101
|
Leiske MN, Mahmoud AM, Warne NM, Goos JACM, Pascual S, Montembault V, Fontaine L, Davis TP, Whittaker MR, Kempe K. Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal Reactivity. Polym Chem 2020. [DOI: 10.1039/d0py00861c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular copolymer platform based on two oxazole derivatives is presented. Post-polymerisation modifications revealed the potential to selectively modify the individual side groups, providing access to functional copolymer libraries in the future.
Collapse
|
102
|
Wang C, Liu C, Wei Q, Yang L, Yang P, Li Y, Cheng Y. S,S-Tetrazine-Based Hydrogels with Visible Light Cleavable Properties for On-Demand Anticancer Drug Delivery. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6563091. [PMID: 33015634 PMCID: PMC7510344 DOI: 10.34133/2020/6563091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/11/2020] [Indexed: 04/26/2023]
Abstract
Photocleavable hydrogels are of great importance in the field of controlled drug delivery, stem cell fate regulation, surface patterning, and intelligent devices. However, the development of novel photocleavable gel systems by visible light is usually met with challenges such as the lack of efficient and tunable photocleavable groups and reactions. Herein, we reported the facile fabrication of a new type of photocleavable hydrogels by the direct gelation of 4-arm thiol-terminated polyethylene glycol with 3,6-dichloro-1,2,4,5-tetrazine via the formation of S,S-tetrazine linkages. The prepared hydrogels underwent efficient degradation upon irradiation by ultraviolet or green light, and the degradation kinetics could be significantly promoted by hydrogen peroxide. Correspondingly, the hydrogels loaded with calcium peroxide microparticles or glucose oxidase/catalase enzymes enabled the precise and efficient in vivo photocontrol of gel degradation and drug release for cancer treatment. This work offers a promising and facile strategy towards the fabrication of visible light cleavable hydrogels with tunable and on-demand drug release properties.
Collapse
Affiliation(s)
- Changping Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiyao Wei
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
103
|
Altinbasak I, Arslan M, Sanyal R, Sanyal A. Pyridyl disulfide-based thiol–disulfide exchange reaction: shaping the design of redox-responsive polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py01215g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of synthetic approaches utilized to incorporate the thiol-reactive pyridyl-disulfide motif into various polymeric materials, and briefly highlights its utilization to obtain functional materials.
Collapse
Affiliation(s)
| | - Mehmet Arslan
- Yalova University
- Faculty of Engineering
- Department of Polymer Materials Engineering
- 77100 Yalova
- Turkey
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
104
|
Liu Y, Liu M, Zhang Y, Cao Y, Pei R. Fabrication of injectable hydrogels via bio-orthogonal chemistry for tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/d0nj02629h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injectable hydrogels via bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
105
|
Zhang Q, Wei X, Ji Y, Yin L, Dong Z, Chen F, Zhong M, Shen J, Liu Z, Chang L. Adjustable and ultrafast light-cured hyaluronic acid hydrogel: promoting biocompatibility and cell growth. J Mater Chem B 2020; 8:5441-5450. [PMID: 32555786 DOI: 10.1039/c9tb02796c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-sourced hydrogels are attractive materials for diagnosing, repairing and improving the function of human tissues and organs.
Collapse
Affiliation(s)
- Qianmin Zhang
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiaojuan Wei
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yongli Ji
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Li Yin
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Zaizai Dong
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Institute of Nanotechnology for Single Cell Analysis (INSCA)
| | - Feng Chen
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Mingqiang Zhong
- College of Materials Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jian Shen
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Zhenjie Liu
- Second Affiliated Hospital of Zhejiang University School of Medicine
- Hangzhou 310009
- P. R. China
| | - Lingqian Chang
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
- P. R. China
- Institute of Nanotechnology for Single Cell Analysis (INSCA)
| |
Collapse
|
106
|
Liu Y, Miao YL, Qin F, Cao C, Yu XL, Wu YH, Wang TL, Xu RG, Zhao L, Wu F, Zhang ZC, Yang JM, Yang Y, Xie X, Zhang LM, Deng FL. Electrospun Poly (Aspartic Acid)-Modified Zein Nanofibers for Promoting Bone Regeneration. Int J Nanomedicine 2019; 14:9497-9512. [PMID: 31819446 PMCID: PMC6898722 DOI: 10.2147/ijn.s224265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023] Open
Abstract
Background Critical-sized bone defects raise great challenges. Zein is of interest for bone regeneration, but it has limited ability to stimulate cell proliferation. In this regard, a poly (aspartic acid) (PAsp)-zein hybrid is promising, as PAsp can promote rat bone marrow stromal cell (rBMSCs) proliferation and osteogenic differentiation. This research aimed to develop electrospun PAsp-modified zein nanofibers to realize critical-sized bone defects repair. Methods Three groups of PAsp-modified zein nanofibers were prepared, they were PAsp grafting percentages of 0% (zein), 5.32% (ZPAA-1), and 7.63% (ZPAA-2). Using rBMSCs as in vitro cell model and SD rats as in vivo animal model, fluorescence staining, SEM, CCK-8, ALP, ARS staining, μCT and histological analysis were performed to verify the biological and osteogenic activities for PAsp-modified zein nanofibers. Results As the Asp content increased from 0% to 7.63%, the water contact angle decreased from 129.8 ± 2.3° to 105.5 ± 2.5°. SEM, fluorescence staining and CCK-8 assay showed that ZPAA-2 nanofibers had a superior effect on rBMSCs spreading and proliferation than did zein and ZPAA-1 nanofibers, ALP activity and ARS staining showed that ZPAA-2 can improve rBMSCs osteogenic differentiation. In vivo osteogenic activities was evaluated by μCT analysis, HE, Masson and immunohistochemical staining, indicating accelerated bone formation in ZPAA-2 SD rats after 4 and 8 weeks treatment, with a rank order of ZPAA-2 > ZPAA-1 > zein group. Moreover, the semiquantitative results of the Masson staining revealed that the maturity of the new bone was higher in the ZPAA-2 group than in the other groups. Conclusion Electrospun PAsp-modified zein can provide a suitable microenvironment for osteogenic differentiation of rBMSCs, as well as for bone regeneration; the optimal membrane appears to have a PAsp grafting percentage of 7.63%.
Collapse
Affiliation(s)
- Yun Liu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Ying-Ling Miao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Qin
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Cen Cao
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Lin Yu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yu-Han Wu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tian-Lu Wang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Ruo-Gu Xu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Liu Zhao
- School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Fan Wu
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zheng-Chuan Zhang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jia-Min Yang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yang Yang
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Xie
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fei-Long Deng
- Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
107
|
Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105174] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
108
|
Ghorbani M, Roshangar L. Construction of collagen/nanocrystalline cellulose based-hydrogel scaffolds: synthesis, characterization, and mechanical properties evaluation. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1695209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
109
|
Zhang X, Lou Q, Wang L, Min S, Zhao M, Quan C. Immobilization of BMP-2-derived peptides on 3D-printed porous scaffolds for enhanced osteogenesis. ACTA ACUST UNITED AC 2019; 15:015002. [PMID: 31597124 DOI: 10.1088/1748-605x/ab4c78] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) printing technologies open up new perspectives for customizing the external shape and internal architecture of bone scaffolds. In this study, an oligopeptide (SSVPT, Ser-Ser-Val-Pro-Thr) derived from bone morphogenetic protein 2 was conjugated with a dopamine coating on a 3D-printed poly(lactic acid) (PLA) scaffold to enhance osteogenesis. Cell experiments in vitro showed that the scaffold was highly osteoconductive to the adhesion and proliferation of rat marrow mesenchymal stem cells (MSCs). In addition, RT-PCR analysis showed that the scaffold was able to promote the expression of osteogenesis-related genes, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin (OPN). Images of the micro-CT 3D reconstruction from the rat cranial bone defect model showed that bone regeneration patterns occurred from one side edge towards the center of the area implanted with the prepared biomimetic peptide hydrogels, demonstrating significantly accelerated bone regeneration. This work will provide a basis to explore the application potential of bioactive scaffolds further.
Collapse
Affiliation(s)
- Xiashiyao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University), School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
110
|
Gao Z, Golland B, Tronci G, Thornton PD. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management. J Mater Chem B 2019; 7:7494-7501. [PMID: 31710328 DOI: 10.1039/c9tb01683j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer-based hydrogels have been widely applied for chronic wound therapeutics, due to their well-acclaimed wound exudate management capability. At the same time, there is still an unmet clinical need for simple wound diagnostic tools to assist clinical decision-making at the point of care and deliver on the vision of patient-personalised wound management. To explore this challenge, we present a one-step synthetic strategy to realise a redox-responsive, hyaluronic acid (HA)-based hydrogel that is sensitive to wound environment-related variations in glutathione (GSH) concentration. By selecting aminoethyl disulfide (AED) as a GSH-sensitive crosslinker and considering GSH concentration variations in active and non-self-healing wounds, we investigated the impact of GSH-induced AED cleavage on hydrogel dimensions, aiming to build GSH-size relationships for potential point-of-care wound diagnosis. The hydrogel was also found to be non-cytotoxic and aided L929 fibroblast growth and proliferation over seven days in vitro. Such a material offers a very low-cost tool for the visual detection of a target analyte that varies dependent on the status of the cells and tissues (wound detection), and may be further exploited as an implant for fibroblast growth and tissue regeneration (wound repair).
Collapse
Affiliation(s)
- Ziyu Gao
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Ben Golland
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Giuseppe Tronci
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK. and Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
111
|
Zhang YF, Shi JB, Li C. Small extracellular vesicle loading systems in cancer therapy: Current status and the way forward. Cytotherapy 2019; 21:1122-1136. [PMID: 31699595 DOI: 10.1016/j.jcyt.2019.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Systemic chemotherapy is a conventional and important strategy for inhibition of cancer progression, but it is usually accompanied by various adverse effects. Targeting drug delivery systems, effective tools to avoid the adverse effects of chemotherapy, have been intensively studied and developed. Recently, the emerging application of exosomes and exosome-mimics (small extracellular vesicles [sEVs]) in targeted drug delivery and therapeutics has been widely appreciated. The sEVs-based delivery system comprises three basic components: vesicles, cargoes and surface decorations. In this article, we review the current status, existing challenges and future directions in this field from the following aspects: selection and production of vesicles; cargoes and methods to load them into vesicles; modifications to the surfaces of vesicles; as well as ways to prolong the half-life of sEVs in the circulation. Existing and emerging data indicate that sEVs are promising nanocarriers for clinical use, but additional efforts are needed to translate research findings into therapeutic products.
Collapse
Affiliation(s)
- Yue-Feng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jin-Bo Shi
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
112
|
Neumann S, Biewend M, Rana S, Binder WH. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromol Rapid Commun 2019; 41:e1900359. [PMID: 31631449 DOI: 10.1002/marc.201900359] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Indexed: 01/08/2023]
Abstract
The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.
Collapse
Affiliation(s)
- Steve Neumann
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Michel Biewend
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| | - Sravendra Rana
- School of Engineering University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
| | - Wolfgang H Binder
- Institute of Chemistry, Chair of Macromolecular Chemistry, Martin-Luther University Halle-Wittenberg, von Danckelmannplatz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
113
|
High refractive index polythiourethane networks with high mechanical property via thiol-isocyanate click reaction. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
114
|
Young SA, Riahinezhad H, Amsden BG. In situ-forming, mechanically resilient hydrogels for cell delivery. J Mater Chem B 2019; 7:5742-5761. [PMID: 31531443 DOI: 10.1039/c9tb01398a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival. Tissues targeted for cell delivery often undergo diverse mechanical loading including high stress, high strain, and repetitive loading conditions. This review focuses on the development of hydrogel systems that meet the requirements of mechanical resiliency, cytocompatibility, and injectability for such applications. First, we describe the most important design considerations for maintaining the viability and function of encapsulated cells, for reproducing the target tissue morphology, and for achieving degradation profiles that facilitate tissue replacement. Models describing the relationships between hydrogel structure and mechanical properties are described, focusing on design principles necessary for producing mechanically resilient hydrogels. The advantages and limitations of current strategies for preparing cytocompatible, injectable, and mechanically resilient hydrogels are reviewed, including double networks, nanocomposites, and high molecular weight amphiphilic copolymer networks. Finally, challenges and opportunities are outlined to guide future research in this developing field.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
115
|
Cengiz N. Fabrication of Multifunctional Stimuli‐Responsive Hydrogels Susceptible to both pH and Metal Cation for Visual Detections. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nergiz Cengiz
- Department of Chemistry Tekirdag Namik Kemal University Degirmenalti 59030 Tekirdag Turkey
| |
Collapse
|
116
|
Zhan H, de Jong H, Löwik DWPM. Comparison of Bioorthogonally Cross-Linked Hydrogels for in Situ Cell Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:2862-2871. [DOI: 10.1021/acsabm.9b00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Henan Zhan
- Institute for Molecules and Materials, Radboud University Nijmegen, 135 Heyendaalseweg, Nijmegen 6525 AJ, The Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Radboud University Nijmegen, 135 Heyendaalseweg, Nijmegen 6525 AJ, The Netherlands
| | - Dennis W. P. M. Löwik
- Institute for Molecules and Materials, Radboud University Nijmegen, 135 Heyendaalseweg, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
117
|
Chen X, Hu R, Qi C, Fu X, Wang J, He B, Huang D, Qin A, Tang BZ. Ethynylsulfone-Based Spontaneous Amino-yne Click Polymerization: A Facile Tool toward Regio- and Stereoregular Dynamic Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuemei Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Chunxuan Qi
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
118
|
Fuoco T, Finne-Wistrand A. Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1625059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tiziana Fuoco
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
119
|
|
120
|
Mogharabi-Manzari M, Heydari M, Sadeghian-Abadi S, Yousefi-Mokri M, Faramarzi MA. Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1611788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehdi Mogharabi-Manzari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Heydari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Yousefi-Mokri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
121
|
Nguyen DT, Dinh VT, Dang LH, Nguyen DN, Giang BL, Nguyen CT, Nguyen TBT, Thu LV, Tran NQ. Dual Interactions of Amphiphilic Gelatin Copolymer and Nanocurcumin Improving the Delivery Efficiency of the Nanogels. Polymers (Basel) 2019; 11:E814. [PMID: 31067644 PMCID: PMC6571557 DOI: 10.3390/polym11050814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023] Open
Abstract
Herein, a new process to manufacture multicore micelles nanoparticles reinforced with co-assembly via hydrophobic interaction and electrostatic interaction under the help of ultrasonication was developed. The precise co-assembly between negative/hydrophobic drug and positive charged amphiphilic copolymer based pluronic platform allows the formation of complex micelles structures as the multicore motif with predefined functions. In this study, curcumin was selected as a drug model while positively charged copolymer was based on a pluronic-conjugated gelatin with different hydrophobicity length of Pluronic F87 and Pluronic F127. Under impact of dual hydrophobic and electrostatic interactions, the nCur-encapsulated core-shell micelles formed ranging from 40 nm to 70 nm and 40-100 nm by transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. It is found that the structures emerged depended on the relative lengths of the hydrophobic blocks in pluronic. Regarding g2(τ) behavior from DLS measurement, the nanogels showed a high stability in spherical form. Surprisingly, the release profiles showed a sustainable behavior of Cur from this system for drug delivery approaches. In vitro study exhibited that nCur-encapsulated complex micelles increased inhibitory activity against cancer cells growth with IC50 is 4.02 ± 0.11 mg/L (10.92 ± 0.3 µM) which is higher than of free curcumin at 9.40 ± 0.17 mg/L (25.54 ± 0.18 µM). The results obtained can provide the new method to generate the hierarchical assembly of copolymers with incorporated loading with the same property.
Collapse
Affiliation(s)
- Dinh Trung Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Van Thoai Dinh
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Le Hang Dang
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| | - Dang Nam Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
| | - Bach Long Giang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, VietNam.
| | - Cong Truc Nguyen
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Thi Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City 590000, Vietnam.
| | - Le Van Thu
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
122
|
Li Y, Du L, Wu C, Yu B, Zhang H, An F. Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Curr Top Med Chem 2019; 19:74-97. [PMID: 30686257 DOI: 10.2174/1568026619666190125144621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/23/2018] [Indexed: 02/08/2023]
Abstract
Enzymatic dysregulation in tumor and intracellular microenvironments has made this property
a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug
release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have
achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular
microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the
peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various
drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally,
the future opportunities and challenges are discussed. In brief, this review can provide inspiration and
impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor
diagnosis and treatment.
Collapse
Affiliation(s)
- Yanan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China
| |
Collapse
|
123
|
Ma X, Miao P. Silver nanoparticle@DNA tetrahedron-based colorimetric detection of HIV-related DNA with cascade strand displacement amplification. J Mater Chem B 2019; 7:2608-2612. [PMID: 32254992 DOI: 10.1039/c9tb00274j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA tetrahedron-modified silver nanoparticles (AgNPs) were achieved via amino-silver chemistry for the first time and were applied as a colorimetric biosensor for detecting HIV-related DNA. Target DNA initiated strand displacement polymerization and nicking endonuclease-aided cycles were involved to link DNA tetrahedron-modified AgNPs, reporting colorimetric responses. This developed method showed excellent specificity and sensitivity. A wide linear range from 1 to 15 000 nM was achieved with a limit of detection of 0.84 nM. Moreover, it was successfully applied to determine DNA in blood serum samples.
Collapse
Affiliation(s)
- Xiaoyi Ma
- University of Science and Technology of China, Hefei 230026, China.
| | | |
Collapse
|
124
|
The advantages and challenges raised by the chemistry of aldehydic cellulose nanofibers in medicinal chemistry. Future Med Chem 2019; 10:2679-2683. [PMID: 30810373 DOI: 10.4155/fmc-2018-0277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
125
|
Liu X, Gong P, Song P, Xie F, Miller AL, Chen S, Lu L. Rapid conjugation of nanoparticles, proteins and siRNAs to microbubbles by strain-promoted click chemistry for ultrasound imaging and drug delivery. Polym Chem 2019; 10:705-717. [PMID: 36187167 PMCID: PMC9523532 DOI: 10.1039/c8py01721b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A new strategy using catalyst-free strain-promoted alkyne-azide cycloaddition (SPAAC) "click" chemistry for the ligation of anti-cancer drug-loaded nanoparticles, functionalized proteins, and siRNA conjugated micelles to microbubbles (MB) was established. The results showed fast ligation within 5 min without sacrificing microbubble size and density. The ultrasound test showed good imaging abilities of the microbubbles after functionalization. This microbubble-therapeutic SPAAC "click" conjugation developed in the current study involves no toxic catalyst or initiator, has ultra-fast reaction speed, and is versatile for the ligation of various anti-cancer or therapeutic agents to microbubbles. These advantages render the SPAAC click strategy promising for broad applications in ultrasound-guided imaging and therapeutic delivery.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Feng Xie
- Division of Cardiovascular Medicine, Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
126
|
Sprott MR, Gallego‐Ferrer G, Dalby MJ, Salmerón‐Sánchez M, Cantini M. Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Adv Healthc Mater 2019; 8:e1801469. [PMID: 30609243 DOI: 10.1002/adhm.201801469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/17/2018] [Indexed: 01/13/2023]
Abstract
Poly-l-lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently bioactive. Thus, here, a novel process is presented to functionalize PLLA surfaces with poly(ethyl acrylate) (PEA) brushes to provide biological functionality through PEA's ability to induce spontaneous organization of the extracellular matrix component fibronectin (FN) into physiological-like nanofibrils. This process allows control of surface biofunctionality while maintaining PLLA bulk properties (i.e., degradation profile, mechanical strength). The new approach is based on surface-initiated atomic transfer radical polymerization, which achieves a molecularly thin coating of PEA on top of the underlying PLLA. Beside surface characterization via atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle to measure PEA grafting, the biological activity of this surface modification is investigated. PEA brushes trigger FN organization into nanofibrils, which retain their ability to enhance adhesion and differentiation of C2C12 cells. The results demonstrate the potential of this technology to engineer controlled microenvironments to tune cell fate via biologically active surface modification of an otherwise bioinert biodegradable polymer, gaining wide use in tissue engineering applications.
Collapse
Affiliation(s)
- Mark Robert Sprott
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| | - Gloria Gallego‐Ferrer
- Center for Biomaterials and Tissue EngineeringUniversitat Politècnica de València Valencia 46022 Spain
- Biomedical Research Networking Center in BioengineeringBiomaterials and Nanomedicine (CIBER‐BBN) Valencia 46022 Spain
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| | | | - Marco Cantini
- Centre for the Cellular MicroenvironmentUniversity of Glasgow Glasgow G12 8LT UK
| |
Collapse
|
127
|
Lin Y, Wang L, Zhou J, Ye L, Hu H, Luo Z, Zhou L. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
128
|
Sakai R, Iguchi H, Maruyama T. Quantification of azide groups on a material surface and a biomolecule using a clickable and cleavable fluorescent compound. RSC Adv 2019; 9:4621-4625. [PMID: 35520182 PMCID: PMC9060625 DOI: 10.1039/c8ra09421g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
We propose a novel method for quantifying azide groups on a solid surface and a protein.
Collapse
Affiliation(s)
- Rika Sakai
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Hiroki Iguchi
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
129
|
Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019. [DOI: 10.1039/c8py01174e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polymeric micelles via click chemistry are divided into six major sections (temperature, light, ultrasound, pH, enzymes, and redox).
Collapse
Affiliation(s)
- Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Xin Chen
- School of Chemical Engineering and Technology
- Shanxi Key Laboratory of Energy Chemical Process Intensification
- Xi'an Jiao Tong University
- Xi'an 710049
- China
| | - Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
130
|
Arslan M, Tasdelen MA. Click Chemistry in Macromolecular Design: Complex Architectures from Functional Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0030-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
131
|
Tallec G, Loh C, Liberelle B, Garcia-Ac A, Duy SV, Sauvé S, Banquy X, Murschel F, De Crescenzo G. Adequate Reducing Conditions Enable Conjugation of Oxidized Peptides to Polymers by One-Pot Thiol Click Chemistry. Bioconjug Chem 2018; 29:3866-3876. [PMID: 30350572 DOI: 10.1021/acs.bioconjchem.8b00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiol(-click) chemistry has been extensively investigated to conjugate (bio)molecules to polymers. Handling of cysteine-containing molecules may however be cumbersome, especially in the case of fast-oxidizing coiled-coil-forming peptides. In the present study, we investigated the practicality of a one-pot process to concomitantly reduce and conjugate an oxidized peptide to a polymer. Three thiol-based conjugation chemistries (vinyl sulfone (VS), maleimide, and pyridyldithiol) were assayed along with three reducing agents (tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol, and β-mercaptoethanol). Seven out of the nine possible combinations significantly enhanced the conjugation yield, provided that an adequate concentration of reductant was used. Among them, the coincubation of an oxidized peptide with TCEP and a VS-modified polymer displayed the highest level of conjugation. Our results also provide insights into two topics that currently lack consensus: TCEP is stable in 10 mM phosphate buffered saline and it reacts with thiol-alkylating agents at submillimolar concentrations, and thus should be carefully used in order to avoid interference with thiol-based conjugation reactions.
Collapse
Affiliation(s)
- Gwendoline Tallec
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit , École Polytechnique de Montréal , P.O. Box 6079, succ. Centre-Ville, Montréal , Quebec , Canada H3C 3A7
| | - Celestine Loh
- Division of Chemical and Biomolecular Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore , Singapore , 639798
| | - Benoit Liberelle
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit , École Polytechnique de Montréal , P.O. Box 6079, succ. Centre-Ville, Montréal , Quebec , Canada H3C 3A7
| | - Araceli Garcia-Ac
- Faculty of Pharmacy , Université de Montréal , 2900 Edouard-Montpetit Boulevard , Montreal , Quebec , Canada H3C 3J7
| | - Sung Vo Duy
- Department of Chemistry , Université de Montréal , C.P. 6128, succ. Centre-Ville, Montreal , Quebec , Canada H3C 3J7
| | - Sébastien Sauvé
- Department of Chemistry , Université de Montréal , C.P. 6128, succ. Centre-Ville, Montreal , Quebec , Canada H3C 3J7
| | - Xavier Banquy
- Faculty of Pharmacy , Université de Montréal , 2900 Edouard-Montpetit Boulevard , Montreal , Quebec , Canada H3C 3J7
| | - Frederic Murschel
- Faculty of Pharmacy , Université de Montréal , 2900 Edouard-Montpetit Boulevard , Montreal , Quebec , Canada H3C 3J7
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Groupe de Recherche en Sciences et Technologies Biomédicales (GRSTB), Bio-P2 Research Unit , École Polytechnique de Montréal , P.O. Box 6079, succ. Centre-Ville, Montréal , Quebec , Canada H3C 3A7
| |
Collapse
|
132
|
Gopinathan J, Noh I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng Regen Med 2018; 15:531-546. [PMID: 30603577 PMCID: PMC6171698 DOI: 10.1007/s13770-018-0152-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
133
|
Zeyohanness SS, Abd Hamid H, Zulkifli FH. Poly(vinyl alcohol) electrospun nanofibers containing antimicrobial Rhodomyrtus tomentosa extract. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518801040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electrospun nanofibers were prepared from Rhodomyrtus tomentosa extract and poly(vinyl alcohol). The antimicrobial effect was assessed against two Gram-negative bacterial strains ( Escherichia coli, Pseudomonas aeruginosa) and two Gram-positive bacterial strains ( Bacillus subtilis, Enterococcus faecalis) by paper disc diffusion method. Ethyl acetate extract of R. tomentosa was selected for fabrication of nanofibers because it shows the most active antimicrobial activity with zone of inhibition ranging from 9.33 ± 0.21 to 13.67 ± 0.32 mm. The presence of high abundance of myricetin and rhodomyrtone might contribute to the antibiotic activity against all tested bacterial strains. The average diameter of the R. tomentosa extract/poly(vinyl alcohol) nanofibers increased from 120.4 to 214.8 nm with increasing concentration of R. tomentosa extract from 0.5% to 2.5%. The antimicrobial activity of R. tomentosa extract/poly(vinyl alcohol) nanofibers was relatively higher at concentration of the extract (1.5% and 2.5%) against all test organisms with a clear zone of inhibition 7–12 mm. The results demonstrated that R. tomentosa extract/poly(vinyl alcohol) electrospun nanofibers are an interesting platform for delivery of bioactive compounds as wound dressing or other strategies for combating bacterial infections.
Collapse
Affiliation(s)
| | | | - Farah Hanani Zulkifli
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan, Malaysia
| |
Collapse
|
134
|
A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091696] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advancements in material technologies have promoted the development of various preparation strategies and applications of novel polymer–nanoclay composites. Innovative synthesis pathways have resulted in novel polymer–nanoclay composites with improved properties, which have been successfully incorporated in diverse fields such as aerospace, automobile, construction, petroleum, biomedical and wastewater treatment. These composites are recognized as promising advanced materials due to their superior properties, such as enhanced density, strength, relatively large surface areas, high elastic modulus, flame retardancy, and thermomechanical/optoelectronic/magnetic properties. The primary focus of this review is to deliver an up-to-date overview of polymer–nanoclay composites along with their synthesis routes and applications. The discussion highlights potential future directions for this emerging field of research.
Collapse
|
135
|
Wang G, Cao X, Dong H, Zeng L, Yu C, Chen X. A Hyaluronic Acid Based Injectable Hydrogel Formed via Photo-Crosslinking Reaction and Thermal-Induced Diels-Alder Reaction for Cartilage Tissue Engineering. Polymers (Basel) 2018; 10:E949. [PMID: 30960874 PMCID: PMC6403731 DOI: 10.3390/polym10090949] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
A hyaluronic acid (HA) based injectable hydrogel with gradually increasing mechanical properties was synthesized via photo-crosslinking reaction and thermal-induced Diels-Alder (DA) reaction. The injectable hydrogel can quickly gelate within 30 s by photo-crosslinking of HA-furan under the catalysis of lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). This injectable property is beneficial to keep the encapsulated cell activity and convenient for clinical operation. And the mechanical properties can be control from 4.86 to 10.66 kPa by exposure time. Then, the thermal-induced DA click chemistry further occurs between furan groups and maleimide groups which gradually promoted the crosslinking density of the injectable hydrogel. The mechanical properties of the injectable hydrogel can be promoted to 21 kPa. ATDC-5 cells were successfully encapsulated in the injectable hydrogel and showed good activity. All the results suggested that the injectable hydrogel with gradually increasing mechanical properties formed by photo-crosslinking reaction and thermal-induced DA reaction has a good prospect of application in cartilage tissue engineering.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Lei Zeng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Chenxi Yu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
136
|
Ju P, Hu J, Li F, Cao Y, Li L, Shi D, Hao Y, Zhang M, He J, Ni P. A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. J Mater Chem B 2018; 6:7263-7273. [PMID: 32254638 DOI: 10.1039/c8tb01566j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive and biodegradable polymeric carriers are of great importance for safe delivery and efficient release of chemotherapeutic agents. In this work, given the unique advantages of poly(disulfide)s and biodegradable polyphosphoesters, we designed and constructed a reduction-sensitive amphiphilic triblock copolymer poly(ethyl ethylene phosphate)-b-poly(disulfide)-b-poly(ethyl ethylene phosphate) (PEEP-PDS-PEEP) by combining thiol-disulfide polycondensation and ring-opening polymerization (ROP). The thiol-disulfide polycondensation between 1,6-hexanedithiol and 2,2'-dithiodipyridine yielded the linear telechelic pyridyl disulfide-terminated poly(disulfide)s, followed by the treatment with 2-mercaptoethanol to quantitatively produce dihydroxyl-terminated poly(disulfide)s, which was used to initiate the ROP reaction of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane, generating ABA-type amphiphilic triblock copolymers. The chemical structures of various polymers were thoroughly characterized and verified using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy. The resultant amphiphilic PEEP-PDS-PEEP could self-assemble into spherical nanoparticles in aqueous solution as evidenced from dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. Hydrophobic anti-tumor drug doxorubicin (DOX) was used to study the encapsulation capacity of nanoparticles, the drug loading content (DLC) and drug loading efficiency (DLE) values were determined to be 11.2% and 31.5%, respectively. In vitro release studies indicated that DOX was released much faster under reductive conditions compared to physiological conditions, confirming their reduction-responsive release behavior owing to the scission of the poly(disulfide) segment and subsequent disintegration of nanoparticles. The cellular uptake study using a live cell imaging system demonstrated that this DOX-loaded nanoparticle can be internalized into HeLa cells and release DOX over time. Methyl thiazolyl tetrazolium (MTT) assay revealed the favorable cytocompatibility of a bare triblock copolymer toward both L929 and HeLa cells, whereas the DOX-loaded copolymer nanoparticles exhibited the lower inhibitory ability against HeLa and HepG2 cell proliferation than free DOX. This finding presents a strategy for the construction of biocompatible and reduction-responsive polymeric drug carriers.
Collapse
Affiliation(s)
- Pengfei Ju
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Satapathy MK, Nyambat B, Chiang CW, Chen CH, Wong PC, Ho PH, Jheng PR, Burnouf T, Tseng CL, Chuang EY. A Gelatin Hydrogel-Containing Nano-Organic PEI⁻Ppy with a Photothermal Responsive Effect for Tissue Engineering Applications. Molecules 2018; 23:E1256. [PMID: 29795044 PMCID: PMC6099840 DOI: 10.3390/molecules23061256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/11/2018] [Accepted: 05/19/2018] [Indexed: 12/25/2022] Open
Abstract
The introduction and designing of functional thermoresponsive hydrogels have been recommended as recent potential therapeutic approaches for biomedical applications. The development of bioactive materials such as thermosensitive gelatin-incorporated nano-organic materials with a porous structure and photothermally triggerable and cell adhesion properties may potentially achieve this goal. This novel class of photothermal hydrogels can provide an advantage of hyperthermia together with a reversibly transformable hydrogel for tissue engineering. Polypyrrole (Ppy) is a bioorganic conducting polymeric substance and has long been used in biomedical applications owing to its brilliant stability, electrically conductive features, and excellent absorbance around the near-infrared (NIR) region. In this study, a cationic photothermal triggerable/guidable gelatin hydrogel containing a polyethylenimine (PEI)⁻Ppy nanocomplex with a porous microstructure was established, and its physicochemical characteristics were studied through dynamic light scattering, scanning electronic microscopy, transmission electron microscopy, an FTIR; and cellular interaction behaviors towards fibroblasts incubated with a test sample were examined via MTT assay and fluorescence microscopy. Photothermal performance was evaluated. Furthermore, the in vivo study was performed on male Wistar rat full thickness excisions model for checking the safety and efficacy of the designed gelatin⁻PEI⁻Ppy nanohydrogel system in wound healing and for other biomedical uses in future. This photothermally sensitive hydrogel system has an NIR-triggerable property that provides local hyperthermic temperature by PEI⁻Ppy nanoparticles for tissue engineering applications. Features of the designed hydrogel may fill other niches, such as being an antibacterial agent, generation of free radicals to further improve wound healing, and remodeling of the promising photothermal therapy for future tissue engineering applications.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Chih-Wei Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, No. 252, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Room 410, Barry Lam Hall, No.1, Sec.4, Roosevelt Road, Taipei 10617, Taiwan.
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, No. 252, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Pei-Chun Wong
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Po-Hsien Ho
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering Taipei Medical University and International Ph.D. Program in Biomedical Engineering College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 110, Taiwan.
| |
Collapse
|
138
|
Qian Y, Li L, Song Y, Dong L, Chen P, Li X, Cai K, Germershaus O, Yang L, Fan Y. Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 2018; 164:22-37. [PMID: 29482061 DOI: 10.1016/j.biomaterials.2018.02.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
|
139
|
Fouad H, AlFotawi R, Alothman OY, Alshammari BA, Alfayez M, Hashem M, Mahmood A. Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material. MATERIALS 2018; 11:ma11040521. [PMID: 29596358 PMCID: PMC5951367 DOI: 10.3390/ma11040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
In this study, porous polyethylene scaffolds were examined as bone substitutes in vitro and in vivo in critical-sized calvarial bone defects in transgenic Sprague-Dawley rats. A microscopic examination revealed that the pores appeared to be interconnected across the material, making them suitable for cell growth. The creep recovery behavior of porous polyethylene at different loads indicated that the creep strain had two main portions. In both portions, strain increased with increased applied load and temperature. In terms of the thermographic behavior of the material, remarkable changes in melting temperature and heat fusion were revealed with increased the heating rates. The tensile strength results showed that the material was sensitive to the strain rate and that there was adequate mechanical strength to support cell growth. The in vitro cell culture results showed that human bone marrow mesenchymal stem cells attached to the porous polyethylene scaffold. Calcium sulfate–hydroxyapatite (CS–HA) coating of the scaffold not only improved attachment but also increased the proliferation of human bone marrow mesenchymal stem cells. In vivo, histological analysis showed that the study groups had active bone remodeling at the border of the defect. Bone regeneration at the border was also evident, which confirmed that the polyethylene acted as an osteoconductive bone graft. Furthermore, bone formation inside the pores of the coated polyethylene was also noted, which would enhance the process of osteointegration.
Collapse
Affiliation(s)
- H Fouad
- Applied Medical Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia.
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Helwan 11792, Egypt.
| | - Randa AlFotawi
- Maxillofacial Surgery Department, Dental Faculty, King Saud University, Riyadh 11545, Saudi Arabia.
| | - Othman Y Alothman
- Chemical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia.
- Deanship of Graduate Studies, Saudi Electronic University, Riyadh 11637, Saudi Arabia.
| | - Basheer A Alshammari
- Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia.
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| | - Mohamed Hashem
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11437, Saudi Arabia.
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
140
|
Zhang X, Yang Z, Xie D, Liu D, Chen Z, Li K, Li Z, Tichnell B, Liu Z. Design and synthesis study of the thermo-sensitive poly (N-vinylpyrrolidone-b- N, N-diethylacrylamide). Des Monomers Polym 2018; 21:43-54. [PMID: 29706847 PMCID: PMC5917442 DOI: 10.1080/15685551.2018.1448230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 11/30/2022] Open
Abstract
The reversible addition fragmentation chain transfer (RAFT) polymerization method was adopted here to prepare a series of thermo-sensitive copolymers, poly (N,N-diethyl- acrylamide-b-N-vinylpyrrolidone). Their structures, molecular weight distribution and temperature sensitivity performances were characterized by the nuclear magnetic resonance (1HNMR), the gel permeation chromatography (GPC) and the fluorescence spectrophotometer, respectively. It has been identified that the synthesis reaction of the block copolymer was living polymerization. The thermo-sensitivity study suggested that N-vinylpyrrolidone (NVP), played a key role on the lower critical solution temperature (LCST) performance.
Collapse
Affiliation(s)
- Xiayun Zhang
- College of Life and Engineering, Lanzhou University of Technology, Lanzhou, China
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Materials Science and Engineering, Lanzhou, China
| | - Zhongduo Yang
- College of Life and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Dengmin Xie
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Materials Science and Engineering, Lanzhou, China
| | - Donglei Liu
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Materials Science and Engineering, Lanzhou, China
| | - Zhenbin Chen
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Materials Science and Engineering, Lanzhou, China
| | - Ke Li
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Materials Science and Engineering, Lanzhou, China
| | - Zhizhong Li
- College of Life and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Brandon Tichnell
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD, USA
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD, USA
| |
Collapse
|