101
|
Bölükbas DA, Meiners S. Lung cancer nanomedicine: potentials and pitfalls. Nanomedicine (Lond) 2015; 10:3203-12. [PMID: 26472521 DOI: 10.2217/nnm.15.155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is by far the most common cause of cancer-related deaths in the world. Nanoparticle-based therapies enable targeted drug delivery for lung cancer treatment with increased therapeutic efficiency and reduced systemic toxicity. At the same time, nanomedicine has the potential for multimodal treatment of lung cancer that may involve 'all-in-one' targeting of several tumor-associated cell types in a timely and spatially controlled manner. Therapeutic approaches, however, are hampered by a translational gap between basic scientists, clinicians and pharma industry due to suboptimal animal models and difficulties in scale-up production of nanoagents. This calls for a disease-centered approach with interdisciplinary basic and clinical research teams with the support of pharma industries.
Collapse
Affiliation(s)
- Deniz Ali Bölükbas
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
102
|
Min SY, Byeon HJ, Lee C, Seo J, Lee ES, Shin BS, Choi HG, Lee KC, Youn YS. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer. Int J Pharm 2015; 494:506-15. [DOI: 10.1016/j.ijpharm.2015.08.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022]
|
103
|
Woods A, Patel A, Spina D, Riffo-Vasquez Y, Babin-Morgan A, de Rosales RTM, Sunassee K, Clark S, Collins H, Bruce K, Dailey LA, Forbes B. In vivo biocompatibility, clearance, and biodistribution of albumin vehicles for pulmonary drug delivery. J Control Release 2015; 210:1-9. [PMID: 25980621 PMCID: PMC4674532 DOI: 10.1016/j.jconrel.2015.05.269] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023]
Abstract
The development of clinically acceptable albumin-based nanoparticle formulations for use in pulmonary drug delivery has been hindered by concerns about the toxicity of nanomaterials in the lungs combined with a lack of information on albumin nanoparticle clearance kinetics and biodistribution. In this study, the in vivo biocompatibility of albumin nanoparticles was investigated following a single administration of 2, 20, and 390 μg/mouse, showing no inflammatory response (TNF-α and IL-6, cellular infiltration and protein concentration) compared to vehicle controls at the two lower doses, but elevated mononucleocytes and a mild inflammatory effect at the highest dose tested. The biodistribution and clearance of 111In labelled albumin solution and nanoparticles over 48 h following a single pulmonary administration to mice was investigated by single photon emission computed tomography and X-ray computed tomography imaging and terminal biodistribution studies. 111In labelled albumin nanoparticles were cleared more slowly from the mouse lung than 111In albumin solution (64.1 ± 8.5% vs 40.6 ± 3.3% at t = 48 h, respectively), with significantly higher (P < 0.001) levels of albumin nanoparticle-associated radioactivity located within the lung tissue (23.3 ± 4.7%) compared to the lung fluid (16.1 ± 4.4%). Low amounts of 111In activity were detected in the liver, kidneys, and intestine at time points > 24 h indicating that small amounts of activity were cleared from the lungs both by translocation across the lung mucosal barrier, as well as mucociliary clearance. This study provides important information on the fate of albumin vehicles in the lungs, which may be used to direct future formulation design of inhaled nanomedicines.
Collapse
Affiliation(s)
- A Woods
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - A Patel
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A Babin-Morgan
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R T M de Rosales
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - K Sunassee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - S Clark
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - H Collins
- Division of Immunology, Infection & Inflammatory Diseases, Guy's Campus, King's College London, 15-16 Newcomen Street, London SE1 1UL, United Kingdom
| | - K Bruce
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - L A Dailey
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom.
| | - B Forbes
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| |
Collapse
|
104
|
Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 2015; 204:11-9. [PMID: 25646783 DOI: 10.1016/j.jconrel.2015.01.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/14/2023]
Abstract
The biomimetic delivery system (BDS) based on special types of endogenous cells like macrophages and T cells, has been emerging as a novel strategy for cancer therapy, due to its tumor homing property and biocompatibility. However, its development is impeded by complicated construction, low drug loading or negative effect on the cell bioactivity. The present report constructed a BDS by loading doxorubicin (DOX) into a mouse macrophage-like cell line (RAW264.7). It was found that therapeutically meaningful amount of DOX could be loaded into the RAW264.7 cells by simply incubation, without significantly affecting the viability of the cells. Drug could release from the BDS and maintain its activity. RAW264.7 cells exhibited obvious tumor-tropic capacity towards 4T1 mouse breast cancer cells both in vitro and in vivo, and drug loading did not alter this tendency. Importantly, the DOX loaded macrophage system showed promising anti-cancer efficacy in terms of tumor suppression, life span prolongation and metastasis inhibition, with reduced toxicity. In conclusion, it is demonstrated that the BDS developed here seems to overcome some of the main issues related to a BDS. The DOX loaded macrophages might be a potential BDS for targeted cancer therapy.
Collapse
Affiliation(s)
- Jijun Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Mei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|