101
|
Sutherland DL, Ralph PJ. Microalgal bioremediation of emerging contaminants - Opportunities and challenges. WATER RESEARCH 2019; 164:114921. [PMID: 31382151 DOI: 10.1016/j.watres.2019.114921] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 05/06/2023]
Abstract
Emerging contaminants (ECs) are primarily synthetic organic chemicals that have a focus of increasing attention due to either increased awareness of their potential risks to humans and aquatic biota, or only recently been detected in the aquatic environment or drinking water supplies, through improved analytical techniques. . Many ECs have no regulatory standards due to the lack of information on the effects of chronic exposure. Pharmaceuticals, personal care products, pesticides and flame retardants are some of the most frequently detected ECs in aquatic environments, with over 200 individual compounds identified, to date. Current wastewater treatment is ineffective at removing ECs and there is a vital need for the development of efficient, cost-effective EC treatment systems that can be applied to a range of scales and wastewater types. Microalgae have demonstrated potential for detoxifying organic and inorganic pollutants, with a number of large-scale wastewater treatment microalgal technologies already developed. There are three main pathways that microalgae can bioremediate ECs; bioadsorption, bio-uptake and biodegradation. Microalgal bioadsorption occurs when ECs are either adsorbed to cell wall components, or onto organic substances excreted by the cells, while bio-uptake involves the active transport of the contaminant into the cell, where it binds to intracellular proteins and other compounds. Microalgal biodegradation of ECs involves the transformation of complex compounds into simpler breakdown molecules through catalytic metabolic degradation. Biodegradation provides one of the most promising technologies for the remediation of contaminants of concern as it can transform the contaminant to less toxic compounds rather than act as a biofilter. Further research is needed to exploit microalgal species for EC bioremediation properties, such as increased bioadsorption, enhanced biodegrading enzymes and optimised growth conditions. When coupled with nutrient removal, microalgal treatment of EC can be a cost-effective viable option for the reduction of contaminant pollution in waterways.
Collapse
Affiliation(s)
- Donna L Sutherland
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia.
| | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
102
|
Xie P, Ho SH, Peng J, Xu XJ, Chen C, Zhang ZF, Lee DJ, Ren NQ. Dual purpose microalgae-based biorefinery for treating pharmaceuticals and personal care products (PPCPs) residues and biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:253-261. [PMID: 31229822 DOI: 10.1016/j.scitotenv.2019.06.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Microalgal biotechnologies have emerged with high potential for removal of various organic pollutants, such as pharmaceutical and personal care products (PPCPs), from waste streams. In the present study, the removal mechanisms for three typical PPCPs and the lipid performance of Chlamydomonas sp. Tai-03 were thoroughly investigated. Bisphenol A (BPA) and Tetracycline (TCY) achieved complete removal while only ~20% Sulfamethoxazole (SMX) could be removed, even at low concentrations of 1 mg L-1. The mechanisms of elimination showed variation as only SMX could be removed through biodegradation, while ~68.2% TCY and ~14% BPA were removed by a combination of photolysis and hydrolysis. Analysis revealed three intermediates of SMX biodegradation, two of which exhibited high toxicity. Moreover, the lipid content of Chlamydomonas sp. Tai-03 increased from 5 to 49.5% with the addition of SMX, TCY and BPA, with lipid quality varying according to the type of PPCPs. In particular, the dominant component (C18:1) abundance was increased by 15.2% at 10 mg L-1 TCY. Overall, these findings provide a baseline for optimization of microalgal biodiesel production coupled with efficient PPCPs treatment biotechnology.
Collapse
Affiliation(s)
- Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Jing Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Zi-Feng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
103
|
Cao L, Zhang J, Zhao R, Deng Y, Liu J, Fu W, Lei Y, Zhang T, Li X, Li B. Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. ENVIRONMENT INTERNATIONAL 2019; 131:104961. [PMID: 31330364 DOI: 10.1016/j.envint.2019.104961] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/02/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation is an important route for the removal of sulfamethazine (SMZ), one of the most commonly used sulfonamide antibiotics, in the environment. However, little information is known about the kinetics, products, and pathways of SMZ biodegradation owing to the complexity of its enzyme-based biotransformation processes. In this study, the SMZ-degrading strain A01 belonging to the genus Paenarthrobacter was isolated from SMZ-enriched activated sludge reactors. The bacterial cells were rod-shaped with transient branches 2.50-4.00 μm in length with most forming in a V-shaped arrangement. The genome size of Paenarthrobacter sp. A01 had a total length of 4,885,005 bp with a GC content of 63.5%, and it contained 104 contigs and 55 RNAs. The effects of pH, temperature, initial substrate concentration and additional carbon source on the biodegradation of SMZ were investigated. The results indicated that pH 6.0-7.8, 25 °C and the addition of 0.2 g/L sodium acetate favored the biodegradation, whereas a high concentration of SMZ, 500 mg/L, had an inhibitory effect. The biodegradation kinetics with SMZ as the sole carbon source or 0.2 g/L sodium acetate as the co-substrate fit the modified Gompertz model well with a correlation coefficient (R2) of 0.99. Three biodegradation pathways were proposed involving nine biodegradation products, among which C6H9N3O2S and C12H12N2 were two novel biodegradation products that have not been reported previously. Approximately 90.7% of SMZ was transformed to 2-amino-4, 6-dimethylpyrimidine. Furthermore, sad genes responsible for catabolizing sulfonamides were characterized in A01 with high similarities of 96.0%-100.0%. This study will fill the knowledge gap in the biodegradation of this ubiquitous micropollutant in the aquatic environment.
Collapse
Affiliation(s)
- Lijia Cao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; School of Environment, Tsinghua University, Beijing, China
| | - Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; School of Environment, Tsinghua University, Beijing, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; School of Environment, Tsinghua University, Beijing, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Yu Deng
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wenjie Fu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; School of Environment, Tsinghua University, Beijing, China
| | - Yusha Lei
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; School of Environment, Tsinghua University, Beijing, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China.
| |
Collapse
|
104
|
Nagarajan D, Kusmayadi A, Yen HW, Dong CD, Lee DJ, Chang JS. Current advances in biological swine wastewater treatment using microalgae-based processes. BIORESOURCE TECHNOLOGY 2019; 289:121718. [PMID: 31296361 DOI: 10.1016/j.biortech.2019.121718] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
There is an exponential increase in swine farms around the world to meet the increasing demand for proteins, resulting in a significant amount of swine/piggery wastewater. The wastewater produced in swine farms are rich in ammonia with high eutrophication potential and negative environmental impacts. Safe methods for treatment and disposal of swine wastewater have attracted increased research attention in the recent decades. Conventional wastewater treatment methods are limited by the high ammonia content and chemical/biological oxygen demand of swine wastewater. Recently, microalgal cultivation is being proposed for the phytoremediation of swine wastewater. Microalgae are tolerant to high ammonia levels seen in swine wastewater and they also ensure phosphorus removal simultaneously. This review first gives a brief overview on the conventional methods used for swine wastewater treatment. Microalgae-based processes for the clean-up of swine wastewater are discussed in detail, with their potential advantages and limitations. Future research perspectives are also presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Adi Kusmayadi
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
105
|
The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review. WATER 2019. [DOI: 10.3390/w11081555] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry. Conventional wastewater treatment plants (WWTPs) are not designed to remove pharmaceuticals (and their metabolites) from domestic wastewaters. The treatability of pharmaceutical compounds in WWTPs varies considerably depending on the type of compound since their biodegradability can differ significantly. As a consequence, they may reach the aquatic environment, directly or by leaching of the sludge produced by these facilities. Currently, the technologies under research for the removal of pharmaceuticals, namely membrane technologies and advanced oxidation processes, have high operation costs related to energy and chemical consumption. When chemical reactions are involved, other aspects to consider include the formation of harmful reaction by-products and the management of the toxic sludge produced. Research is needed in order to develop economic and sustainable treatment processes, such as bioremediation and biosorption. The use of low-cost materials, such as biological matrices (e.g., algae and fungi), has advantages such as low capital investment, easy operation, low operation costs, and the non-formation of degradation by-products. An extensive review of existing research on this subject is presented.
Collapse
|
106
|
Wang XX, Zhang QQ, Wu YH, Dao GH, Zhang TY, Tao Y, Hu HY. The light-dependent lethal effects of 1,2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:563-571. [PMID: 30970286 DOI: 10.1016/j.scitotenv.2019.03.468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
As 1,2-benzisothiazol-3(2H)-one (BIT) has been widely used in high concentrations for microbial growth control in many domestic and industrial processes, its potential eco-risk should be assessed. This study investigated the interaction between BIT and microalgae in aquatic environment as the mechanism of BIT lethal effect on microalgae was unclear and whether microalgae could efficiently remove BIT was unknown. It was found that Chlorella vulgaris could be killed by high concentrations of BIT, and this lethal effect was strongly enhanced when exposed to light. Inhibition of photosystem II electron transport followed by a decrease in cellular chlorophyll led to serious damage to algal photosynthesis. The excess accumulation of reactive oxygen species caused by the photosynthetic damage under light further increased the oxidative damage and promoted cell death. Under dark condition, however, the algae could tolerate higher BIT concentrations. BIT could be efficiently removed when the growth of Scenedesmus sp. LX1 was not completely inhibited. With an initial concentration of 4.5 mg/L, over 99% of BIT was removed during 168 hour cultivation. Microalgal biodegradation was the primary reason for this removal, and the contributions of BIT hydrolytic/photolytic degradation, microalgal growth, photosynthesis and sorption were negligibly small. These results pointed to the potential application of microalgae for efficient BIT removal from wastewater.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Qi-Qi Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen (SMARC), Tsinghua University, Shenzhen 518055, China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tian-Yuan Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen (SMARC), Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| |
Collapse
|
107
|
Zhuan R, Wang J. Degradation of sulfamethoxazole by ionizing radiation: Kinetics and implications of additives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:67-73. [PMID: 30852227 DOI: 10.1016/j.scitotenv.2019.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Sulfamethoxazole (SMX) is a widespread and persistent antibiotic pollutant in the aquatic environment. In this paper, SMX was degraded by gamma irradiation, and various influencing factors were explored. The experimental results revealed that after 1.5 kGy irradiation, 20 mg/L SMX could be completely decomposed. Kinetics studies suggested that the radiation-induced degradation process of SMX conformed first-order kinetic. The pH value had influence on the decomposition efficiency through changing the species of reactive radicals and the existing form of SMX molecules and their distribution. Additionally, the effect of inorganic anions (CO32-, HCO3-, NO3-, SO42-, Cl-, HPO42-) and organic matters (peptone, glucose, humic acid) on SMX degradation was evaluated, which had negative influence on SMX degradation. The degradation efficiency of SMX decreased in the effluent water of WWTP in comparison with that in deionized water, suggesting that the components in the effluent inhibited the radiation-induced decomposition of SMX. The mineralization of SMX by ionizing radiation was also evaluated. These results revealed that ionizing radiation is a promising technology to degrade SMX in aqueous solution as well as in wastewater.
Collapse
Affiliation(s)
- Run Zhuan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
108
|
Kurade MB, Xiong JQ, Govindwar SP, Roh HS, Saratale GD, Jeon BH, Lim H. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica. CHEMOSPHERE 2019; 225:696-704. [PMID: 30904757 DOI: 10.1016/j.chemosphere.2019.03.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Plants serve as appropriate markers of worldwide pollution because they are present in almost every corner of the globe and bioaccumulate xenobiotic chemicals from their environment. The potential of a semi-aquatic plant, Ipomoea aquatica, to uptake and metabolize sulfamethoxazole (SMX) was investigated in this study. I. aquatica exhibited 100% removal of 0.05 mg L-1 SMX from synthetic media within 30 h. The I. aquatica achieved 93, 77 and 72% removal of SMX at 0.2, 0.5 and 1 mg L-1, respectively, after 48 h. This indicated that removal efficiency of I. aquatica was deteriorating at high concentrations of SMX. The chlorophyll and carotenoid content of I. aquatica was insignificantly influenced by SMX irrespective of its high concentration. Similarly, scanning electron microscopy (SEM) showed that exposure to SMX had an insignificant impact on morphology of the plant organelles. The mechanisms of removal by I. aquatica were explored by evaluating contributions of bioadsorption, bioaccumulation and biodegradation. There was negligible adsorption of SMX to plant roots. Accumulation of SMX within plant roots and stems was not observed; however, I. aquatica accumulated 17% of SMX in leaves. Thus, the major mechanism of elimination of SMX was biodegradation, which accounted for 82% removal of SMX. Gas chromatography-mass spectrometry (GC-MS) confirmed that I. aquatica biodegraded SMX into simpler compounds, and generated 4-aminophenol as its final product. A laboratory scale phytoreactor was used to investigate the application of I. aquatica in a simulated system, where it achieved 49% removal of SMX (0.2 mg L-1) in 10 d.
Collapse
Affiliation(s)
- Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jiu-Qiang Xiong
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hankwon Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
109
|
Tolboom SN, Carrillo-Nieves D, de Jesús Rostro-Alanis M, de la Cruz Quiroz R, Barceló D, Iqbal HMN, Parra-Saldivar R. Algal-based removal strategies for hazardous contaminants from the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:358-366. [PMID: 30772566 DOI: 10.1016/j.scitotenv.2019.02.129] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/02/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023]
Abstract
Owing to the controlled or uncontrolled industrial wastewater disposal, pharmaceutical-based hazardous emerging contaminants (ECs) can be found in the environment all over the world. With ever-increasing socioeconomic aspects and environmental awareness, people are now more concerns about the widespread occurrences of hazardous and persistent contaminants, around the globe. In this context, several studies have already shown that various types of emerging and/or re-emerging contaminants, regardless the source, type and concentration, are of supreme threat to the living system of flora and fauna. Recently, algae-based bioreactors have gained special research interest as a promising way to remove pharmaceuticals-based ECs from the wastewater either partially or completely. This paper covers the progress on the removal of selected pharmaceuticals using bioreactors. In laboratory scale studies, high removal percentages have been reached for most selected pharmaceuticals, but data on full-scale bioreactors is limited. In this paper, two types of bioreactors are discussed, i.e., (1) open pond and (2) bubble column photobioreactor, which are considered sustainable and an effective alternative to remove ECs. In these bioreactors, high removal percentages (>90%) have been found for metoprolol, triclosan, and salicylic acid, moderate (50-90%) for carbamazepine and tramadol and very low (<10%) for trimethoprim and ciprofloxacin by inoculating different microalgae. This technique may open new opportunities for the treatment of wastewater and reduce the environmental pollution that can have adverse effects on the ecosystem and human health. In summary, the present review focuses on the microalgae for wastewater remediation. An effort has also been made to describe the generalities of the photobioreactor.
Collapse
Affiliation(s)
- Stefan Noël Tolboom
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Reynaldo de la Cruz Quiroz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Damià Barceló
- ICRA, Catalan Institute for Water Research, Parc Científic i Tecnològic de la Universitat de Girona, C/ Emili Grahit, 101, 17003 Girona, Spain
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| |
Collapse
|
110
|
Xiong JQ, Kim SJ, Kurade MB, Govindwar S, Abou-Shanab RAI, Kim JR, Roh HS, Khan MA, Jeon BH. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:138-146. [PMID: 30049519 DOI: 10.1016/j.jhazmat.2018.07.049] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the environmental effects of two common emerging contaminants, sulfamethazine (SMZ) and sulfamethoxazole (SMX), and their mixture using a green microalga, Scenedesmus obliquus. The calculated EC50 values of SMZ, SMX, and their mixture (11:1 wt/wt) after 96 h were 1.23, 0.12, and 0.89 mg L-1, respectively. The toxicity of the mixture could be better predicted using a concentration addition model than an independent action model. The risk quotients of SMZ, SMX, and their mixture were >1 during the experiment, indicating their high potential risks on aquatic microorganisms. Despite their toxicity, S. obliquus exhibited 17.3% and 29.3% removal of 0.1 mg L-1 and 0.2 mg L-1 after 11 days of cultivation. The changes of SMZ and SMX removal were observed when combined, which showed a significantly improved removal of SMZ (up to 3.4 folds) with addition of SMX (0.2 mg L-1). The metabolic pathways of SMZ and SMX were proposed according to mass spectroscopic analysis, which showed six metabolites of SMX and seven intermediates of SMZ, formed as a result of ring cleavage, hydroxylation, methylation, nitrosation, and deamination.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sun-Joon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sanjay Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | | | - Jung-Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon, 26493, South Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
111
|
Santaeufemia S, Abalde J, Torres E. Eco-friendly rapid removal of triclosan from seawater using biomass of a microalgal species: Kinetic and equilibrium studies. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:674-683. [PMID: 30826560 DOI: 10.1016/j.jhazmat.2019.02.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Triclosan is an important emerging pollutant. It has become ubiquitous due to its incomplete elimination in municipal wastewater treatment plants causing serious environmental problems. Biomass from microorganisms as sorbent of pollutants can be an eco-friendly alternative for triclosan removal. In this work, the elimination of triclosan using biomass (dead and living) of the marine microalga Phaeodactylum tricornutum was characterized in cultures exposed to light and in a complex solution (seawater). Maximum removal capacity, isotherms, kinetics, FTIR characterization, pH effect and reuse were evaluated and discussed. Photodegradation of triclosan was also evaluated. Both biomasses showed similar effectiveness; around 100% of pollutant was eliminated when its concentration was 1 mg L-1 in only 3 h using a biomass concentration of 0.4 g L-1. A pseudo-second order model guided the biosorption process. Considering the photodegradation as a first-order process, the whole process (photodegradation + biosorption) was suitably modelled with pseudo-third order and Elovich kinetics. Biosorption increased with the decrease in pH. Temkin isotherm showed the best fit for the experimental data. Both biomasses showed good reuse after five cycles, losing only 7% in efficiency. P. tricornutum biomass is an attractive eco-material for triclosan elimination with low-cost and easy handling than other sorbents.
Collapse
Affiliation(s)
- Sergio Santaeufemia
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña, Spain
| | - Julio Abalde
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña, Spain
| | - Enrique Torres
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña, Spain.
| |
Collapse
|
112
|
Pamphile N, Xuejiao L, Guangwei Y, Yin W. Synthesis of a novel core-shell-structure activated carbon material and its application in sulfamethoxazole adsorption. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:602-612. [PMID: 30721855 DOI: 10.1016/j.jhazmat.2019.01.093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 05/26/2023]
Abstract
The increasing release of pharmaceutical and personal care products (PPCPs) into water poses serious threats to human beings. In this study, a novel core-shell activated carbon (CSAC) material with a high-mechanical-strength porous ceramic shell was synthesized and tested by adsorbing sulfamethoxazole (SMX) from aqueous solutions. An activated carbon core (AC core) was synthesized from a mixture of powder AC (92%) and cassava waste splinters binder (8%). Moreover, a shell with a high thickness of 0.13 cm and compressive strength (2.92 MPa) was generated from the mixture of coal fly ash and clay at ratio of 60:40. It demonstrated high protection of the AC core. The adsorption efficiency of SMX by CSAC attained 99.0% and 97.9% at initial concentrations of 5 and 10 mg L-1, respectively. Furthermore, 77.0, 68.6 and 60.4% of SMX were adsorbed at higher concentrations of 30, 50, and 100 mg L-1, respectively. The kinetics study demonstrated that the adsorption of SMX followed pseudo-second-order kinetics. Moreover, the sorption isotherm was better fitted to Freundlich isotherms. Finally, SMX adsorption on CSAC simultaneously depended on the pore texture of CSAC and the hydrophobic properties of SMX, as well as the π-π bonds and electrostatic interactions between them.
Collapse
Affiliation(s)
- Ndagijimana Pamphile
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Xuejiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Guangwei
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Wang Yin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
113
|
Gojkovic Z, Lindberg RH, Tysklind M, Funk C. Northern green algae have the capacity to remove active pharmaceutical ingredients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:644-656. [PMID: 30579165 DOI: 10.1016/j.ecoenv.2018.12.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 05/28/2023]
Abstract
Eight recently isolated microalgal species from Northern Sweden and the culture collection strain Scenedesmus obliquus RISE (UTEX 417) were tested for their ability to remove 19 pharmaceuticals from growth medium upon cultivation in short light path, flat panel photobioreactors. While the growth of one algal species, Chlorella sorokiniana B1-1, was completely inhibited by the addition of pharmaceuticals, and the one of Scenedesmus sp. B2-2 was strongly inhibited, the other algal strains grew well and produced biomass. In general, lipophilic compounds were removed highly efficient from the culture medium by the microalgae (>70% in average within 2 days). The most lipophilic compounds Biperiden, Trihexyphenidyl, Clomipramine and Amitriptyline significantly accumulated in the biomass of most algal species, with a positive correlation between accumulation and their total biomass content. More persistent in the growth medium were hydrophilic compounds like Caffeine, Fluconazole, Trimetoprim, Codeine, Carbamazepin, Oxazepam and Tramadol, which were detected in amounts of above 60% in average after algal treatment. While Coelastrella sp. 3-4 and Coelastrum astroideum RW10 were most efficient to accumulate certain compounds in their biomass, two algae species, Chlorella vulgaris 13-1 and Chlorella saccharophila RNY, were not only highly efficient in removing all 19 pharmaceuticals from the growth medium within 12 days, at the same time only small amounts of these compounds accumulated in their biomass allowing its further use. Chlorella vulgaris 13-1 was able to remove most compounds within 6 days of growth, while Chlorella saccharophila RNY needed 8-10 days."Wild" Nordic microalgae therefore are able to remove active pharmaceutical ingredients, equally or more efficient than the investigated culture collection strain, thereby demonstrating their possible use in sustainable wastewater reclamation in Nordic conditions.
Collapse
Affiliation(s)
- Zivan Gojkovic
- Department of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | | | - Mats Tysklind
- Department of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Christiane Funk
- Department of Chemistry, Umeå University, S-90187 Umeå, Sweden.
| |
Collapse
|
114
|
Bai X, Acharya K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:534-540. [PMID: 30708315 DOI: 10.1016/j.envpol.2019.01.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 05/20/2023]
Abstract
The present endocrine disrupting chemicals (EDCs) in wastewater effluents due to incomplete removal during the treatment processes may cause potential ecological and human health risks. This study evaluated the removal and uptake of seven EDCs spiked in two types of wastewater effluent (i.e., ultrafiltration and ozonation) and effluent cultivated with the freshwater green alga Nannochloris sp. In ultrafiltration effluent cultivated with Nannochloris sp. for 7 days, the removal rate of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and salicylic acid (SAL) was 60%; but Nannochloris sp. did not promote the removal of other EDCs studied. The algal-mediated removal of E2, EE2, and SAL was attributed to photodegradation and biodegradation. Triclosan (TCS) underwent rapid photodegradation regardless of adding algae in the effluent with 63%-100% removal within 7 days. Triclosan was also found associated with algal cells immediately after adding algae, and thus the primary mechanisms involved were photodegradation and bioremoval (i.e., bioadsorption and bioaccumulation). After algal cultivation, TCS still has a bioaccumulation potential to pose high risks within the food web and the endocrine disrupting properties of the residual estrogens in the effluent are not eliminated. Algal cultivation can be exploited to treat wastewater effluents but the removal efficiencies of EDCs highly depend on chemical types.
Collapse
Affiliation(s)
- Xuelian Bai
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, 89119, United States.
| | - Kumud Acharya
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, 89119, United States
| |
Collapse
|
115
|
Bai L, Cao C, Wang C, Zhang H, Deng J, Jiang H. Response of bloom-forming cyanobacterium Microcystis aeruginosa to 17β-estradiol at different nitrogen levels. CHEMOSPHERE 2019; 219:174-182. [PMID: 30543953 DOI: 10.1016/j.chemosphere.2018.11.214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Co-existence of cyanobacterial harmful algal blooms (CyanoHABs) and steroid estrogens (SEs) has been an increasing concern in eutrophic waters. The cellular responses and biodegradation of 17β-estradiol (E2) in cyanobacterium Microcystis aeruginosa were investigated at different nitrogen levels. During the 10-d experiment, the growth of M. aeruginosa was stimulated by 10-100 μg L-1 of E2 at the lowest nitrogen level of 0.5 mg L-1, whereas the presence of E2 inhibited the cyanobacterial growth at 5 mg L-1 of nitrogen. With nitrogen concentration increased to 50 mg L-1, the impact of E2 on levels of growth rate and chlorophyll a (Chla) alleviated. Exposure to E2 also promoted the superoxide dismutase activity of M. aeruginosa, coupled with cellular oxidative damage as indicated by the increasing malondialdehyde content. A sufficient nitrogen supply mitigated the oxidative stress of E2 through enhancing the synthesis of detoxification-related enzymes. Simultaneously, the secretion of tryptophan-like substances in loosely- and tightly-bound extracellular polymeric substances was triggered for adapting to an E2 addition in the short term. Moreover, significant biodegradation of E2 was observed, and the process followed a first-order kinetic reaction. The obtained half-lives decreased with nitrogen levels and ranged from 2.47 to 2.81 and 3.39-5.04 d, respectively, at 10 and 100 μg L-1 of E2. These results provide a better understanding of the potential effects of SEs on CyanoHABs formation, as well as the important role of CyanoHABs on SEs removal in aquatic ecosystems, which should be fully considered in the control of combined pollution.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chicheng Cao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiancai Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
116
|
Xiong JQ, Govindwar S, Kurade MB, Paeng KJ, Roh HS, Khan MA, Jeon BH. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. CHEMOSPHERE 2019; 218:551-558. [PMID: 30500716 DOI: 10.1016/j.chemosphere.2018.11.146] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
A comprehensive ecotoxicological evaluation of a sulfamethazine (SMZ) and sulfamethoxazole (SMX) mixture was conducted using an indicator microalga, Scenedesmus obliquus. The toxicological effects of this mixture were studied using microalgal growth patterns, biochemical characteristics (total chlorophyll, carotenoid, carbohydrate, fatty acid methyl ester), and elemental and Fourier-transform infrared spectroscopy analyses. The 96-h half maximal effective concentration (EC50) of the SMZ and SMX mixture was calculated to be 0.15 mg L-1 according to the dose-response curves obtained. The chlorophyll content decreased with elevated SMZ and SMX concentrations, while the carotenoid content initially increased and then decreased as concentration raised. The unsaturated fatty acid methyl esters (FAMEs) content was enhanced with higher SMZ and SMX concentrations, while that of saturated FAMEs simultaneously decreased due to SMZ and SMX stress. Elemental analyses showed an improved percentage of nitrogen and sulfur in the microalgal biomass as SMZ and SMX concentrations increased. The microalga S. obliquus was shown to biodegrade the chemicals tested and removed 31.4-62.3% of the 0.025-0.25 mg SMZ L-1 and 27.7-46.8% of the 0.025-0.25 mg SMX L-1 in the mixture after 12 days of cultivation. The greater biodegradation observed at higher SMZ and SMX concentrations indicates that microalgal degradation of SMZ and SMX could act as an efficient adaptive mechanism to antibiotics.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Sanjay Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Ki-Jung Paeng
- Department of Chemistry, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, South Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon, 26493, South Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
117
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM. Microalgae biomass from swine wastewater and its conversion to bioenergy. BIORESOURCE TECHNOLOGY 2019; 275:109-122. [PMID: 30579101 DOI: 10.1016/j.biortech.2018.12.019] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 05/21/2023]
Abstract
Ever-increasing swine wastewater (SW) has become a serious environmental concern. High levels of nutrients and toxic contaminants in SW significantly impact on the ecosystem and public health. On the other hand, swine wastewater is considered as valuable water and nutrient source for microalgae cultivation. The potential for converting the nutrients from SW into valuable biomass and then generating bioenergy from it has drawn increasing attention. For this reason, this review comprehensively discussed the biomass production, SW treatment efficiencies, and bioenergy generation potentials through cultivating microalgae in SW. Microalgae species grow well in SW with large amounts of biomass being produced, despite the impact of various parameters (e.g., nutrients and toxicants levels, cultivation conditions, and bacteria in SW). Pollutants in SW can effectively be removed by harvesting microalgae from SW, and the harvested microalgae biomass elicits high potential for conversion to valuable bioenergy.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - S M Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036, India
| |
Collapse
|
118
|
Bai X, Acharya K. Uptake of endocrine-disrupting chemicals by quagga mussels (Dreissena bugensis) in an urban-impacted aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:250-258. [PMID: 30392172 PMCID: PMC6318250 DOI: 10.1007/s11356-018-3320-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 05/05/2023]
Abstract
Untreated organic contaminants in municipal wastewater, such as endocrine-disrupting chemicals (EDCs), have become a significant issue in aquatic ecosystems, particularly in freshwater bodies that receive wastewater discharge. This has raised concerns about the accumulation of EDCs in aquatic species via continuous exposure. This study evaluated the uptake of EDCs by quagga mussels (Dreissena bugensis), an invasive species in a water supply reservoir. The field sampling results showed that steroid hormones were not detected in the water samples, and only pharmaceuticals and personal care products were present (0.49 to 36 ng/L). Additionally, testosterone was the most abundant steroid in the mussel tissue (6.3 to 20 ng/g dry weight), and other synthetic chemicals (i.e., bisphenol A, triclosan, and salicylic acid) were also detected in the mussel tissue (24 to 47 ng/g dry weight). After being exposed to exogenous EDCs for 7, 21, and 42 days under controlled laboratory conditions, testosterone was not detected in the mussel anymore, but bisphenol A, triclosan, and salicylic acid were found at relatively high levels in the mussel tissue, although the concentrations did not increase over time. Overall, the study demonstrated the uptake of EDCs in quagga mussels, which suggests that this species can be used to reflect water quality deterioration in aquatic ecosystems.
Collapse
Affiliation(s)
- Xuelian Bai
- Division of Hydrologic Sciences, Desert Research Institute, 755 E Flamingo Rd, Las Vegas, Nevada, 89119, United States.
| | - Kumud Acharya
- Division of Hydrologic Sciences, Desert Research Institute, 755 E Flamingo Rd, Las Vegas, Nevada, 89119, United States
| |
Collapse
|
119
|
Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO 2 composites: A critical review of recent literature. WATER RESEARCH 2018; 142:26-45. [PMID: 29859390 DOI: 10.1016/j.watres.2018.05.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 05/14/2023]
Abstract
The high concentrations of pharmaceuticals and personal care products (PPCP) that found in water in many locations are of concern. Among the available water treatment methods, heterogeneous photocatalysis using TiO2 is an emerging and viable technology to overcome the occurrence of PPCP in natural and waste water. The combination of carbonaceous materials (e.g., activated carbon, carbon nanotubes and graphene nanosheets) with TiO2, a recent development, gives significantly improved performance. In this article, we present a critical review of the development and fabrication of carbonaceous-TiO2 and its application to PPCP removal including its influence on water chemistry, and the relevant operational parameters. Finally, we present an analysis of current priorities in the ongoing research and development of carbonaceous-TiO2 for the photodegradation of PPCP.
Collapse
Affiliation(s)
- Dion Awfa
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Ateia
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, United States; PSIPW Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Saudi Arabia.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
120
|
Ozturk E. Applying analytical decision methods for determination of the best treatment alternative to remove emerging micropollutants from drinking water and wastewater: triclosan example. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30517-30546. [PMID: 30171528 DOI: 10.1007/s11356-018-3036-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Increasing human activities have not only substantially altered the natural material cycle but also created new synthetic chemicals flows. Some of these chemicals, which are described as micropollutants (MPs), may result in adverse effects on human health, aquatic organisms, and ecosystems. MPs can be transported to the environment and water resources in a variety ways including domestic and industrial wastewater. Unfortunately, most MPs are only partially removed in existing conventional treatment plants. Therefore, conventional treatment plants should be modernized by advanced treatment technologies to protect the environment and human health. However, there are various mysteries about best treatment techniques, evaluation criteria, and decision-making methods. In this study, it was aimed to determine the best treatment alternatives for triclosan (TCS) which is one of the priority MPs. A total of 18 evaluation criteria were identified and prioritized by employing analytical hierarchy process (AHP) and entropy methods. Treatment alternatives were identified and their performance was assessed through a comprehensive literature investigation. In decision-making processes of determining these alternatives, "technique for order preference by similarity to ideal solution (TOPSIS)," "preference ranking organization method for enrichment evaluation (PROMETHEE)," and "Višekriterijumsko kompromisno rangiranje (VIKOR)" analytical decision-making methods were employed, and priority rankings were determined according to each decision method. The final priority ranking was found as adsorption > membrane filtration > hybrid processes > advanced oxidation processes > constructed wetlands > conventional treatment processes > biological treatment > other treatment processes. Although the obtained results are specific to TCS, the employed analytical decision methods can be also used to decide the best treatment alternatives for other MPs.
Collapse
Affiliation(s)
- Emrah Ozturk
- Department of Environmental Engineering, Suleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
121
|
Li Y, Rashid A, Wang H, Hu A, Lin L, Yu CP, Chen M, Sun Q. Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: A path analysis approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1217-1226. [PMID: 29758874 DOI: 10.1016/j.scitotenv.2018.03.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Sulfamethoxazole (SMX) is a sulfonamide antibiotic, widely used as curative and preventive drug for human, animal, and aquaculture bacterial infections. Its residues have been ubiquitously detected in the surface waters and sediments. In the present study, SMX dissipation and kinetics was studied in the natural water samples from Jiulong River under simulated complex natural conditions as well as conditions to mimic various biotic and abiotic environmental conditions in isolation. Structural equation modeling (SEM) by employing partial least square technique in path coefficient analysis was used to investigate the direct and indirect contributions of different environmental factors in the natural attenuation of SMX. The model explained 81% of the variability in natural attenuation as a dependent variable under the influence of sole effects of direct photo-degradation, indirect photo-degradation, hydrolysis, microbial degradation and bacterial degradation. The results of SEM suggested that the direct and indirect photo-degradation were the major pathways in the SMX natural attenuation. However, other biotic and abiotic factors also play a mediatory role during the natural attenuation and other processes. Furthermore, the potential transformation products of SMX were identified and their toxicity was evaluated.
Collapse
Affiliation(s)
- Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar 25000, Pakistan
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Lifeng Lin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Meng Chen
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| |
Collapse
|
122
|
Bai X, Lutz A, Carroll R, Keteles K, Dahlin K, Murphy M, Nguyen D. Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. CHEMOSPHERE 2018; 200:133-142. [PMID: 29477762 PMCID: PMC6705126 DOI: 10.1016/j.chemosphere.2018.02.106] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 05/18/2023]
Abstract
The widespread occurrence of natural and synthetic organic chemicals in surface waters can cause ecological risks and human health concerns. This study measured a suite of contaminants of emerging concern (CECs) in water samples collected by the U.S. Environmental Protection Agency Region 8 around the Denver, Colorado, metropolitan area. The results showed that 109 of 144 analyzed pharmaceutical compounds, 42 of 55 analyzed waste-indicator compounds (e.g., flame retardants, hormones, and personal care products), and 39 of 72 analyzed pesticides were detected in the water samples collected monthly between April and November in both 2014 and 2015. Pharmaceutical compounds were most abundant in the surface waters and their median concentrations were measured up to a few hundred nanograms per liter. The CEC concentrations varied depending on sampling locations and seasons. The primary source of CECs was speculated to be wastewater effluent. The CEC concentrations were correlated to streamflow volume and showed significant seasonal effects. The CECs were less persistent during spring runoff season compared with baseflow season at most sampling sites. These results are useful for providing baseline data for surface CEC monitoring and assessing the environmental risks and potential human exposure to CECs.
Collapse
Affiliation(s)
- Xuelian Bai
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, 89119, United States.
| | - Alex Lutz
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, 89512, United States
| | - Rosemary Carroll
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, 89512, United States
| | - Kristen Keteles
- Environmental Protection Agency National Enforcement Investigations Center, Denver, CO, 80225, United States
| | - Kenneth Dahlin
- Environmental Protection Agency Region 8 Laboratory, Golden, CO, 80403, United States
| | - Mark Murphy
- Environmental Protection Agency Region 8 Laboratory, Golden, CO, 80403, United States
| | - David Nguyen
- Environmental Protection Agency Region 8 Laboratory, Golden, CO, 80403, United States
| |
Collapse
|
123
|
Chen X, Zhuang J, Bester K. Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment. Appl Microbiol Biotechnol 2018; 102:5403-5417. [PMID: 29732474 DOI: 10.1007/s00253-018-9029-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/27/2022]
Abstract
Triclosan is an antimicrobial agent, which is widely used in personal care products including toothpaste, soaps, deodorants, plastics, and cosmetics. Widespread use of triclosan has resulted in its release into wastewater, surface water, and soils and has received considerable attention in the recent years. It has been reported that triclosan is detected in various environmental compartments. Toxicity studies have suggested its potential environmental impacts, especially to aquatic ecosystems. To date, removal of triclosan has attracted rising attention and biodegradation of triclosan in different systems, such as axenic cultures of microorganisms, full-scale WWTPs, activated sludge, sludge treatment systems, sludge-amended soils, and sediments has been described. In this study, an extensive literature survey was undertaken, to present the current knowledge of the biodegradation behavior of triclosan and highlights the removal and transformation processes to help understand and predict the environmental fate of triclosan. Experiments at from lab-scale to full-scale field studies are shown and discussed.
Collapse
Affiliation(s)
- Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, Shenyang, 110016, China
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
124
|
|
125
|
|
126
|
Ding T, Lin K, Yang M, Bao L, Li J, Yang B, Gan J. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:200-209. [PMID: 29035714 DOI: 10.1016/j.jhazmat.2017.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is one of the most widely used pharmaceutically active compounds and frequently detected in treated wastewater and the impacted aquatic environment. However, the fate and toxicity of TCS in aquatic organisms is poorly known, including in particular the potential for the formation of incomplete biological transformation products. In this study, TCS posed high toxic effects (e.g., growth inhibition and damage of photosynthesis) to typical freshwater diatom Navicula sp., with the 24h and 72h EC50 values of 173.3 and 145.6μgL-1, respectively. The bioaccumulation of TCS in diatom cells increased with the increasing exposure to TCS and showed to be time-dependent. The higher intracellular TCS lead to higher toxicity on Navicula sp. The intracellular TCS concentration and the growth inhibition of TCS in Navicula sp. at pH 7.5 was obviously higher than that at pH 8.3, which was likely due to the higher abundance of unionized TCS in the culture. KMnO4 reduced both bioaccumulation and toxicity of TCS in Navicula sp., especially at pH 8.3. A total of seven products were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). These findings will provide a reference for the risk assessment of TCS in aquatic environment.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Kunde Lin
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Mengting Yang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianjun Bao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bo Yang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
127
|
Wang S, Yin Y, Wang J. Microbial degradation of triclosan by a novel strain of Dyella sp. Appl Microbiol Biotechnol 2018; 102:1997-2006. [DOI: 10.1007/s00253-018-8740-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
|
128
|
Wang S, Poon K, Cai Z. Removal and metabolism of triclosan by three different microalgal species in aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:643-650. [PMID: 28898861 DOI: 10.1016/j.jhazmat.2017.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Triclosan, an antimicrobial additive widely used in personal care products, has caused the contamination of various aquatic environment. Biodegradation was proved to play a vital role in the treatment of triclosan in wastewater. However, there is limited information about the metabolic pathway. In this study, three common freshwater microalgae including Chlorella pyrenoidosa (C. pyrenoidosa), Desmodesmus sp., and Scenedesmus obliquus (S. obliquus) were applied to remove and biodegrade triclosan in aqueous culture medium. High removal rate up to 99.7% was observed during the treatment of 400μgL-1 triclosan by the three microalgae for 1day. The removal of triclosan attributed to cellular uptake by C. pyrenoidosa, and biotransformation by Desmodesmus sp. and S. obliquus. Simultaneously, triclosan metabolites resulted from hydroxylation, reductive dechlorination, or ether bond cleavage and their conjugates produced through glucosylation and/or methylation were detected in the biodegradation samples. Metabolic pathway of triclosan by algae were firstly proposed in this work, shedding light on the environmental fate of triclosan.
Collapse
Affiliation(s)
- Shujuan Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing, P. R. China; Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, P. R. China
| | - Karen Poon
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, P. R. China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P. R. China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, P. R. China.
| |
Collapse
|
129
|
Mogolodi Dimpe K, Mpupa A, Nomngongo PN. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:341-348. [PMID: 28756255 DOI: 10.1016/j.saa.2017.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL-1 and 1.7μgL-1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg-1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.
Collapse
Affiliation(s)
- K Mogolodi Dimpe
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Anele Mpupa
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Philiswa N Nomngongo
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
130
|
Sponza DT, Güney G. Photodegradation of some brominated and phenolic micropollutants in raw hospital wastewater with CeO 2 and TiO 2 nanoparticles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2603-2622. [PMID: 29168700 DOI: 10.2166/wst.2017.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the degradations of 2,3,4,5,6-pentabromotoluene (PBT), 2,3,4,5,6-pentabromoethyl benzene (PBEB), triclosan (TCS) and gemfibrozil (GFZ) in raw hospital wastewater were investigated with cerium (IV) oxide and titanium (IV) oxide nanoparticles considering the mechanisms of adsorption, photolysis, and photocatalysis with UV-C lamps. The effects of nano-CeO2 and nano-TiO2 concentrations, irradiation times, UV light powers and hospital wastewater pH on the photodegradation yields of micropollutants namely PBT, PBEB, TCS and GFZ were investigated throughout photocatalysis. The nano-TiO2 produced had an anatase phase with crystalline shape with a surface area of 205 m2 g-1 and an average size of 11.50 nm. The CeO2 nanoparticles had a spherical shape with a higher surface area (302 m2 g-1) than that of TiO2 and a lower average size (8.11 nm). It was found that the removals of PBT, PBEB, TCS and GFZ with adsorption (5.7%-17.1%) and photolysis (9.0%-15.9%) were not significant for both nanoparticles. The photodegradation of PBT (92%), PBEB (90%), TCS (97%) and GFZ (95%) with nano-CeO2 gave better results than nano-TiO2 (90%, 87%, 94% and 93% for PBT, PBEB, TCS and GFZ, respectively) under optimum experimental conditions (0.50 g L-1 nano-CeO2, 45 min irradiation time, 25 °C temperature, pH = 8.50, 210 W UV light power). Both nanoparticles were reused effectively after photo-removals of the micropollutants from the hospital wastewater. The lowest photodegradation yields were 80%, 78%, 75% and 74% for TCS, GFZ, PBT and PBEB, respectively, with nano-TiO2 after six sequential treatments. The lowest photodegradation yields were 86%, 83%, 80% and 79% for the same micropollutants, respectively, with nano-CeO2 after six sequential treatments. The cost to treat 1 m3 raw hospital wastewater were 8.70 € and 2.28 €, for the photocatalytic treatments with nano-TiO2 and nano-CeO2, respectively.
Collapse
Affiliation(s)
- Delia Teresa Sponza
- Environmental Engineering Department, Engineering Faculty, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir 35160, Turkey E-mail:
| | - Gökçe Güney
- Environmental Engineering Department, Engineering Faculty, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir 35160, Turkey E-mail:
| |
Collapse
|
131
|
Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 2017; 36:30-44. [PMID: 28993012 DOI: 10.1016/j.tibtech.2017.09.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 11/23/2022]
Abstract
The increase in worldwide water contamination with numerous pharmaceutical contaminants (PCs) has become an emerging environmental concern due to their considerable ecotoxicities and associated health issues. Microalgae-mediated bioremediation of PCs has recently gained scientific attention, as microalgal bioremediation is a solar-power driven, ecologically comprehensive, and sustainable reclamation strategy. In this review, we comprehensively describe the current research on the possible roles and applications of microalgae for removing PCs from aqueous media. We summarize several novel approaches including constructing microbial consortia, acclimation, and cometabolism for enhanced removal of PCs by microalgae, which would improve practical feasibility of these technologies. Some novel concepts for degrading PCs using integrated processes and genetic modifications to realize algal-based bioremediation technologies are also recommended.
Collapse
|
132
|
Bai X, Acharya K. Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:734-740. [PMID: 28089530 DOI: 10.1016/j.scitotenv.2016.12.192] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/31/2016] [Accepted: 12/31/2016] [Indexed: 04/14/2023]
Abstract
The persistence and fate of pharmaceutical and personal care products (PPCPs) in the Lake Mead ecosystem are particularly important considering the potential ecological risks and human health impacts. This study evaluated the removal of five common PPCPs (i.e., trimethoprim, sulfamethoxazole, carbamazepine, ciprofloxacin, and triclosan) from Lake Mead water mediated by the green alga Nannochloris sp. The results from the incubation studies showed that trimethoprim and carbamazepine were highly resistant to uptake in the algal cultural medium and were measured at approximately 90%-100% of the applied dose after 14days of incubation. Sulfamethoxazole was found relatively persistent, with >60% of the applied dose remaining in the water after 14days, and its removal was mainly caused by algae-mediated photolysis. However, ciprofloxacin and triclosan dissipated significantly and nearly 100% of the compounds were removed from the water after 7days of incubation under 24h of light. Ciprofloxacin and triclosan were highly susceptible to light, and their estimated half-lives were 12.7hours for ciprofloxacin and 31.2hours for triclosan. Algae-mediated sorption contributed to 11% of the removal of trimethoprim and sulfamethoxazole, 13% of the removal of carbamazepine, and 27% of the removal of triclosan from the lake water. This research showed that 1) trimethoprim, sulfamethoxazole, and carbamazepine are quite persistent in aquatic environments and may potentially affect human health via drinking water intake; 2) photolysis is the dominant pathway to remove ciprofloxacin from aquatic ecosystems, which indicates that ciprofloxacin may have lower ecological risks compared with other PPCPs; and 3) triclosan can undergo photolysis as well as algae-mediated uptake and it may potentially affect the food web because of its high toxicity to aquatic species.
Collapse
Affiliation(s)
- Xuelian Bai
- Division of Hydrologic Sciences, Desert Research Institute, 755 E Flamingo Rd, Las Vegas, Nevada 89119, United States.
| | - Kumud Acharya
- Division of Hydrologic Sciences, Desert Research Institute, 755 E Flamingo Rd, Las Vegas, Nevada 89119, United States
| |
Collapse
|
133
|
Hu S, Hu H, Li W, Ke Y, Li M, Zhao Y. Enhanced sulfamethoxazole degradation in soil by immobilized sulfamethoxazole-degrading microbes on bagasse. RSC Adv 2017. [DOI: 10.1039/c7ra10150c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of sulfamethoxazole (SMX) in the environment is becoming a serious problem because of its toxicity and high risk to human health and microbial activity.
Collapse
Affiliation(s)
- Shengbing Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Huimin Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Wenlong Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yaoyi Ke
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Minghua Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|