101
|
Dhanasekaran R, Nault JC, Roberts LR, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019; 156:492-509. [PMID: 30404026 PMCID: PMC6340723 DOI: 10.1053/j.gastro.2018.11.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is poorly understood, but recent advances in genomics have increased our understanding of the mechanisms by which hepatitis B virus, hepatitis C virus, alcohol, fatty liver disease, and other environmental factors, such as aflatoxin, cause liver cancer. Genetic analyses of liver tissues from patients have provided important information about tumor initiation and progression. Findings from these studies can potentially be used to individualize the management of HCC. In addition to sorafenib, other multi-kinase inhibitors have been approved recently for treatment of HCC, and the preliminary success of immunotherapy has raised hopes. Continued progress in genomic medicine could improve classification of HCCs based on their molecular features and lead to new treatments for patients with liver cancer.
Collapse
Affiliation(s)
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Europeen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
102
|
Qiao Y, Xu M, Tao J, Che L, Cigliano A, Monga SP, Calvisi DF, Chen X. Oncogenic potential of N-terminal deletion and S45Y mutant β-catenin in promoting hepatocellular carcinoma development in mice. BMC Cancer 2018; 18:1093. [PMID: 30419856 PMCID: PMC6233269 DOI: 10.1186/s12885-018-4870-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with limited treatment options. Mutation of β-catenin is one of the most frequent genetic events along hepatocarcinogenesis. β-catenin mutations can be in the form of point mutation or large N-terminal deletion. Studies suggested that different β-catenin mutations might have distinct oncogenic potential. METHODS We tested the oncogenic activity of β-cateninS45Y, one of the most frequent point mutations of β-catenin, and ∆N90-β-catenin, a form of β-catenin with a large N-terminal deletion, in promoting HCC development in mice. Thus, we co-expressed β-cateninS45Y or ∆N90-β-catenin together with c-Met into the mouse liver using hydrodynamic injection. RESULTS We found that both β-catenin mutations were able to induce HCC formation in combination with c-Met at the same latency and efficiency. Tumors showed similar histological features and proliferation rates. However, immunohistochemistry showed predominantly nuclear staining of β-catenin in c-Met/∆N90-β-catenin HCC, but membrane immunoreactivity in c-Met/β-cateninS45Y HCC. qRT-PCR analysis demonstrated that both ∆N90-β-catenin and β-cateninS45Y induced the same effectors, although at somewhat different levels. In cultured cells, both ∆N90-β-catenin and β-cateninS45Y were capable of inducing TCF/LEF reporter expression, promoting proliferation, and inhibiting apoptosis. CONCLUSIONS Our study suggests that β-cateninS45Y and ∆N90-β-catenin, in combination with the c-Met proto-oncogene, have similar oncogenic potential. Furthermore, nuclear staining of β-catenin does not always characterize β-catenin activity.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Meng Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Antonio Cigliano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Diego F Calvisi
- Institute of Pathology, University Medicine Greifswald, Friedrich-Loeffler-Strasse 23e, 17489, Greifswald, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
103
|
Désert R, Nieto N, Musso O. Dimensions of hepatocellular carcinoma phenotypic diversity. World J Gastroenterol 2018; 24:4536-4547. [PMID: 30386103 PMCID: PMC6209578 DOI: 10.3748/wjg.v24.i40.4536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 3rd leading cause of cancer-related death worldwide. More than 80% of HCCs arise within chronic liver disease resulting from viral hepatitis, alcohol, hemochromatosis, obesity and metabolic syndrome or genotoxins. Projections based on Western lifestyle and its metabolic consequences anticipate a further increase in incidence, despite recent breakthroughs in the management of viral hepatitis. HCCs display high heterogeneity of molecular phenotypes, which challenges clinical management. However, emerging molecular classifications of HCCs have not yet formed a unified corpus translatable to the clinical practice. Thus, patient management is currently based upon tumor number, size, vascular invasion, performance status and functional liver reserve. Nonetheless, an impressive body of molecular evidence emerged within the last 20 years and is becoming increasingly available to medical practitioners and researchers in the form of repositories. Therefore, the aim this work is to review molecular data underlying HCC classifications and to organize this corpus into the major dimensions explaining HCC phenotypic diversity. Major efforts have been recently made worldwide toward a unifying “clinically-friendly” molecular landscape. As a result, a consensus emerges on three major dimensions explaining the HCC heterogeneity. In the first dimension, tumor cell proliferation and differentiation enabled allocation of HCCs to two major classes presenting profoundly different clinical aggressiveness. In the second dimension, HCC microenvironment and tumor immunity underlie recent therapeutic breakthroughs prolonging patients’ survival. In the third dimension, metabolic reprogramming, with the recent emergence of subclass-specific metabolic profiles, may lead to adaptive and combined therapeutic approaches. Therefore, here we review recent molecular evidence, their impact on tumor histopathological features and clinical behavior and highlight the remaining challenges to translate our cognitive corpus into patient diagnosis and allocation to therapeutic options.
Collapse
Affiliation(s)
- Romain Désert
- Institut NuMeCan, Université de Rennes 1, Institut national de la recherche agronomique (INRA), Institut national de la santé et de la recherche médicale (INSERM), Rennes F-35000, France
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, IL 60612, United States
| | - Natalia Nieto
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, IL 60612, United States
| | - Orlando Musso
- Institut NuMeCan, Université de Rennes 1, Institut national de la recherche agronomique (INRA), Institut national de la santé et de la recherche médicale (INSERM), Rennes F-35000, France
| |
Collapse
|
104
|
Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 2018; 15:599-616. [PMID: 30061739 DOI: 10.1038/s41571-018-0073-4] [Citation(s) in RCA: 1246] [Impact Index Per Article: 207.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global burden of hepatocellular carcinoma (HCC) is increasing and might soon surpass an annual incidence of 1 million cases. Genomic studies have established the landscape of molecular alterations in HCC; however, the most common mutations are not actionable, and only ~25% of tumours harbour potentially targetable drivers. Despite the fact that surveillance programmes lead to early diagnosis in 40-50% of patients, at a point when potentially curative treatments are applicable, almost half of all patients with HCC ultimately receive systemic therapies. Sorafenib was the first systemic therapy approved for patients with advanced-stage HCC, after a landmark study revealed an improvement in median overall survival from 8 to 11 months. New drugs - lenvatinib in the frontline and regorafenib, cabozantinib, and ramucirumab in the second line - have also been demonstrated to improve clinical outcomes, although the median overall survival remains ~1 year; thus, therapeutic breakthroughs are still needed. Immune-checkpoint inhibitors are now being incorporated into the HCC treatment armamentarium and combinations of molecularly targeted therapies with immunotherapies are emerging as tools to boost the immune response. Research on biomarkers of a response or primary resistance to immunotherapies is also advancing. Herein, we summarize the molecular targets and therapies for the management of HCC and discuss the advancements expected in the near future, including biomarker-driven treatments and immunotherapies.
Collapse
Affiliation(s)
- Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Translational Lab, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | - Robert Montal
- Liver Cancer Translational Lab, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
105
|
Rudini N, Novello C, Destro A, Riboldi E, Donadon M, Viganò L, Morenghi E, Roncalli M, Di Tommaso L. Phenotypic and molecular changes in nodule-in-nodule hepatocellular carcinoma with pathogenetic implications. Histopathology 2018; 73:601-611. [DOI: 10.1111/his.13659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Noemi Rudini
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Chiara Novello
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Annarita Destro
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Elena Riboldi
- Department of Pharmaceutical Sciences; Università del Piemonte Orientale ‘Amedeo Avogadro’; Novara Itlay
| | - Matteo Donadon
- Surgical Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| | - Luca Viganò
- Surgical Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| | - Emanuela Morenghi
- Biostatistical Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
| | - Massimo Roncalli
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| | - Luca Di Tommaso
- Pathology Unit; Humanitas Clinical and Research Centre; Rozzano Milan Italy
- Department of Biomedical Sciences; Humanitas University; Rozzano Milan Italy
| |
Collapse
|
106
|
Dong LQ, Shi Y, Ma LJ, Yang LX, Wang XY, Zhang S, Wang ZC, Duan M, Zhang Z, Liu LZ, Zheng BH, Ding ZB, Ke AW, Gao DM, Yuan K, Zhou J, Fan J, Xi R, Gao Q. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J Hepatol 2018; 69:89-98. [PMID: 29551704 DOI: 10.1016/j.jhep.2018.02.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (ICC) is the second-most lethal primary liver cancer. Little is known about intratumoral heterogeneity (ITH) and its impact on ICC progression. We aimed to investigate the ITH of ICC in the hope of helping to develop new therapeutic strategies. METHODS We obtained 69 spatially distinct regions from six operable ICCs. Patient-derived primary cancer cells (PDPCs) were established for each region, followed by whole-exome sequencing (WES) and multi-level validation. RESULTS We observed widespread ITH for both somatic mutations and clonal architecture, shaped by multiple mechanisms, like clonal "illusion", parallel evolution and chromosome instability. A median of 60.3% of mutations were heterogeneous, among which 85% of the driver mutations were located on the branches of tumor phylogenetic trees. Many truncal and clonal driver mutations occurred in tumor suppressor genes, such as TP53, SMARCB1 and PBRM1 that are involved in DNA repair and chromatin-remodeling. Genome doubling occurred in most cases (5/6) after the accumulation of truncal mutations and was shared by all intratumoral sub-regions. In all cases, ongoing chromosomal instability is evident throughout the evolutionary trajectory of ICC. The recurrence of ICC1239 provided evidence to support the polyclonal metastatic seeding in ICC. The change of mutation landscape and internal diversity among subclones during metastasis, such as the loss of chemoresistance mediator, can be used for new treatment strategies. Targeted therapy against truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, was developed in 5/6 patients. CONCLUSIONS Integrated investigations of spatial ITH and clonal evolution may provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ICC. LAY SUMMARY We applied multiregional whole-exome sequencing to investigate the evolution of intrahepatic cholangiocarcinoma (ICC). The results revealed that many factors, such as parallel evolution and chromosome instability, may participate and promote the branch diversity of ICC. Interestingly, in one patient with primary and recurrent metastatic tumors, we found evidence of polyclonal metastatic seeding, indicating that symbiotic communities of multiple clones existed and were maintained during metastasis. More realistically, some truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, could be promising treatment targets in patients with ICC.
Collapse
Affiliation(s)
- Liang-Qing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Yang Shi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li-Jie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Liu-Xiao Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhi-Chao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Meng Duan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Long-Zi Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Bo-Hao Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Da-Ming Gao
- CAS Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Yuan
- School of Computing Science and Institute of Cancer Science, University of Glasgow, United Kingdom
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
107
|
The role of molecular enrichment on future therapies in hepatocellular carcinoma. J Hepatol 2018; 69:237-247. [PMID: 29505843 DOI: 10.1016/j.jhep.2018.02.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinomas (HCCs) are characterised by considerable phenotypic and molecular heterogeneity. Treating HCC and designing clinical trials are particularly challenging because co-existing liver disease, present in most patients, limits aggressive therapeutic options. Positive results in recent phase III clinical trials have confirmed the high value of anti-angiogenic therapies for HCC in both first (sorafenib and lenvatinib) and second line (regorafenib and cabozantinib) treatment modalities. However, failure of several large randomised controlled clinical trials over the last 10 years underlines the necessity for innovative treatment strategies and implementation of translational findings to overcome the unmet clinical need. Furthermore, the promising results from novel immunotherapies are likely to complement the landscape of active compounds for HCC and will require a completely different approach to patients, as well as the development of prognostic/predictive biomarkers. Given our increasing understanding of the most abundant molecular alterations in HCC, effective enrichment of patients based on clinical and molecular biomarkers, as well as adaptive clinical trials, are now feasible and should be implemented. Herein, we aim to review important aspects of precision medicine approaches in HCC that might contribute to improving the molecular subclassification of patients in a clinical trial setting and pave the way for novel therapeutic strategies.
Collapse
|
108
|
Zhang Z, Hao K. Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data. Methods Mol Biol 2018; 1833:29-47. [PMID: 30039361 DOI: 10.1007/978-1-4939-8666-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic copy number alterations (SCNAs) are profound in cancer genomes at different stages: oncogenesis, progression, and metastasis. Accurate detection and characterization of SCNA landscape at genome-wide scale are of great importance. Next-generation sequencing and SNP array are current technology of choice for SCNA analysis. They are able to quantify SCNA with high resolution and meanwhile raise great challenges in data analysis. To this end, we have developed an R package saasCNV for SCNA analysis using (1) whole-genome sequencing (WGS), (2) whole-exome sequencing (WES) or (3) whole-genome SNP array data. In this chapter, we provide the features of the package and step-by-step instructions in detail.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
109
|
Distinction of intrahepatic metastasis from multicentric carcinogenesis in multifocal hepatocellular carcinoma using molecular alterations. Hum Pathol 2017; 72:127-134. [PMID: 29180252 DOI: 10.1016/j.humpath.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Patients with hepatocellular carcinoma (HCC) frequently have multiple anatomically distinct tumors. In these patients, multifocal HCC could represent intrahepatic metastases (IMs) of a single cancer or multicentric carcinogenesis (MC) with multiple independent neoplasms. To determine the frequency and clinical implications of these 2 possibilities, we performed histological and molecular analysis of 70 anatomically distinct HCCs from 24 patients. We assayed mutations in the TERT promoter region by Sanger sequencing and used next-generation sequencing to analyze the entire coding regions of 7 well-characterized HCC driver genes-based on shared or discordant mutations in these genes, we classified the HCCs in each patient as IM, MC, or indeterminate. Mutations in the TERT promoter were the most common alteration in our cohort, present in 71% of tumors analyzed. Mutations in the remaining genes occurred in less than 20% of analyzed tumors. We were able to determine the relatedness in 58% of the patients analyzed: MC occurred in 41% of patients, with 33% with exclusively MC and 8% with both MC and IM. IM occurred exclusively in 17% of patients, whereas the remainder were indeterminate. This study highlights the utility of molecular analyses to determine relatedness in multifocal HCC; however, targeted sequencing can only resolve this distinction in approximately 60% of patients with multifocal HCC.
Collapse
|
110
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|