101
|
Liu Z, He W, Zhang Q, Shapour H, Bakhtari MF. Preparation of a GO/MIL-101(Fe) Composite for the Removal of Methyl Orange from Aqueous Solution. ACS OMEGA 2021; 6:4597-4608. [PMID: 33644567 PMCID: PMC7905816 DOI: 10.1021/acsomega.0c05091] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 05/28/2023]
Abstract
The composite material graphene oxide (GO)/MIL-101(Fe) was prepared by a simple one-pot reaction method. MIL-101(Fe) grown on the surface of a GO layer was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The adsorption performance and the mechanism of MIL-101(Fe) and GO/MIL-101(Fe) for methyl orange (MO) were studied. The results have shown that the adsorption capacity of GO/MIL-101(Fe) for MO was significantly better than that of MIL-101(Fe), and its capacity was the highest when 10% GO was added. The Langmuir specific surface areas of MIL-101(Fe) and GO/MIL-101(Fe) were 1003.47 and 888.289 m2·g-1, respectively. The maximum adsorption capacities of MO on MIL-101 (Fe) and 10% GO/MIL-101 (Fe) were 117.74 and 186.20 mg·g-1, respectively. The adsorption isotherms were described by the Langmuir model, and the adsorption kinetic data suggested the pseudo-second order to be the best fit model. GO/MIL-101(Fe) can be reused at least three times.
Collapse
|
102
|
Enhanced Removal of Arsenic from Aqueous Medium by Modified Silica Nanospheres: Kinetic and Thermodynamic Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
103
|
Jiang Y, Li X, Piao H, Qin Z, Li J, Sun Y, Wang X, Ma P, Song D. A semi-automatic solid phase extraction system based on MIL-101(Cr) foam-filled syringe for detection of triazines in vegetable oils. J Sep Sci 2021; 44:1089-1097. [PMID: 33410576 DOI: 10.1002/jssc.202001098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
In this study, several metal-organic framework-melamine foam columns were first developed and used as a laboratory-made semi-automatic solid phase extraction packed in syringe adsorber for the extraction of six triazine herbicides from vegetable oil samples coupled to high-performance liquid chromatography-tandem mass spectrometry. The metal-organic framework-foam columns were prepared using a simple approach by embedding the solid particles in melamine foam using polyvinylidene difluoride physical encapsulation. The method was applicable to a wide variety of metal-organic framework materials, and the incorporated materials retained their unique properties. Key factors that affect the extraction efficiency, including the MIL-101(Cr) amount, sample flow rate, type and volume of the eluting solvent, and flow rate of eluting solvent, were investigated. Under optimum conditions, the proposed method exhibited low limits of detection (0.017-0.096 ng/mL, S/N = 3) for six triazines. The relative standard deviations calculated for all herbicides ranged from 0.2 to 14.9%. This study demonstrated that the MIL-101(Cr)-foam column can be used as a high-quality adsorption material for the detection of triazines in vegetable oils.
Collapse
Affiliation(s)
- Yanxiao Jiang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xu Li
- Department of Ophthalmology, The Second Hospital, Jilin University, Changchun, P. R. China
| | - Huilan Piao
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Zucheng Qin
- Hunan Warrant Pharmaceutical Company Ltd., Changsha, P. R. China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Ying Sun
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
104
|
Shi X, Hong J, Li J, Kong S, Song G, Naik N, Guo Z. Excellent selectivity and high capacity of As (V) removal by a novel lignin-based adsorbent doped with N element and modified with Ca 2. Int J Biol Macromol 2021; 172:299-308. [PMID: 33418048 DOI: 10.1016/j.ijbiomac.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
As one of the most significant natural polymer with the highest annual yield, lignin has been applied in the treatment of wastewater to remove heavy metal ions. However, there are still some shortages, such as low reactivity, difficulties in adsorbing oxyanions and low selectivity on specific oxyanions. To improve its adsorption properties, a novel lignin-based adsorbent was prepared in this study, doped with nitrogen by Mannich reaction, using triethylenetetramine (TETA) as N source, and further modified with Ca2+. The adsorption of Ca, N-co-doped lignin (Ca@N-Lig) for As (V), Cr (VI) and P (V) was studied. The Ca@N-Lig shows high capacity, excellent selectivity and prominent regeneration ability for As (V) adsorption. The adsorption of Ca@N-Lig for As (V) followed the Langmuir isotherm model and the pseudo-second-order kinetics model, yielding a maximum adsorption capacity of 681.59 mg·g-1 and a fast adsorption equilibrium within 30 min. Ca@N-Lig has an excellent regeneration ability on the adsorption of As (V) with a decrease of about 15.60% after 5 adsorption/desorption cycles. This study offers an efficient way to remove As (V) from polluted water.
Collapse
Affiliation(s)
- Xiaofeng Shi
- School of Environment and Safety Engineering, North University of China, Taiyuan, China.
| | - Junmao Hong
- School of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Junhua Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, China.
| | - Shifang Kong
- School of Traffic & Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Gang Song
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
105
|
Shen J, Wu X, Yu J, Yin F, Hao L, Lin C, Zhu L, Luo C, Zhang C, Xu F. Hydrogen bonding interactions between arsenious acid and dithiothreitol/dithioerythritol at different pH values: a computational study with an explicit solvent model. NEW J CHEM 2021. [DOI: 10.1039/d1nj03191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvents participate in the most stable complex formation between arsenious acid and DTT/DTE in their optimal pH ranges.
Collapse
Affiliation(s)
- Jinyu Shen
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Jinsong Yu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Liling Hao
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Caixia Lin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Lizhi Zhu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Chunyan Luo
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Nr. 516, Jungong Road, Shanghai, 200093, China
| |
Collapse
|
106
|
Cheng H, Zang C, Bian F, Jiang Y, Yang L, Dong F, Jiang H. Boosting free radical type photocatalysis over Pd/Fe-MOFs by coordination structure engineering. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00972a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of novel heterogeneous photocatalytic systems, along with a deep understanding of the relationship between the catalytic center chemical environment and the catalytic performance, is of great significance.
Collapse
Affiliation(s)
- Hongmei Cheng
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Cuicui Zang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Fengxia Bian
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Yanke Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Lin Yang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu
- P. R. China
| | - Heyan Jiang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission
- Chongqing Key Laboratory of Catalysis and Functional Organic Molecules
- Chongqing Technology and Business University
- Chongqing
- P. R. China
| |
Collapse
|
107
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
108
|
Liu B, Liu Z, Wu H, Pan S, Cheng X, Sun Y, Xu Y. Effective and simultaneous removal of organic/inorganic arsenic using polymer-based hydrated iron oxide adsorbent: Capacity evaluation and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140508. [PMID: 32629256 DOI: 10.1016/j.scitotenv.2020.140508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, resin-based hydrated iron oxide (HFOR) composites were prepared and used as a functional adsorbent for the simultaneous removal of p-Arsanilic acid (p-ASA) and arsenate (As (V)). The effects of solution pH and coexisting substances on the adsorption of different arsenic species were also investigated. Results showed that the coexisting substances slightly affected the adsorption process of two arsenic species. Analysis of the adsorption behavior, isotherm equilibrium, and adsorption kinetics, as well as that results of the X-ray photoelectron spectroscopy, zeta potential, and other analytical methods revealed that the satisfactory adsorption performance of HFOR can be attributed to the electrostatic interactions induced by the positively charged groups and the coordination of the hydrated iron oxide nanoparticles, which exhibited excellent specific adsorption for both arsenic species. Moreover, HFOR showed high acid and alkali resistance and reusability, as well as a constant co-removal performance for different arsenic species in five consecutive operating cycles (55 mg As/g of As(V) and 18 mg/g of p-ASA). Results of continuous running fixed-bed column experiments confirmed that HFOR enabled excellent simultaneous adsorption for p-ASA and As(V).
Collapse
Affiliation(s)
- Biming Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhenxue Liu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China
| | - Shunlong Pan
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xing Cheng
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China.
| | - Yanhua Xu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
109
|
Davydiuk T, Chen X, Huang L, Shuai Q, Le XC. Removal of inorganic arsenic from water using metal organic frameworks. J Environ Sci (China) 2020; 97:162-168. [PMID: 32933731 DOI: 10.1016/j.jes.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Tetiana Davydiuk
- Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Xiaojian Chen
- Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada
| | - Lijin Huang
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Qin Shuai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - X Chris Le
- Department of Chemistry, University of Alberta, Alberta T6G 2G3, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3,Canada.
| |
Collapse
|
110
|
Facile preparation of metal organic framework-based laboratory semi-automatic micro-extraction syringe packed column for analysis of parabens in vegetable oil samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
111
|
Paiman SH, Rahman MA, Uchikoshi T, Abdullah N, Othman MHD, Jaafar J, Abas KH, Ismail AF. Functionalization effect of Fe-type MOF for methylene blue adsorption. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
112
|
Liu Z, Su R, Sun X, Zhou W, Gao B, Yue Q, Li Q. The obvious advantage of amino-functionalized metal-organic frameworks: As a persulfate activator for bisphenol F degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140464. [PMID: 32886982 DOI: 10.1016/j.scitotenv.2020.140464] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, two iron-based metal-organic framework compounds (MOFs), were used and compared as catalysts for persulfate (PS) activation to degrade bisphenol F (BPF). The outstanding advantage of using amino-functionalized MOFs in the catalytic system was verified under different reaction conditions, and the mechanism was explored. The results indicated that NH2-MIL-101(Fe)/PS system not only had a wide pH application range, but also possessed an excellent catalytic performance towards interference from the coexisting anions and humic acid. Density functional theory (DFT) calculations showed that, compared with MIL-101(Fe), the -NH2 modification could significantly improve the electronic conductivity of NH2-MIL-101(Fe) by enhancing its Fermi level (-4.28 eV) and binding energy to PS (-1.19 eV). The free radical quenching experiments were combined with electron paramagnetic resonance (EPR) confirmed that free radicals (SO4-, OH, O2-) worked together with the non-radical (1O2) reaction to remove 91% BPF within 40 min in the NH2-MIL-101(Fe)/PS system. The two proposed BPF degradation pathway were related to hydroxylation, oxidation and ring cracking. The toxicity of the BPF degradation intermediates as well as its final products were also evaluated.
Collapse
Affiliation(s)
- Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ruidian Su
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Xun Sun
- Department of Administrative Examination and Approval Service, Qingdao High-tech Zone, Qingdao 266109, PR China
| | - Weizhi Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
113
|
Selective removal of high concentration arsenate from aqueous solution by magnetic Fe–Y binary oxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
114
|
Sadeghi MH, Tofighy MA, Mohammadi T. One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). CHEMOSPHERE 2020; 253:126647. [PMID: 32276119 DOI: 10.1016/j.chemosphere.2020.126647] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
There is a knowledge gap for the application of one-dimensional graphene in the adsorption process. Our hypothesis was based on the fact that graphene oxide nanoribbons (GONRs) as one-dimensional graphene with more desired edges and specific surface area than other carbonaceous nanomaterials have more oxygen containing functional groups (active sites) on their edges and basal planes and therefore are more capable in adsorption of pollutants. In this regard, we synthesized GONRs by unzipping of multi-walled carbon nanotubes (MWCNTs) and investigated the adsorption behavior of GONRs by ultrasonic-assisted adsorptive removal of As(V) and Hg(II) ions from aqueous solution. The obtained results showed that As(V) ions are more favorably adsorbed onto the GONRs than Hg(II) ions and with increasing initial As(V) and Hg(II) ions concentration to 300 ppm, the equilibrium adsorption uptake of the synthesized GONRs increases to 155.61 and 33.02 mg/g for As(V) and Hg(II) ions, respectively through a rapid separation process in just 12 min. Also, three kinetic models and Freundlich and Langmuir adsorption isotherms were applied to evaluate the obtained experimental results. Our findings highlight the potential application of GONRs as one-dimensional graphene adsorbent with more desired edges than MWCNTs and graphene oxide (GO) and high adsorption capacity for selective removal of heavy metals.
Collapse
Affiliation(s)
- Mohammad Hadi Sadeghi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Maryam Ahmadzadeh Tofighy
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| |
Collapse
|
115
|
Yang Y, Xia Y. Self-assembled matrix fabricated by Fe-metal organic frameworks and carboxymethyl cellulose for the determination of small molecules by MALDI-TOF MS. Mikrochim Acta 2020; 187:445. [PMID: 32666306 DOI: 10.1007/s00604-020-04397-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
A nanoprobe of laser desorption/ionization-time of flight mass spectrometry (LDI-TOF MS) for the determination of small molecules was developed that is based on the composition of Fe-metal organic frameworks (Fe-MOFs) and carboxymethyl cellulose-Na (CMC-Na). This material is a good adsorbent for small molecules via hydrogen bonding and π-interactions; we detected three molecules, dopamine, glyphosate, and pyrene. The detection limits for these compounds are 0.01 mg L-1, 1.50 μg L-1, and 0.01 μg L-1, respectively; the recoveries are 85-117%, 81-127%, and 89-115%, respectively. The relative standard deviations (~ 15%) and coefficients of determination of the calibration plot (~ 0.97) are satisfactory. The applicability of the chip for practical samples is demonstrated by quantifying pyrene in domestic water and polluted lake water; the recoveries are about 90~117% and 85~125% (n = 5), respectively; the RSDs are 9.4% and 13.5%, respectively. Graphical abstract.
Collapse
Affiliation(s)
- Yingchen Yang
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yan Xia
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
116
|
Khan Z, Gao M, Qiu W, Song Z. Efficient As(III) Removal by Novel MoS 2-Impregnated Fe-Oxide-Biochar Composites: Characterization and Mechanisms. ACS OMEGA 2020; 5:13224-13235. [PMID: 32548509 PMCID: PMC7288705 DOI: 10.1021/acsomega.0c01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 05/15/2023]
Abstract
Sorbents that efficiently eliminate toxic metal(loid)s from industrial wastes are required for the protection of the environment and human health. Therefore, we demonstrated efficient As(III) removal by novel, eco-friendly, hydrothermally prepared MoS2-impregnated FeO x @BC800 (MSF@BC800). The properties and adsorption mechanism of the material were investigated by X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The synergistic effects of FeO x and MoS2 on MSF@BC800 considerably enhanced As(III)-removal efficiency to ≥99.73% and facilitated superior As(III) affinity in aqueous solutions (K d ≥ 105 mL g-1) compared to those of FeO x @BC800 and MS@BC800, which showed 37.07 and 17.86% As(III)-removal efficiencies and K d = 589 and 217 mL g-1, respectively, for an initial As(III) concentration of ∼10 mg L-1. The maximum Langmuir As(III) sorption capacity of MSF@BC800 was 28.4 mg g-1. Oxidation of As(III) to As(V) occurred on the MSF@BC800 composite surfaces. Adsorption results agreed with those obtained from the Freundlich and pseudo-second-order models, suggesting multilayer coverage and chemisorption, respectively. Additionally, MSF@BC800 characteristics were examined under different reaction conditions, with temperature, pH, ionic strength, and humic acid concentration being varied. The results indicated that MSF@BC800 has considerable potential as an eco-friendly environmental remediation and As(III)-decontamination material.
Collapse
Affiliation(s)
- Zulqarnain
Haider Khan
- Agro-Environmental
Protection Institute, Ministry of Agriculture of China, Tianjin 300191, China
- Chinese
Academy of Agricultural Sciences, Beijing 100081, China
| | - Minling Gao
- Department
of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Weiwen Qiu
- The
New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Zhengguo Song
- Department
of Civil and Environmental Engineering, Shantou University, Shantou 515063, China
- . Tel.: 0086 13920782195
| |
Collapse
|
117
|
Wang C, Zhang X, Wang J, Fu H, Wang P, Wang C. A new one‐dimensional coordination polymer synthesized from zinc and guanazole: Superior capture of organic arsenics. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chao‐Yang Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Xiu‐Wu Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Jia‐Wei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Chong‐Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment RemediationBeijing University of Civil Engineering and Architecture Beijing 100044 China
| |
Collapse
|
118
|
Facile synthesis of flower-like CoFe2O4 particles for efficient sorption of aromatic organoarsenicals from aqueous solution. J Colloid Interface Sci 2020; 568:63-75. [DOI: 10.1016/j.jcis.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 11/23/2022]
|
119
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
120
|
Zhao W, Cheng H, Tao S. Structure-Reactivity Relationships in the Adsorption and Degradation of Substituted Phenylarsonic Acids on Birnessite (δ-MnO 2). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1475-1483. [PMID: 31770486 DOI: 10.1021/acs.est.9b04203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenylarsonic acid compounds could be oxidized by manganese oxides in surface soils, resulting in quick release of inorganic arsenic. This study investigated the structure-reactivity relationships in the adsorption and oxidative degradation of six substituted phenylarsonic acids on the surface of a major type of manganese oxides, birnessite (δ-MnO2), using batch experiments conducted under acidic to neutral conditions. The initial adsorption rates of the substituted phenylarsonic acids on δ-MnO2 decreased in the order of phenylarsonic acid (PAA) > 4-aminophenylarsonic acid (p-ASA) ≈ 2-aminophenylarsonic acid (2-APAA) > 4-hydroxyphenylarsonic acid (4-HPAA) > 2-nitrophenylarsonic acid (2-NPAA) > 4-hydroxy-3-nitrophenylarsonic acid (ROX), which could be attributed to steric hindrance of the substituents and the hydrophobicity of these compounds. The oxidation rates of these structural analogues by δ-MnO2 decreased in the order of p-ASA ≈ 2-APAA > 4-HPAA > ROX, while 2-NPAA and PAA were nonreactive because of the lack of electron-donating substituents on their aromatic rings. The redox reactivity of these compounds agrees well with the electron density at C1, which is determined by the types and position of the substituents on the aromatic ring. Although cleavage of the arsonic acid group from the aromatic ring was the predominant transformation pathway, a range of adduct products also formed through cross-coupling of the radicals and radical substitution. The contribution of radical coupling and substitution in overall degradation decreased in the order of p-ASA > 2-APAA > 4-HPAA > ROX, which results from the varying reactivity and steric hindrance of the substituents. These insights could help better understand and predict the fate of substituted phenylarsonic acids in manganese oxide-rich surface soils and the associated environmental risk of arsenic pollution.
Collapse
Affiliation(s)
- Wei Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
121
|
Manirethan V, Raval K, Balakrishnan RM. Adsorptive removal of trivalent and pentavalent arsenic from aqueous solutions using iron and copper impregnated melanin extracted from the marine bacterium Pseudomonas stutzeri. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113576. [PMID: 31744681 DOI: 10.1016/j.envpol.2019.113576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
The metalloid arsenic is one of the most conspicuous groundwater contaminants in the Indian subcontinent and its removal from aqueous medium is the main focus of this study. The study aims at functionalising melanin using iron and copper for the efficient removal of arsenic and rendering water fit for consumption. Melanin obtained from the marine bacteria Pseudomonas stutzeri was functionalised by iron impregnation (Fe-melanin) and copper impregnation (Cu-melanin). Morphological studies using FESEM portrayed the impregnated iron and copper granules on the surface of melanin, while XRD analysis confirmed the presence of Fe2O3 and CuO on melanin. Adsorption studies on As (V) and As (III) were conducted using Fe-melanin and Cu-melanin for different operating variables like pH, temperature and contact time. More than 99% per cent of As (III) and As (V) from water was removed at a pH range between 4 and 6 within 50 min in the case of Fe-melanin and 80 min for Cu-melanin. Adsorption equilibrium studies showed better fit with Langmuir adsorption isotherm and had good agreement with Redlich-Peterson's three-parameter model. The maximum adsorption capacities of Fe-melanin and Cu-melanin obtained from Langmuir adsorption model are 50.12 and 20.39 mg/g, respectively, for As (V) and similarly 39.98 and 19.52 mg/g, respectively, for As (III). Arsenic-binding to the functionalised melanin was confirmed using FT-IR and the XPS analysis. Reuse of the adsorbent was effectively done by desorbing the iron and copper together with the bound As (III) and As (V) and further re-impregnation of iron and copper in melanin. Re-functionalised melanin showed 99% adsorption efficiency up to four cycles of adsorption/desorption.
Collapse
Affiliation(s)
- Vishnu Manirethan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, 575025, India
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, 575025, India
| | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, 575025, India.
| |
Collapse
|