101
|
Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, McGonagle D, Win Naing M, Jones E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019; 21:803-819. [PMID: 31138507 DOI: 10.1016/j.jcyt.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Collapse
Affiliation(s)
- Weichao Zhai
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Jehan Jomaa El-Jawhari
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Elena Jones
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
102
|
Castilla-Casadiego DA, García JR, García AJ, Almodovar J. Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon Gamma. ACS Biomater Sci Eng 2019; 5:2793-2803. [DOI: 10.1021/acsbiomaterials.9b00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- David A. Castilla-Casadiego
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - José R. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr., Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr., Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Jorge Almodovar
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
103
|
Yuan X, Logan TM, Ma T. Metabolism in Human Mesenchymal Stromal Cells: A Missing Link Between hMSC Biomanufacturing and Therapy? Front Immunol 2019; 10:977. [PMID: 31139179 PMCID: PMC6518338 DOI: 10.3389/fimmu.2019.00977] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are the most commonly-tested adult stem cells in cell therapy. While the initial focus for hMSC clinical applications was to exploit their multi-potentiality for cell replacement therapies, it is now apparent that hMSCs empower tissue repair primarily by secretion of immuno-regulatory and pro-regenerative factors. A growing trend in hMSC clinical trials is the use of allogenic and culture-expanded cells because they are well-characterized and can be produced in large scale from specific donors to compensate for the donor pathological condition(s). However, donor morbidity and large-scale expansion are known to alter hMSC secretory profile and reduce therapeutic potency, which are significant barriers in hMSC clinical translation. Therefore, understanding the regulatory mechanisms underpinning hMSC phenotypic and functional property is crucial for developing novel engineering protocols that maximize yield while preserving therapeutic potency. hMSC are heterogenous at the level of primary metabolism and that energy metabolism plays important roles in regulating hMSC functional properties. This review focuses on energy metabolism in regulating hMSC immunomodulatory properties and its implication in hMSC sourcing and biomanufacturing. The specific characteristics of hMSC metabolism will be discussed with a focus on hMSC metabolic plasticity and donor- and culture-induced changes in immunomodulatory properties. Potential strategies of modulating hMSC metabolism to enhance their immunomodulation and therapeutic efficacy in preclinical models will be reviewed.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States
| | - Timothy M Logan
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
104
|
Witwer KW, Van Balkom BW, Bruno S, Choo A, Dominici M, Gimona M, Hill AF, De Kleijn D, Koh M, Lai RC, Mitsialis SA, Ortiz LA, Rohde E, Asada T, Toh WS, Weiss DJ, Zheng L, Giebel B, Lim SK. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles 2019; 8:1609206. [PMID: 31069028 PMCID: PMC6493293 DOI: 10.1080/20013078.2019.1609206] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation.
Collapse
Affiliation(s)
- Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bas W.M. Van Balkom
- Division Internal Medicine and Dermatology, Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Andre Choo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Massimo Dominici
- MAB Laboratory, TPM of Mirandola, Mirandola, Italy
- Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Gimona
- GMP Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Research Program Nanovesicular Therapies, Department of Transfusion Medicine and Celericon Therapeutics G.m.b.H., Paracelsus Medical University (PMU), Salzburg, Austria
| | - Andrew F. Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Dominique De Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mickey Koh
- Department of Haematology, St George’s University Hospital NHS Trust, London, UK
- Cell Therapy Facility, Blood Services Group Health Sciences Authority, Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - S. Alex Mitsialis
- Department of Pediatrics, Harvard Medical School & Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Luis A. Ortiz
- Division of Environmental and Occupational Medicine, Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Rohde
- GMP Laboratory, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Research Program Nanovesicular Therapies, Department of Transfusion Medicine and Celericon Therapeutics G.m.b.H., Paracelsus Medical University (PMU), Salzburg, Austria
| | - Takashi Asada
- Department of Tissue Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Daniel J. Weiss
- Health Sciences Research Facility, University of Vermont College of Medicine, Burlington, VT, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
105
|
Sagaradze G, Grigorieva O, Nimiritsky P, Basalova N, Kalinina N, Akopyan Z, Efimenko A. Conditioned Medium from Human Mesenchymal Stromal Cells: Towards the Clinical Translation. Int J Mol Sci 2019; 20:ijms20071656. [PMID: 30987106 PMCID: PMC6479925 DOI: 10.3390/ijms20071656] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) remain a promising tool for regenerative medicine as the efficacy of MSC-based cell therapy has been demonstrated for a broad spectrum of indications. Their therapeutic potency is mainly associated with their ability to secrete multiple factors critical for tissue regeneration. Due to comparable effects along with superior safety MSC conditioned medium (MSC-CM) containing a complex of MSC-secreted products is considered a reasonable alternative to cell therapy. However, the lack of standards regulating bioprocessing, use of proper auxiliary materials, and quality control complicates the development of MSC secretome-based therapeutics. In this study, we suggested several approaches addressing these issues. We manufactured 36 MSC-CM samples based on different xeno-free serum-free chemically defined media (DMEM-LG or MSC NutriStem® XF) using original protocols and considered total concentrations of regeneration-associated paracrine factors secreted by human adipose-derived MSC at each time-point of conditioning. Using regression analysis, we retrospectively predicted associations between concentrations of several components of MSC-CM and its biological activity to stimulate human dermal fibroblast and endothelial cell migration in vitro as routine examples of potency assays for cell-based products. We also demonstrated that the cell culture medium might affect MSC-CM biological activity to varying degrees depending on the potency assay type. Furthermore, we showed that regression analysis might help to overcome donor variability. The suggested approaches might be successfully applied for other cell types if their secretome was shown to be promising for application in regenerative medicine.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Zhanna Akopyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27-10, Lomonosovsky av., Moscow 119191, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 27-1, Lomonosovsky av., Moscow 119192, Russia.
| |
Collapse
|
106
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|