracy in terms of dose delivered to target with smaller, individualised treatment margins. The use of functional MRI sequences would permit ART to be informed by imaging biomarkers, so allowing both personalised geometric and biological adaption. In this review, we discuss ART solutions enabled by MRI guidance and its potential gains for our patients across tumour types.
Collapse
Affiliation(s)
- A Hunt
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - V N Hansen
- The Institute of Cancer Research, London, UK; Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - U Oelfke
- The Institute of Cancer Research, London, UK; Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - S Nill
- The Institute of Cancer Research, London, UK; Joint Department of Physics, The Royal Marsden NHS Foundation Trust, London, UK
| | - S Hafeez
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
122
|
Arabi H, Dowling JA, Burgos N, Han X, Greer PB, Koutsouvelis N, Zaidi H. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Med Phys 2018; 45:5218-5233. [PMID: 30216462 DOI: 10.1002/mp.13187] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/29/2018] [Accepted: 09/06/2018] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI)-guided radiation therapy (RT) treatment planning is limited by the fact that the electron density distribution required for dose calculation is not readily provided by MR imaging. We compare a selection of novel synthetic CT generation algorithms recently reported in the literature, including segmentation-based, atlas-based and machine learning techniques, using the same cohort of patients and quantitative evaluation metrics. METHODS Six MRI-guided synthetic CT generation algorithms were evaluated: one segmentation technique into a single tissue class (water-only), four atlas-based techniques, namely, median value of atlas images (ALMedian), atlas-based local weighted voting (ALWV), bone enhanced atlas-based local weighted voting (ALWV-Bone), iterative atlas-based local weighted voting (ALWV-Iter), and a machine learning technique using deep convolution neural network (DCNN). RESULTS Organ auto-contouring from MR images was evaluated for bladder, rectum, bones, and body boundary. Overall, DCNN exhibited higher segmentation accuracy resulting in Dice indices (DSC) of 0.93 ± 0.17, 0.90 ± 0.04, and 0.93 ± 0.02 for bladder, rectum, and bones, respectively. On the other hand, ALMedian showed the lowest accuracy with DSC of 0.82 ± 0.20, 0.81 ± 0.08, and 0.88 ± 0.04, respectively. DCNN reached the best performance in terms of accurate derivation of synthetic CT values within each organ, with a mean absolute error within the body contour of 32.7 ± 7.9 HU, followed by the advanced atlas-based methods (ALWV: 40.5 ± 8.2 HU, ALWV-Iter: 42.4 ± 8.1 HU, ALWV-Bone: 44.0 ± 8.9 HU). ALMedian led to the highest error (52.1 ± 11.1 HU). Considering the dosimetric evaluation results, ALWV-Iter, ALWV, DCNN and ALWV-Bone led to similar mean dose estimation within each organ at risk and target volume with less than 1% dose discrepancy. However, the two-dimensional gamma analysis demonstrated higher pass rates for ALWV-Bone, DCNN, ALMedian and ALWV-Iter at 1%/1 mm criterion with 94.99 ± 5.15%, 94.59 ± 5.65%, 93.68 ± 5.53% and 93.10 ± 5.99% success, respectively, while ALWV and water-only resulted in 86.91 ± 13.50% and 80.77 ± 12.10%, respectively. CONCLUSIONS Overall, machine learning and advanced atlas-based methods exhibited promising performance by achieving reliable organ segmentation and synthetic CT generation. DCNN appears to have slightly better performance by achieving accurate automated organ segmentation and relatively small dosimetric errors (followed closely by advanced atlas-based methods, which in some cases achieved similar performance). However, the DCNN approach showed higher vulnerability to anatomical variation, where a greater number of outliers was observed with this method. Considering the dosimetric results obtained from the evaluated methods, the challenge of electron density estimation from MR images can be resolved with a clinically tolerable error.
Collapse
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Jason A Dowling
- CSIRO Australian e-Health Research Centre, Herston, QLD, Australia
| | - Ninon Burgos
- Inria Paris, Aramis Project-Team, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Université, Paris, F-75013, France
| | - Xiao Han
- Elekta Inc., Maryland Heights, MO, 63043, USA
| | - Peter B Greer
- Calvary Mater Newcastle Hospital, Waratah, NSW, Australia.,University of Newcastle, Callaghan, NSW, Australia
| | - Nikolaos Koutsouvelis
- Division of Radiation Oncology, Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland.,Geneva University Neurocenter, University of Geneva, Geneva, 1205, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, DK-500, Denmark
| |
Collapse
|
123
|
La radiothérapie externe guidée par l’imagerie dans le cancer de la prostate ; comment, quand et pourquoi ? Cancer Radiother 2018; 22:586-592. [DOI: 10.1016/j.canrad.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
|
124
|
Kerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp JRN, de Boer HCJ, van den Berg CAT. Magnetic Resonance Imaging only Workflow for Radiotherapy Simulation and Planning in Prostate Cancer. Clin Oncol (R Coll Radiol) 2018; 30:692-701. [PMID: 30244830 DOI: 10.1016/j.clon.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 01/06/2023]
Abstract
Magnetic resonance imaging (MRI) is often combined with computed tomography (CT) in prostate radiotherapy to optimise delineation of the target and organs-at-risk (OAR) while maintaining accurate dose calculation. Such a dual-modality workflow requires two separate imaging sessions, and it has some fundamental and logistical drawbacks. Due to the availability of new MRI hardware and software solutions, CT examinations can be omitted for prostate radiotherapy simulations. All information for treatment planning, including electron density maps and bony anatomy, can nowadays be obtained with MRI. Such an MRI-only simulation workflow reduces delineation ambiguities, eases planning logistics, and improves patient comfort; however, careful validation of the complete MRI-only workflow is warranted. The first institutes are now adopting this MRI-only workflow for prostate radiotherapy. In this article, we will review technology and workflow requirements for an MRI-only prostate simulation workflow.
Collapse
Affiliation(s)
- L G W Kerkmeijer
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands.
| | - M Maspero
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - G J Meijer
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | | | - H C J de Boer
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - C A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
125
|
Towards a universal MRI atlas of the prostate and prostate zones : Comparison of MRI vendor and image acquisition parameters. Strahlenther Onkol 2018; 195:121-130. [PMID: 30140944 DOI: 10.1007/s00066-018-1348-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to evaluate an automatic multi-atlas-based segmentation method for generating prostate, peripheral (PZ), and transition zone (TZ) contours on MRIs with and without fat saturation (±FS), and compare MRIs from different vendor MRI systems. METHODS T2-weighted (T2) and fat-saturated (T2FS) MRIs were acquired on 3T GE (GE, Waukesha, WI, USA) and Siemens (Erlangen, Germany) systems. Manual prostate and PZ contours were used to create atlas libraries. As a test MRI is entered, the procedure for atlas segmentation automatically identifies the atlas subjects that best match the test subject, followed by a normalized intensity-based free-form deformable registration. The contours are transformed to the test subject, and Dice similarity coefficients (DSC) and Hausdorff distances between atlas-generated and manual contours were used to assess performance. RESULTS Three atlases were generated based on GE_T2 (n = 30), GE_T2FS (n = 30), and Siem_T2FS (n = 31). When test images matched the contrast and vendor of the atlas, DSCs of 0.81 and 0.83 for T2 ± FS were obtained (baseline performance). Atlases performed with higher accuracy when segmenting (i) T2FS vs. T2 images, likely due to a superior contrast between prostate vs. surrounding tissue; (ii) prostate vs. zonal anatomy; (iii) in the mid-gland vs. base and apex. Atlases performance declined when tested with images with differing contrast and MRI vendor. Conversely, combined atlases showed similar performance to baseline. CONCLUSION The MRI atlas-based segmentation method achieved good results for prostate, PZ, and TZ compared to expert contoured volumes. Combined atlases performed similarly to matching atlas and scan type. The technique is fast, fully automatic, and implemented on commercially available clinical platform.
Collapse
|
126
|
Diffusion weighted MRI as an early predictor of tumor response to hypofractionated stereotactic boost for prostate cancer. Sci Rep 2018; 8:10407. [PMID: 29991748 PMCID: PMC6039515 DOI: 10.1038/s41598-018-28817-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
We evaluated the feasibility of using the kinetic of diffusion-weighted MRI (DWI) and the normalized apparent coefficient diffusion (ADC) map value as an early biomarker in patients treated by external beam radiotherapy (EBRT). Twelve patients were included within the frame of a multicenter phase II trial and treated for intermediate risk prostate cancer (PCa). Multiparametric MRI was performed before treatment (M0) and every 6 months until M24. Association between nADC and PSA or PSA kinetic was evaluated using the test of nullity of the Spearman correlation coefficient. The median rates of PSA at the time of diagnosis, two years and four years after EBRT were 9.29 ng/ml (range from 5.26 to 17.67), 0.68 ng/ml (0.07–2.7), 0.47 ng/ml (0.09–1.39), respectively. Median nADC increased from 1.14 × 10−3 mm2/s to 1.59 × 10−3 mm2/s between M0 and M24. Only one patient presented a decrease of nADC (1.35 × 10−3 mm2/s and 1.11 × 10−3 mm2/s at M0 and M12 respectively). The increase in nADC at M6 was correlated with PSA decrease at M18, M24 and M30 (p < 0.05). The increase in nADc at M12 was correlated with PSA decrease at M36 (p = 0.019). Early nADC variation were correlated with late PSA decrease for patients with PCa treated by EBRT.
Collapse
|
127
|
De Roover R, Crijns W, Poels K, Peeters R, Draulans C, Haustermans K, Depuydt T. Characterization of a novel liquid fiducial marker for multimodal image guidance in stereotactic body radiotherapy of prostate cancer. Med Phys 2018. [PMID: 29537613 DOI: 10.1002/mp.12860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Liquid fiducial markers have shown to be a promising alternative to solid gold markers in terms of imaging artifact reduction, patient comfort, and compatibility with different imaging modalities. This study aims to investigate the performance of the novel BioXmark® liquid marker for state-of-the-art multimodal imaging used in prostate cancer (PCa) radiotherapy, encompassing kV CT/CBCT, multiparametric MRI, and kV x-ray imaging. In addition, automatic detection of the liquid markers in x-ray imaging for prostate motion monitoring during treatment was investigated. METHODS A total of eight BioXmark® liquid markers with varying volumes (range 5-300 μL) were casted on a square grid into a gelatin phantom insert. A cylindrical gold marker (QLRAD, length = 7 mm, Ø = 1 mm) was inserted for reference. Liquid marker visibility and streaking artifacts in CT/CBCT imaging were evaluated by placing the gelatin phantom into a CIRS anthropomorphic phantom. Relevant MRI characteristics such as the T2 and T1 relaxation times, the ADC value, and the relative proton density (ρH) were quantified by placing the gelatin phantom insert next to a T1MES mapping phantom and a water-filled syringe for reference. Ex vivo multiparametric MRI images were acquired by placing the gelatin phantom next to a resected prostate specimen. Anterior-posterior x-ray projection images were obtained by placing the gelatin phantom insert on top of an anthropomorphic pelvic phantom with internal pelvic bony structures and were acquired for five positions relative to the bony anatomy and 24 clinically relevant x-ray exposure settings. To quantify individual automatic marker detection, single markers were artificially isolated in the x-ray images using postprocessing. RESULTS Markers of all sizes were clearly visible on CT and CBCT images with only the largest marker volumes (100-300 μL) displaying artifacts similar in size to the gold fiducial marker. Artifact size increased with increasing liquid marker volume. Liquid markers displayed good contrast in ex vivo T1-weighted and ρH-weighted images. The markers were not visible in the ex vivo T2-weighted image. The liquid markers induced a chemical shift artifact in the obtained ADC-map. Automated detection in x-ray imaging was feasible with high detection success (four of five positions) for marker volumes in the range of 25-200 μL. None of the liquid markers were detected successfully when superimposed on a bony edge, independent of their size. CONCLUSIONS This study is the first to show the compatibility of BioXmark® liquid markers with multimodal image-guided radiotherapy for PCa. Compared to a solid gold marker, they had favorable results in both visibility and induced imaging artifacts. Liquid marker visibility in MRI imaging of the prostate does not solely depend on the low ρH value (not visible on T2-weighted image) but is also influenced by its relaxation times. Automated marker detection in x-ray images was feasible but better adapted marker detection algorithms are necessary for marker localization in the presence of bony edges. Hence, the liquid marker provides a minimally invasive (fine needles) and highly applicable alternative to current solid gold markers for multimodal image-guided prostate radiotherapy treatments.
Collapse
Affiliation(s)
- Robin De Roover
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Wouter Crijns
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Kenneth Poels
- Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Cédric Draulans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Tom Depuydt
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven - University of Leuven, Herestraat 49, Leuven, B-3000, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
128
|
Mittauer K, Paliwal B, Hill P, Bayouth JE, Geurts MW, Baschnagel AM, Bradley KA, Harari PM, Rosenberg S, Brower JV, Wojcieszynski AP, Hullett C, Bayliss RA, Labby ZE, Bassetti MF. A New Era of Image Guidance with Magnetic Resonance-guided Radiation Therapy for Abdominal and Thoracic Malignancies. Cureus 2018; 10:e2422. [PMID: 29872602 PMCID: PMC5985918 DOI: 10.7759/cureus.2422] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy.
Collapse
Affiliation(s)
- Kathryn Mittauer
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Bhudatt Paliwal
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Patrick Hill
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - John E Bayouth
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Mark W Geurts
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Kristin A Bradley
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Stephen Rosenberg
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Jeffrey V Brower
- Radiation Oncology, Wentworth Douglas Hospital, Seacoast Cancer Center, Dover, USA
| | | | - Craig Hullett
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - R A Bayliss
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Zacariah E Labby
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin - Madison, Madison, USA
| |
Collapse
|
129
|
Kishan AU, Tyran M, Steinberg ML, Holden SB, Cao M. MRI-guided Dose-escalated Salvage Radiotherapy for Bulky Bladder Neck Recurrence of Prostate Cancer. Cureus 2018; 10:e2360. [PMID: 29805929 PMCID: PMC5963943 DOI: 10.7759/cureus.2360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nearly 30% of patients treated with radical prostatectomy for prostate cancer ultimately develop biochemical recurrences, and nearly a quarter of men with nonpalpable biochemical recurrences have gross local recurrences identified with magnetic resonance imaging (MRI). The only curative intervention for patients with recurrent disease after radical prostatectomy is salvage radiotherapy – this is particularly true for patients with gross local recurrences. Furthermore, even in patients with an incurable metastatic disease, a local recurrence can be the source of significant morbidity and should be addressed. Delivering a sufficient dose of radiation in the postoperative setting to control gross disease while minimizing toxicity poses a significant technical challenge. Because of the inherent uncertainty in the verification of gross disease positioning with standard onboard imaging technologies, large margins must be used. Larger margins, in turn, will lead to larger volumes of tissue receiving high doses of radiation, potentially increasing long-term toxicity. Herein, we present the case of a patient with a bulky gross recurrence (>40 cm3) at the bladder neck and synchronous metastatic disease who was referred for salvage radiotherapy after a multidisciplinary consensus recommendation to pursue local therapy for mitigating urinary morbidity from the bulky tumor. The case illustrates the utilization of MRI-guided radiotherapy to allow significant margin reduction, thereby facilitating the delivery of an escalated dose of radiotherapy to a bulky recurrence.
Collapse
Affiliation(s)
- Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles
| | - Marguerite Tyran
- Department of Radiation Oncology, University of California, Los Angeles
| | | | - Stuart B Holden
- Department of Urology, University of California, Los Angeles
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles
| |
Collapse
|